
JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 12, Number 4, 2005
© Mary Ann Liebert, Inc.
Pp. 416–430

sFFT: A Faster Accurate Computation of the
p-Value of the Entropy Score

URI KEICH

ABSTRACT

We present sFFT, an algorithm for efficiently computing the p-value of the information con-
tent, or the entropy score of an alignment of DNA sequences. Applying the FFT algorithm
to an exponentially shifted probability mass function allows us perform fast convolutions
that do not suffer from the otherwise overwhelming effect of accumulated numerical round-
off errors. Through a rigorous analysis of the propagation of numerical errors across the
various steps of sFFT, we provide a theoretical bound on the overall error of our computed
p-value. The accuracy of the computed p-value, as well as the utility of the error bound,
are empirically demonstrated. Although there are faster algorithms that would compute
this p-value, they can err significantly; sFFT is the fastest reliable algorithm. Finally, we
note that the basic algorithm is likely to be applicable in a wider context than the one
considered here.

Key words: information content, entropy score, p-value, FFT, numerical errors, large deviation,
exponential shifted measure.

1. INTRODUCTION

Aligning biologically related sequences is a common task in computational biology. Such align-
ments arise, for example, in studies of transcription factor binding sites. Typically, such a study starts

with an input set of DNA sequences which are believed to contain the a priori unknown and relatively short
binding sites. Although these sites are not identical, they are presumably “fairly similar” to one another
in a way that would be clearer once we align all these instances. In order to analyze the alignment, one
usually constructs the alignment matrix which lists the number of occurrences of each letter in each of the
columns, or the positions, of the alignment.

Although an alignment matrix does shed some light on the quality of the alignment, one usually tries to
“summarize” the matrix by assigning it a score. One such figure of merit is the commonly used information
content, or entropy score (Stormo, 2000). Let nij denote the number of occurrences of the j th letter in the
ith column, and let n = ∑

j nij be the number of instances, or sequences, in the alignment. The entropy
score of the motif is

I :=
∑
i

∑
j

nij log
nij /n

qj
,

where qj is the background frequency of the j th letter (typically its frequency in the given sample).

Computer Science Department, Cornell University, Ithaca, NY 14853.

416

sFFT 417

Having computed the score, we are interested in assessing its statistical significance. This is often
accomplished by computing the p-value of the observed score. Let I (i) = ∑

j nij log
[
(nij /n)/qj

]
be the

entropy of the ith column. Then, I (i) is also the generalized log likelihood ratio between the hypothesis
H0 = H0(i) that {nij }j is a sample of the multinomial distribution specified by the background frequencies
{q1, . . . , qA}, and between the alternative hypothesis H1 that the sample originated from some multinomial
distribution on A letters. It is well known that under H0, 2I (i) → χ2(A − 1) in distribution, as n → ∞
(e.g., Rice [1995]). Therefore, under the hypothesis H0 = ∩iH0(i), and assuming the L columns of the
alignment are independent of one another, 2I → χ2(L(A− 1)). The problem, however, is that in a typical
application of motif finding we are interested in extreme cases where many of the letters in each column
rarely appear, if at all, in which case the above asymptotic analysis is not applicable.

At this point, we would benefit from a mathematical representation of the problem. Let p denote the
pmf (probability mass function) of I (i) under H0. Assuming that for i = 1, . . . , L, I (i) are independent
random variables, the pmf of the entropy score, I = ∑L

1 I (i), is given by the L-fold convolution of p:

p∗L(s) := p ∗ · · · ∗ p︸ ︷︷ ︸
L

:=
∑

(s1,...,sL):
s1+···+sL=s

p(s1) . . . p(sL). (1)

Define

F̄ ∗L(s) :=
∑
s′≥s

p∗L(s′); (2)

then the p-value of I = s0 is F̄ ∗L(s0). In particular, to compute this p-value, we need to compute p∗L(s)
for all s ≥ s0, which would typically require a prohibitive amount of time. Having realized that fact in
a more general context, Staden (1989) suggested replacing I with a lattice-discretized version of it. For
example, we can replace I (i) with Iδ(i) = hδ(I (i)), where

hδ(x) := �x/δ� · δ. (3)

Then, Iδ = ∑
i Iδ(i) is a lattice approximation of I . The pmf of Iδ is given by p∗L

δ , the L-fold convolution
of pδ , the pmf of Iδ(i). The reason p∗L

δ is much easier to compute than the original p∗L is that it is a
convolution on a lattice.

