Close

Examples for Cartesian coordinates in three dimensions


Example 1

Find the magnitude of the vector x = 4i - 2j + 3k, the unit vector in the direction of x and the vector of magnitude 5 in the direction opposite to x.

Top of page

Solution

We have |x| =  V~ -2--------2---2-   4  + (- 2) + 3 =  V~ ----------   16 + 4 + 9 =  V~ ---   29.

Therefore the unit vector in the direction of x is the vector

  1  V~ ---(4i - 2j + 3k)   29

and the vector of magnitude 5 in the direction opposite to x is

 V~ 1-(- 20i + 10j - 15k)   29

Example 2

Given the vectors u = 3i - j + 2k and v = 2i + 3j - k, find Cartesian forms of the vectors u + v, u - v, 2u + 3v.

Top of page

Solution

First,
u + v =  (3i- j + 2k) + (2i + 3j - k)       =  5i + 2j + k.

Next,

u - v =  (3i- j + 2k) - (2i + 3j - k)        =  i- 4j + 3k.

and finally,

2u + 3v =  2(3i- j + 2k) + 3(2i + 3j- k)         =  12i + 7j + k.

Example 3

Given that P1(-1, 2, 3) and P2(3, 3, 4) are two points in space, find the Cartesian form of the vector -P-1-->P2.

Top of page

Solution

-- --> P1P2  = (3-  (-1))i + (3- 2)j + (4 - 3)k       = 4i + j + k

Example 4

Show that the vectors

(3 + 4s)i + (4 - 3s)j + 5tk

and

(3s + 4t)i + 5j + (4s - 3t)k

have the same magnitude.

Top of page

Solution

Both vectors are in Cartesian form and their lengths can be calculated using the formula
                 V~ ------------ |xi + yj + zk|=    x2 + y2 + z2.

We have

                               V~  ---------------------------- |(3 + 4s)i + (4 - 3s)j + 5tk |=   (3 + 4s)2 + (4 - 3s)2 + (5t)2                                V~ --------------------------------------                             =   9 + 24s + 16s2 + 16 - 24s + 9s2 + 25t2                                V~ ---------2-----2                             =   25 + 25s  + 25t

and

                                V~  --------------------------- |(3s + 4t)i + 5j + (4s - 3t)k |=    (3s + 4t)2 + 52 + (4s - 3t)2                                 V~ --2------2------------------2----2--------                              =  V~  9s-+-16t-+--24st + 25 + 16s +  9t - 24st                              =   25 + 25s2 + 25t2

Therefore two given vectors have the same length.