
Almost Linear Complexity Methods for Delay-Doppler
Channel Estimation

Alexander Fish and Shamgar Gurevich

Abstract—A fundamental task in wireless communication is channel
estimation: Compute the channel parameters of a medium between a
transmitter and a receiver. In the case of delay-Doppler channel, i.e., a
signal undergoes only delay and Doppler shifts, a widely used method
to compute delay-Doppler parameters is the pseudo-random method. It
uses a pseudo-random sequence of length N, and, in case of non-trivial
relative velocity between transmitter and receiver, its computational
complexity is O(N2 logN) arithmetic operations. In [1] the flag method
was introduced to provide a faster algorithm for delay-Doppler channel
estimation. It uses specially designed flag sequences and its complexity
is O(rN logN) for channels of sparsity r. In these notes, we introduce
the incidence and cross methods for channel estimation. They use triple-
chirp and double-chirp sequences of length N , correspondingly. These
sequences are closely related to chirp sequences widely used in radar
systems. The arithmetic complexity of the incidence and cross methods
is O(N logN + r3), and O(N logN + r2), respectively.

I. INTRODUCTION

A BASIC building block in many wireless communication proto-
cols is channel estimation: learning the channel parameters of

the medium between a transmitter and a receiver [6]. In these notes
we develop efficient algorithms for delay-Doppler (also called time-
frequency) channel estimation. Throughout these notes we denote by
ZN the set of integers {0, 1, ..., N − 1} equipped with addition and
multiplication modulo N . We will assume, for simplicity, that N
is an odd prime. We denote by H = C(ZN ) the vector space of
complex valued functions on ZN , and refer to it as the Hilbert space
of sequences.

A. Channel Model
We describe the discrete channel model which was derived in [1].

We assume that a transmitter uses a sequence S ∈ H to generate
an analog waveform SA ∈ L2(R) with bandwidth W and a carrier
frequency fc �W . Transmitting SA, the receiver obtains the analog
waveform RA ∈ L2(R). We make the sparsity assumption on the
number of paths for propagation of the waveform SA. As a result,
we have1

RA(t) =
r∑

k=1

βk · exp(2πifkt) · SA(t− tk) +W(t), (I-A.1)

where r—called the sparsity of the channel—denotes the number of
paths, βk ∈ C is the attenuation coefficient, fk ∈ R is the Doppler
shift along the k-th path, tk ∈ R+ is the delay associated with the
k-th path, and W denotes a random white noise. We assume the
normalization

∑r
k=1 |βk|2 ≤ 1. The Doppler shift depends on the

relative velocity, and the delay encodes the distance along a path,
between the transmitter and the receiver. We will call

(βk, tk, fk), k = 1, ..., r, (I-A.2)

channel parameters, and the main objective of channel detection is
to estimate them.
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1In these notes i denotes
√−1.

B. Channel Estimation Problem

Sampling the waveform RA at the receiver side, with sampling
rate 1/W , we obtain a sequence R ∈ H. It satisfies

R[n] = H(S)[n] +W[n], (I-B.1)

where H , called the channel operator, acts on S ∈ H by2

H(S)[n] =
r∑

k=1

αke(ωkn)S[n− τk], n ∈ ZN , (I-B.2)

with αk’s are the complex-valued (digital) attenuation coefficients,∑
k |αk|2 ≤ 1, τk ∈ ZN is the (digital) delay associated with the

path k, ωk ∈ ZN is the (digital) Doppler shift associated with path
k, and W denotes the random white noise. We will assume that all
the coordinates of W are independent identically distributed random
variables of expectation zero.

Remark I-B.1: The relation between the physical (I-A.2) and the
discrete channel parameters is as follows (see Section I.A. in [1]
and references therein): If a standard method suggested by sampling
theorem is used for the discretization, and SA has bandwidth W , then
τk = tkW modulo N , and ωk = Nfk/W modulo N , provided that
tk ∈ 1

W
Z, and fk ∈ W

N
Z, k = 1, ..., r. In particular, we note that

the integer N determines the frequency resolution of the channel
detection, i.e., the resolution is of order W/N.