Hertz and Stormo (1999) suggest two ways to estimate F̄ ∗L(s0). The first method, NC, is based on
Staden’s aforementioned technique of approximating F̄ ∗L(s0) with

F̄ ∗L
δ (s0) :=

∑
s≥s0

p∗L
δ (s). (4)

For computing pδ , they suggest a dynamic programming algorithm that computes the lattice pmf in
O(AMn2), where A is the size of the alphabet, n is the number of instances or sequences, and M is the
size of the lattice or the maximal possible number of discretized values.

The second method Hertz and Stormo suggest, LD, involves large deviation theory. More precisely, LD
which is implemented as part of their motif finder Consensus (Hertz and Stormo, 1999), uses one of three
distributions (gamma, normal, reversed gamma) to estimate the tail of the exponentially shifted probability
measure. Which one of the three distributions is actually used is determined by the distance of the observed
value of the entropy score, s0, from the maximal/minimal possible scores. In practice, their approximation
scheme works quite well except for a range of values near the maximum possible score, where this method
can be off by a significant factor (see Section 5 for an example where the LD p-value is off by a factor of
over 100 from the correct answer).

Comparing the two methods, the authors consider NC as the more reliable one though they do not
attempt to quantify that. Another advantage NC enjoys is that it actually yields the entire distribution of
the entropy score as opposed to merely the p-value of s0. However, these advantages often pale given that
NC is significantly slower than LD: for example, with A = 4, L = 10, and n = 100, it is 170 times slower
and other settings produce even significantly worse results for NC (Hertz and Stormo, 1999).

418 KEICH

FIG. 1. Overwhelming errors in an unshifted FFT-based convolution. The figure illustrates the potential overwhelming
effects of numerical errors in applications of (unshifted) FFT. Compared are the graphs of two estimates of the p-value
F̄ ∗L
δ (s). The smoother graph is of the provably reliable NC, while the second is obtained from FFT-based convolution

applied to pδ . Both graphs are log10 of the function. Note that in this case the FFT-based estimate fails to capture
p-values smaller than roughly 10−21.

Remark. A third method for estimating the p-value, based on Fisher’s “omnibus” procedure (Bailey
and Gribskov, 1998), is implemented in the latest release (3.0) of MEME (Bailey and Elkan, 1994). We
found this method to be considerably less accurate than the first two (Jones et al., in preparation).

As far as the complexity of their NC algorithm, Hertz and Stormo note that the complexity of computing
p∗L
δ using a naive convolution is O(L2M2). They also comment that implementing this convolution using

the FFT (fast Fourier transform, e.g., Press et al. [1992]) would reduce the complexity to O(LM log(LM)).
However, they do not report any implementation of this strategy, most likely because the accumulated effects
of roundoff errors mask out the smaller (extreme) values of the pmf. See Fig. 1 for an example of the
havoc wreaked by the accumulation of roundoff errors in FFT-based convolution. Notice in particular how
all the smaller p-values, which are typically the ones we are interested in, are completely corrupted.

In this paper we present sFFT, an algorithm that incorporates the large-deviation technique of exponential
shift into FFT-based convolution. This allows sFFT to share the reduced complexity of the FFT and, at
the same time, avoid the tendency of the FFT to accumulate dominating round-off errors. We begin by
presenting our method and continue to provide empirical and theoretical evidence for the validity of our
approach.

2. DFT, FFT, AND LARGE DEVIATION

First let us briefly recall how one convolves using DFT (discrete Fourier transform). The L-fold convolu-
tion of a vector v ∈ CM , v∗L, can be computed as follows. Let N = ML and extend v as an N -dimensional
vector by padding it with zeroes. Then compute Dv, the DFT of v, which is defined (Press et al., 1992)
as follows:

v̂(k) := (Dv)(k) :=
N−1∑
j=0

eijkωv(j),

sFFT 419

where ω = 2π/N , D = D(N), and i = √−1. Define w ∈ CN as w(k) = [
v̂(k)

]L. Then, v∗L is given by
the inverse DFT of w:

v∗L(l) = (D−1w)(l) := 1

N

N−1∑
j=0

e−ij lωw(j).

