University of Sydney Algebra Seminar
Martina Lanini (University of Melbourne)
Friday 30th August, 12:05-12:55pm, Carslaw 373
Towards a moment graph approach to critical level representation theory
Moment graph techniques have been applied in the study of non-critical blocks of category \(O\) for affine Kac-Moody algebras, while in the critical case these methods have not been developed yet. Inspired by the fact that non-critical representations are controlled by the Hecke algebra \(H\), while critical level representations are expected to be governed by the periodic module \(M\), we prove the moment graph analogue of a result by Lusztig which bridges \(H\) and \(M\), and believe that it should provide us with new tools to attack the critical level case.