The objective of delay-Doppler channel estimation is:

Problem I-B.2 (Channel Estimation): Design S ∈ H, and an
effective method for extracting the channel parameters (αk, τk, ωk),
k = 1, ..., r, using S and R satisfying (I-B.1).

Fig. 1. Profile of A(ϕ,ϕ) for ϕ pseudo-random sequence.

C. Ambiguity Function and Pseudo-Random Method

A classical method to estimate the channel parameters in (I-B.1)
is the pseudo-random method [2], [3], [4], [6], [7]. It uses two
ingredients - the ambiguity function, and a pseudo-random sequence.

2We denote e(t) = exp(2πit/N).
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1) Ambiguity Function: In order to reduce the noise component in
(I-B.1), it is common to use the ambiguity function that we are going
to describe now. We consider the Heisenberg operators π(τ , ω),
τ , ω ∈ ZN , which act on f ∈ H by

[π(τ , ω)f ] [n] = e(−2−1τω) · e(ωn) · f [n− τ ], (I-C.1)

where 2−1 denotes (N + 1)/2, the inverse of 2 mod N. Finally,
the ambiguity function of two sequences f, g ∈ H is defined3 as the
N ×N matrix

A(f, g)[τ , ω] = 〈π(τ , ω)f, g〉 , τ , ω ∈ ZN , (I-C.2)

where 〈 , 〉 denotes the standard inner product on H.

Remark I-C.1 (Fast Computation of Ambiguity Function): The
restriction of the ambiguity function to a line in the delay-Doppler
plane, can be computed in O(N logN) arithmetic operations using
fast Fourier transform [5]. For more details, including explicit
formulas, see Section V of [1]. Overall, we can compute the entire
ambiguity function in O(N2 logN) operations.

For R and S satisfying (I-B.1), the law of the iterated logarithm
implies that, with probability going to one, as N goes to infinity, we
have

A(S,R)[τ , ω] = A(S,H(S))[τ , ω] + εN , (I-C.3)

where |εN | ≤
√

2 log logN/
√
N · SNR, with SNR denotes the

signal-to-noise ratio4.
2) Pseudo-Random Sequences: We will say that a norm-one

sequence ϕ ∈ H is B-pseudo-random, B ∈ R—see Figure 1 for
illustration—if for every (τ , ω) 6= (0, 0) we have

|A(ϕ,ϕ)[τ , ω]| ≤ B/
√
N. (I-C.4)

There are several constructions of families of pseudo-random (PR)
sequences in the literature (see [2], [3] and references therein).

3) Pseudo-Random Method: Consider a pseudo-random sequence
ϕ, and assume for simplicity that B = 1 in (I-C.4). Then we have

A(ϕ,H(ϕ))[τ , ω] (I-C.5)

=





α̃k +
∑
j 6=k

α̃j/
√
N, if (τ , ω) = (τk, ωk) , 1 ≤ k ≤ r;

∑
j

α̂j/
√
N, otherwise,

where α̃j , α̂j , 1 ≤ j ≤ r, are certain multiples of the αj’s
by complex numbers of absolute value less or equal to one. In
particular, we can compute the delay-Doppler parameter (τk, ωk)
if the associated attenuation coefficient αk is sufficiently large. It
appears as a peak of A(ϕ,H(ϕ)). Finding the peaks of A(ϕ,H(ϕ))
constitutes the pseudo-random method. Notice that the arithmetic
complexity of the pseudo-random method is O(N2 logN), using
Remark I-C.1. For applications to sensing, that require sufficiently
high frequency resolution, we will need to use sequences of large
length N . Hence, the following is a natural problem.

Problem I-C.2 (Arithmetic Complexity): Solve Problem I-B.2,
with method for extracting the channel parameters which requires
almost linear arithmetic complexity.