Let D̃ and D̃−1 be the FFT implemented1 machine operators which serve as our surrogates for the DFT
operators D and D−1. Note that D̃ and D̃−1 are not exactly the linear and mutually inverse operators that
D and D−1 are. The reason FFT-based convolution typically fails in our context is that it relies on delicate
cancellations to produce the final result: (D−1w)(l) is a sum of N complex numbers. In the example
we study in Section 5, the magnitudes of these numbers roughly span a range of values from 10−5 to
3 × 10−70. Since ε∗, the relative machine precision, is roughly 10−16, we cannot expect in this case much
accuracy from D̃−1 beyond 10−21 (as can be verified in Fig. 1).

To avoid the problem of roundoff errors dominating the smaller p-values, we adopt an idea from large
deviation theory. Namely, we apply an exponential shift to our pmf pδ prior to convolving it, thereby
amplifying the entries we are interested in. Let

pθ,δ(s) := pδ(s)e
θs/Mδ(θ), (5)

where Mδ(θ) = EeθIδ(i) is the moment-generating function of the lattice score of one column.
The reason we choose an exponential shift is that it essentially commutes with the convolution operator.

More precisely, from (1):

p∗L
θ,δ(s)e

−θs+L logMδ(θ) =
∑

(s1,...,sL):
s1+···+sL=s

pθ,δ(s1) . . . pθ,δ(sL)e
−θs+L logMδ(θ)

=
∑

(s1,...,sL):
s1+···+sL=s

pδ(s1)e
θs1−logMδ(θ) . . . pδ(sL)e

θsL−logMδ(θ)e−θs+L logMδ(θ)

= p∗L
δ (s).

The obvious next question is how should we choose the parameter θ . An intuitively appealing choice
of θ is the one which comes from large deviation theory. That is, given s0, we choose

θ0 = argminθ
[
logM(θ)− θs0/L

]
. (6)

This choice of θ roughly centers the shifted distribution of one column about s0/L, or more precisely,
the mean of pδ,θ0 is s0/L. Thus, p∗L

δ,θ0
is centered about s0 and therefore has maximal “resolving power”

(relative to the “noise” of numerical errors) around s0. Intuitively, the significant contributions to the p-value
should come from values of p∗L

δ close to s0, and therefore it looks as a sensible choice. In the following,
we present empirical and theoretical justification for this particular choice of θ .

3. sFFT

For a vector x ∈ CN , we denote by x̃ ∈ CN its machine representation, or more generally, in case some
calculations are involved, its machine approximation.2 In the latter case, we assume the calculations are
given implicitly.

1The FFT algorithm is a recursive implementation of DFT that reduces the complexity from O(N2) to O(N logN).
2Throughout this paper we refer to an approximated, or estimated values as opposed to the exact ones due to the

presence of roundoff errors, see e.g. Stoer and Bulirsch (1992).

420 KEICH

3.1. The algorithm

The input to sFFT is

• n, the number of sequences,
• L, the number of columns in the alignment,
• q1, . . . , qA, the background frequencies of the A letters,
• M , the size of the lattice,
• s0, the observed score.

Given the input, sFFT does the following:

1. Computes p̃δ , an estimate of pδ . Currently this is implemented by naively enumerating all possible
observed frequency tables.

2. Finds θ0 by numerically solving (6). Technically, we implemented that by applying the procedures
mnbrak followed by dbrent of Press et al. (1992).

3. Computes p̃θ0,δ(s) according to (5).

4. Computes p̃∗L
θ0,δ

by applying the FFT-based convolution as described in Section 2 to p̃θ0,δ(s) (we identify
a lattice pmf with the obvious associated vector).

5. For all s ≥ s0, computes p̃∗L
δ (s) = p̃∗L

θ0,δ
(s)e−θ0s+L log M̃δ(θ0).

6. Returns sFFT(s0) := ∑
s≥s0 p̃

∗L
δ (s).

3.2. Complexity and extensions

Our current implementation of the first step is not very efficient. Its complexity is O(M + nA−1) which
is feasible for a typical application of motif finding in DNA (A = 4 and n � 100). Alternatively, one can
use Hertz and Stormo’s (1999) dynamic programming approach (O(AMn2)). Strictly speaking, this would
require reworking of some of the error estimates we provide below.

