menuicon

Research

About the School
Research activities
Undergraduate study
School intranet

Diagrams for surface isotopies in 4-manifolds

Maggie Miller (Princeton)

Abstract

I will demonstrate a method of drawing diagrams for a surface smoothly embedded into an arbitrary 4-manifold, and show that any two diagrams of smoothly isotopic surfaces are related by a sequence of simple moves (6 elementary moves + isotopy). This generalizes work in S4 of Swenton and Kearton-Kurlin. Through correspondence with bridge trisections, this implies that a surface in a trisected 4-manifold has a unique bridge trisection up to perturbation, proving a conjecture of Meier and Zupan.