3For our purposes it will be convenient to use this definition of the
ambiguity function. The standard definition appearing in the literature is
A(f, g)[τ , ω] = 〈e(ωn)f [n− τ ], g[n]〉 .

4We define SNR = 〈S, S〉 / 〈W,W〉.

Fig. 2. Profile of A(fL, H(fL)) for flag fL, L = {(0, ω)}, N = 199,
and channel parameters (0.7, 50, 150), (0.7, 100, 100).

D. Flag Method

In [1] the flag method was introduced in order to deal with
the complexity problem. It computes the r channel parameters in
O(rN logN) arithmetic operations. For a given line L in the plane
ZN×ZN , one construct a sequence fL—called flag—with ambiguity
function A(fL, H(fL)) having special profile—see Figure 2 for
illustration. It is essentially supported on shifted lines parallel to L,
that pass through the delay-Doppler shifts of H , and have peaks there.
This suggests a simple algorithm to extract the channel parameters.
First compute A(fL, H(fL)) on a line M transversal to L, and find
the shifted lines on which A(fL, H(fL)) is supported. Then compute
A(fL, H(fL)) on each of the shifted lines and find the peaks. The
overall complexity of the flag algorithm is therefore O(rN logN),
using Remark I-C.1. If r is large, it might be computationally
insufficient.

E. Incidence and Cross Methods

In these notes we suggest two new schemes for channel estimation
that have much better arithmetic complexity than previously known
methods. The schemes are based on the use of double and triple chirp
sequences.

1) Incidence Method: We propose to use triple-chirp sequences
for channel estimation. We associate with three distinct lines
L,M , and M◦ in ZN × ZN , passing through the origin, a se-
quence CL,M,M◦ ∈ H. This sequence has ambiguity function
essentially supported on the union of L, M , and M◦. As a
consequence—see Figure 3 for illustration—the ambiguity func-
tion A(CL,M,M◦ , H(CL,M,M◦)) is essentially supported on the
shifted lines {(τk, ωk) + (L ∪ M ∪ M◦) | k = 1, . . . , r}. This
observation, which constitutes the bulk of the incidence method,
enables a computation in O(N logN + r3) arithmetic operations
of all the time-frequency shifts (see Section III). In addition, the
estimation of the corresponding r attenuation coefficients takes O(r)
operations. Hence, the overall complexity of incidence method is
O(N logN + r3) operations.

2) Cross Method: We propose to use double-chirp sequences for
channel estimation. For two distinct lines L and M in ZN × ZN ,
passing through the origin, we introduce a sequence CL,M ∈ H
with ambiguity function supported on L, and M . Under genericity
assumptions—see Figure 4 for illustration—the essential support of
A(CL,M , H(CL,M )) lies on r×r grid generated by shifts of the lines
L, and M . Denote by vij = li+mj , li ∈ L,mj ∈M ; 1 ≤ i, j ≤ r,
the intersection points of the lines in the grid. Using Remark I-C.1
we find all the points vij , 1 ≤ i, j ≤ r, in O(N logN) operations.
The following matching problem arises: Find the r points from vij ,
1 ≤ i, j ≤ r, which belong to the support of H . To suggest a solution,
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Fig. 3. Essential support of the ambiguity function
A(CL,M,M◦ , H(CL,M,M◦ )), where L is the delay line, M is the
Doppler line, and M◦ is a diagonal line, and the support of H consists two
parameters. Points of ZN × ZN through them pass three lines are the true
delay-Doppler parameters of H .

we use the values of the ambiguity function to define a certain simple
hypothesis function h : L×M → C (see Section IV). We obtain:

Theorem I-E.1 (Matching): Suppose vij = li + mj is a delay-
Doppler shift of H, then h(li,mj) = 0.

Fig. 4. Essential support of the ambiguity function A(CL,M , H(CL,M )),
where L is the delay line, M is the Doppler line, and the support of H
consists two parameters.