The complexity of numerically solving (6) for θ0 is typically negligible. Indeed, dbrent (Press et al.,
1992), which essentially implements Brent’s iterative method for minimization, has at least linear and
typically superlinear convergence (in the number of required precision digits). Finally, the complexity of
each iterative step is O(M) and the number of digits of precision should be no more than − log10

√
ε∗ ≈ 8.

With N = ML, the complexity of the FFT-based convolution is O(LM log(LM)). Assuming that
typically M � n, this term would dominate the overall complexity provided we limit ourselves to a small
A (as in DNA sequences). For larger A, a more careful implementation and analysis of Hertz and Stormo’s
algorithm for step 1 is required.

Note that we can greatly extend the applicability of our algorithm by working with logarithms in steps
1, 2, 5, and 6 of the algorithm. This would not change the complexity but would allow us to estimate
p-values that would otherwise create an underflow (roughly 10−308). Such an extension might be necessary
when dealing with a reasonably large sample of DNA sequences.

Finally we will use the following trivial extensions of sFFT:

• We can add an explicitly desired shift θ0 as an input parameter and skip step 2. We will denote such
cases as sFFT(s0, θ0) (the other parameters being implicit).

• We can stop at step 5 and return p̃∗L
δ , an estimator of the pmf p∗L

δ . We will denote such cases as
sFFT(θ0).

4. QUALITY CONTROL

In this section, we establish upper bounds on the error in estimating the p-value of I = s0. We do so for
both Hertz and Stormo’s NC algorithm and our sFFT. Both algorithms suffer from errors induced by the
same two sources. The first type, the lattice errors, is due to the fact that we only consider Iδ , the latticed
version of the original entropy function I . The second type of errors is numerical errors – our algorithms

sFFT 421

are implemented in finite precision machines. In Section 4.1, we discuss the lattice-induced errors and how
we can bound them. In Section 4.2, we briefly study numerical errors in general. Section 4.3 analyzes the
numerical errors of Hertz and Stormo’s NC algorithm, and finally Section 4.4 studies those in the case
of sFFT.

4.1. Lattice errors

Recall that we only use a lattice in order to facilitate the estimation of F̄ ∗L(s0), (2). Although we can
simply approximate the latter with F̄ ∗L

δ (s0), (4), in this section we are interested in how much we can err
in doing so. The next claim shows how to bound F̄ ∗L(s0) given F̄ ∗L

δ (s).

Claim 1. For jδ ≤ s < (j + 1)δ, let

UBδ(s) := F̄ ∗L
δ ((j + 1 − L)δ)

LBδ(s) :=
{
F̄ ∗L
δ (jδ) s = jδ

F̄ ∗L
δ ((j + 1)δ) s > jδ

.
(7)

Then

LBδ(s) ≤ F̄ ∗L(s) ≤ UBδ(s). (8)

Proof. We first prove the claim for s = jδ. For k ∈ NL, let ‖k‖ = ∑L
1 ki . From (1) and the definition

of pδ ,

p∗L
δ (jδ) =

∑
k:‖k‖=j

L∏
i=1

∑
si :hδ(si)=kiδ

p(si) =
∑

(s1,...,sL):∑L
1 hδ(si)=jδ

L∏
i=1

p(si). (9)

It follows from (3) that 0 ≤ x − hδ(x) < δ, and therefore

0 ≤ hδ

(
L∑
i=1

(si − hδ(si))

)
≤ (L− 1)δ.

Hence,

L∑
i=1

hδ(si) ≤ hδ

(
L∑
i=1

si

)
≤

L∑
i=1

hδ(si)+ (L− 1)δ.

Since p(si) ≥ 0, it follows that

∑
(s1,...,sL):∑L
1 hδ(si)≥jδ

L∏
i=1

p(si) ≤
∑

(s1,...,sL):
hδ

(∑L
1 si

)
≥jδ

L∏
i=1

p(si) ≤
∑

(s1,...,sL):∑L
1 hδ(si)+(L−1)δ≥jδ

L∏
i=1

p(si). (10)

Combining (4), (7), (9), and (10) proves (8) for s = jδ.
Finally, for jδ ≤ s < (j + 1)δ, using what we just proved for lattice points and (7),

F̄ ∗L(s) ≥ F̄ ∗L((j + 1)δ) ≥ LBδ((j + 1)δ) = F̄ ∗L
δ ((j + 1)δ),

and similarly,

F̄ ∗L(s) ≤ F̄ ∗L(jδ) ≤ UBδ(jδ) = F̄ ∗L
δ ((j + 1 − L)δ).

