menuicon

Research

About the School
Research activities
Undergraduate study
School intranet

Integrability of the moduli stack of parahoric Higgs bundles

David Baraglia (Adelaide)

Abstract

The cotangent bundle of the stack of principal G-bundles on a curve was shown by Hitchin to be an algebraically integrable system. Motivated by the Langlands program we consider the following generalisation: take the cotangent bundle of the stack of torsors over a non-constant group scheme. Do we still get an integrable system? We show that this is the case for the so-called parahoric group schemes. A special cases of this is the cotangent bundle of the stack of parabolic G-bundles. Determining the base of the integrable system turns out to be deeply related to the Kazhdan-Lusztig map, which sends nilpotent orbits to conjugacy classes in the Weyl group. This is Joint work with Masoud Kamgarpour and Rohith Varma.