The cross method makes use of Theorem I-E.1 and checks the
values h(li,mj), 1 ≤ i, j ≤ r. If a value is less than a priori
chosen threshold, then the algorithm returns vij = li +mj as one of
the delay-Doppler parameters. To estimate the attenuation coefficient
corresponding to vij takes O(1) arithmetic operations (see details in
Section IV). Overall, the cross method enables channel estimation in
O(N logN + r2) arithmetic operations.

II. CHIRP, DOUBLE-CHIRP, AND TRIPLE-CHIRP SEQUENCES

In this section we introduce the chirp, double-chirp, and triple-chirp
sequences, and discuss their correlation properties.

A. Definition of the Chirp Sequences
We have N + 1 lines5 in the discrete delay-Doppler plane V =

ZN ×ZN . For each a ∈ ZN we denote by La = {(τ , aτ); τ ∈ ZN}
the line of finite slope a, and we denote by L∞ = {(0, ω); ω ∈ ZN}
the line of infinite slope. To every line La, it corresponds the
orthonormal basis for H:

BLa =
{
CLa,b ; b ∈ ZN

}
,

of chirp sequences associated with La, where

CLa,b [n] = e(2−1an2 − bn)/
√
N,n ∈ ZN .

5In these notes by a line L ⊂ V , we mean a line through (0, 0).

To the line L∞ it corresponds the orthonormal basis

BL∞ =
{
CL∞,b ; b ∈ ZN

}
,

of chirp sequences associated with L∞, where

CL∞,b = δb,

denotes the Dirac delta sequence supported at b.

Fig. 5. Plot (real part) of A(CL1,1
, CL1,1

), for chirp CL1,1
[n] =

e[2−1n2 − n], associated with the line L1 = {(τ , τ)}.

B. Chirps as Eigenfunctions of Heisenberg Operators

The Heisenberg operators (I-C.1) satisfy the commutation relations

π(τ , ω)π(τ ′, ω′) = e(ωτ ′ − τω′) · π(τ ′, ω′)π(τ , ω), (II-B.1)

for every (τ , ω), (τ ′, ω′) ∈ V. In particular, for a given line L ⊂ V,
we have the family of commuting operators π(l), l ∈ L. Hence they
admit an orthonormal basis BL for H of common eigenfunctions.
Important property of the chirp sequences is that for every chirp
sequence CL ∈ BL, there exists a character6 ψL : L → C∗, i.e.
ψL(l + l′) = ψL(l)ψL(l′), l, l′ ∈ L, such that

πL(l)CL = ψL(l)CL, for every l ∈ L.

This implies—see Figure 5—that for every CL ∈ BL we have

A(CL, CL)[v] =

{
ψL(v) if v ∈ L;
0 if v /∈ L. (II-B.2)

It is not hard to see [4] that for distinct lines L, and M , and two
chirps CL ∈ BL, CM ∈ BM we have

|A(CL, CM )[v]| = 1/
√
N, for every v ∈ V. (II-B.3)

C. Double-Chirp Sequences

For any two distinct lines L,M ∈ V , and two characters ψL, ψM

on them, respectively, denote by CL the chirp corresponding to L
and ψL, and by CM the chirp corresponding to M , and ψM . We
define the double-chirp sequence

CL,M = (CL + CM )/
√

2.

It follows from (II-B.2) and (II-B.3) that for the line K = L, or M ,
we have

A(CK , CL,M )[v] ≈
{

ψK(v)/
√

2 if v ∈ K;
0 if v /∈ K.

6We denote by C∗ the set of non-zero complex numbers
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D. Triple-Chirp Sequences
Consider three distinct lines L,M,M◦ ∈ V , and three characters

ψL, ψM , ψM◦ on them, respectively. Denote by CL, CM and CM◦

the chirps corresponding to L,M and M◦, and ψL, ψM , and ψM◦ ,
respectively. We define the triple-chirp sequence

CL,M,M◦ = (CL + CM + CM◦)/
√

3.