422 KEICH

Remarks.

• Currently, sFFT(jδ) = L̃Bδ(jδ) though this is somewhat arbitrary. Estimating F̄ ∗L(s) with any number
in [LBδ(s),UBδ(s)] yields an error bounded by UBδ(s)− LBδ(s). In practice, there is little difference
between those two bounds except perhaps near the maximal possible score.

• Generally speaking, as δ decreases (by increasingM) [LBδ(s),UBδ(s)], the bounding interval for F̄ ∗L(s)
shrinks. Strictly speaking, though, this is only guaranteed to be the case if the new lattice is a refinement
of the previous one.

• In reality, we can only compute ˜̄F ∗L
δ , a machine computable estimate of F̄ ∗L

δ , and the relative error
between the two will increase with M . In practical terms, though, as long as this relative error is
reasonably small, we can just plug ˜̄F ∗L

δ in (7) instead of F̄ ∗L
δ . We can thus obtain an estimate of the

lattice error.

4.2. A brief introduction to numerical errors

Numerical errors arise from the finiteness of our machine’s precision. More precisely, there exists ε∗ > 0,
typically ε∗ ≈ 10−16, such that for |a| < ε∗, 1̃ + a = 1. Hence, the relative error (|̃x−x|/x) in computing
1 + a can be arbitrarily close to ε∗. While such an error is rarely a cause for concern, the propagation
or accumulation of such small errors can be disastrous as is evident in Fig. 1. In the remainder of this
section, we spell out the basic technical results we need to allow us to track the propagation of numerical
errors in the algorithms we analyze. The executive summary of this section is as follows:

• The relative error of a sum of n positive numbers equals the maximal error among the input numbers
plus nε∗.

• The relative error of a product of two real numbers equals the sum of their errors.

First, we assume that our machine does not introduce an error bigger than necessary when performing
elementary calculations. More precisely, let x, y ∈ R with x = x̃ and y = ỹ; then we have the following:

x̃ + y − (x + y) = εx+y(x + y) where |εx+y | < ε∗ (11)

x̃y − xy = εxy(xy) where |εxy | < ε∗ (12)

These assumptions hold when x and y are perfectly estimated. The question now is how are errors in
estimating x and y propagated.

Lemma 1. Assume that a, b ≥ 0 and that for x = a, b: x̃ = x + ex with |ex | ≤ x(cxε∗ + dxε
2∗), with

cx, dx ≥ 0. Then, with C = max{ca, cb} and D = max{da, db},

|ea+b| :=
∣∣∣˜̃a + b̃ − (a + b)

∣∣∣ ≤ (a + b)
[
(1 + C)ε∗ + (C +D)ε2∗ +Dε3∗

]
.

Proof. From (11) and our definitions above with |εã+b̃| < ε∗,

ea+b = [(a + ea)+ (b + eb)] (1 + εã+b̃)− (a + b)

= ea + eb + (a + b)εã+b̃ + (ea + eb)εã+b̃.
(13)

The result follows by elementary arithmetic.

Lemma 2. Suppose ai ≥ 0 and ãi = ai + ei , where |ei | ≤ aicε∗ with c > 0. Then, with Sn = ∑n
1 ai

and assuming (n+ c)ε∗ < 1, ∣∣∣∣∣∣
ñ∑
1

ãi − Sn

∣∣∣∣∣∣ ≤ Sn(n+ c)ε∗(1 + nε∗). (14)

sFFT 423

Remark. In most practical applications, (n+c)ε∗ � 1 and the lemma is applicable. Since in particular
nε∗ � 1, the lemma says that the relative error in estimating Sn grows linearly with n regardless of how
inaccurate were the estimates ãi .