It follows from (II-B.2) and (II-B.3) that for the line K = L,M or
M◦, we have

A(CK , CL,M,M◦)[v] ≈
{

ψK(v)/
√

3 if v ∈ K;
0 if v /∈ K.

III. INCIDENCE METHOD

We describe—see Figure 3 for illustration—the incidence algo-
rithm.

Incidence Algorithm

Input: Randomly chosen lines L, M , and M◦, and characters
ψL, ψM , ψM◦ on them, respectively. Echo RL,M,M◦ of the
triple-chirp CL,M,M◦ , threshold T > 0, and value of SNR.

Output: Channel parameters.

1) Compute A(CM , RL,M,M◦) on L, obtain peaks7 at l1, ..., lr1 .

2) Compute A(CL, RL,M,M◦) on M, obtain peaks at
m1, ...,mr2 .

3) Compute A(CM◦ , RL,M,M◦) on L, obtain peaks at l◦1 , ..., l◦r3 .

4) Find vij = li+mj which solve li+mj ∈M◦+l◦k, 1 ≤ i ≤ r1,
1 ≤ j ≤ r2, 1 ≤ k ≤ r3.

5) For every delay-Doppler parameter vij = li + mj

found in the previous step, compute αvij =√
3A(CL, RL,M,M◦)[mj ]ψL(li). Return the parameter

(αvij , vij).

IV. CROSS METHOD

Let CL,M be the double-chirp sequence associated with the lines
L,M ⊂ V , and the characters ψL, and ψM , on L, and M ,
correspondingly. We define hypothesis function h : L × M → C
by

h(l,m) = A(CL, RL,M )[m] · ψL[l] (IV-.1)

−A(CM , RL,M )[l] · e(Ω[l,m]) · ψM [m],

where8 Ω : V ×V → ZN is given by Ω[(τ , ω), (τ ′, ω′)] = τω′−ωτ ′.
Below we describe—see Figure 4—the Cross Algorithm.

V. CONCLUSIONS

In these notes we present the incidence and cross methods for
efficient channel estimation. These methods, in particular, suggest
solutions to the arithmetic complexity problem. Low arithmetic
complexity enables working with sequences of larger length N , and
hence higher velocity resolution of channel parameters is plausible.
We summarize these important features in Figure 6, and putting them
in comparison with the pseudo-random (PR) and Flag methods.

7We say that at v ∈ V the ambiguity function of f and g has peak, if
|A(f, g)[v]| > T

√
2 log logN/

√
N · SNR.

8In linear algebra Ω is called symplectic form.
9We say that at v ∈ V the ambiguity function of f and g has peak, if
|A(f, g)[v]| > T1

√
2 log logN/

√
N · SNR.

Cross Algorithm

Input: Randomly chosen lines L, M , and characters ψL, ψM on
them, respectively. Echo RL,M of the double-chirp CL,M ;
thresholds T1, T2 > 0, and the value of SNR.

Output: Channel parameters.

1) Compute A(CM , RL,M ) on L, and take the r1 peaks9 located
at points li, 1 ≤ i ≤ r1.

2) Compute A(CL, RL,M ) on M, and take the r2 peaks located
at the points mj , 1 ≤ j ≤ r2.

3) Find vij = li + mj which solve |h(li,mj)| ≤
T2

√
2 log log(N)/

√
N · SNR, where 1 ≤ i ≤ r1, 1 ≤ j ≤

r2.

4) For every delay-Doppler parameter vij = li +mj found in the
previous step, compute αvij =

√
2A(CL, RL,M )[mj ]ψL(li).

Return the parameter (αvij , vij).

Fig. 6. Comparing methods, with respect to arithmetic complexity, for
channels with r parameters.

Remark V-.1: Both new methods are robust to a certain degree of
noise since they use the values of the ambiguity functions, which is
a sort of averaging.
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