Proof. We prove by induction that if the mild condition (n + c)ε∗ < 1 holds then so does (14). For
n = 1, (14) holds by the assumptions on a1. For the inductive step, use the previous lemma with a = Sn−1
and b = an, where ca and da are provided by the inductive argument and cb = c, db = 0. It is helpful to
note that

Sn(n+ c)ε∗(1 + nε∗) = Sn

[
(n+ c)ε∗ + (n2 + nc)ε2∗

]
.

The next lemma shows that multiplication is not as well behaved as addition of positive numbers.

Lemma 3. Suppose a and b are as in Lemma 1. Then,

|eab| :=
∣∣∣ ˜̃ab̃ − ab

∣∣∣ ≤ ab
[
(1 + ca + cb)ε∗ + (ca + cb + cacb)ε

2∗ + cacbε
3∗
]
.

Proof. The result follows immediately from the following equation which can be derived from (12) and
the above definitions:

eab = [(a + eb)(b + eb)] (1 + εãb̃)− ab. (15)

Remark. In contrast with addition of positive numbers, subtraction of such numbers can lead to large

relative errors. For example, if a = 1 + ε∗/2 and b = 1, ˜̃a − b̃ = 0; compared with a − b = ε∗/2, the
relative error is 1. This is the gist of why the unshifted FFT-based convolution typically fails in our case.

4.3. Numerical errors in the NC algorithm

Both the NC algorithm and sFFT begin with computing p̃δ . Since Hertz and Stormo’s method of
computing p̃δ introduces another type of lattice errors, we chose to replace it here. The modified NC
algorithm (which we still call NC) computes p̃δ by simply enumerating all possible observed frequency
tables as in step 1 of sFFT (see Sections 3.1 and 3.2 for more). Thus, according to Lemmas 2 and 3, the
bound on the relative error of each entry, p̃δ(jδ), is determined by A and by α(j), the number of frequency
tables whose entropy lies in [jδ, (j −1)δ). More precisely, there exists a small, universal constant, c0 such
that with cδ = c0Amaxj α(j),

|p̃δ(s)− pδ(s)| ≤ cδε∗|pδ(s)|. (16)

In practice, one can increase the size of the lattice M so that cδ will be sufficiently small.
In the second stage of the NC algorithm, p̃δ∗L is computed by a naive convolution of p̃δ . At each of the

L− 1 convolutions and for each entry of the convoluted vector, we essentially need to add M products of
pairs of positive numbers. By Lemmas 2 and 3, the relative error of each entry is thus increased at every
step by (1 + cδ +M)ε∗ so that overall

|p̃∗L
δ (s)− p∗L

δ (s)| ≤ (M + cδ)Lε∗p∗L
δ (s).

Since typically MLε∗ � 1, this establishes the reliability of the NC algorithm.

4.4. Error analysis of sFFT

We begin with assessing the quality of our approximation of the DFT operators D and D−1 (see Kaneko
and Liu [1970] for somewhat similar results). As customary, let ‖x‖1 = ∑

j |x(j)| and let ‖x‖∞ =
maxj |x(j)|. Throughout this discussion, we consider N = 2K as it greatly simplifies the exposition.

keich
Comment on Text
e_a

keich
Sticky Note
This ignores the fact that even with the more accurate computation of the entropy it might still land in an adjacent interval. That said, this is something that can be caught by observing a calculated entropy that is "too close" to a lattice point. We can choose a lattice which avoids the epsilon-error interval associated with each calculated entropy if these intervals do not form a contiguous intervals which is longer than an approximate lattice mesh.

424 KEICH

Lemma 4. If N = 2K and x = x̃ then

‖(DN − D̃N)x‖∞ ≤ 5Kε∗‖x‖1 + 13K2ε2∗‖x‖1, (17)

‖(D−1
N − D̃−1

N)y‖∞ ≤ 5Kε∗
N

‖y‖1 + 13K2ε2∗
N

‖y‖1. (18)

Remark. For our applications, we can safely assume that Kε∗ � 1. Therefore, when applying (17)
and (18), we will absorb the quadratic term in ε∗ in the linear term.

Proof. We prove only (17) since the proof of (18) is essentially identical. The proof is by induction
on K , where N = 2K , and it is based on the following recursive formula for computing the DFT via FFT
(Press et al., 1992): let ζ = e2πi/N and x ∈ CN ; then

(DNx) (k) = (
DN/2xe

)
(k)+ ζ k

(
DN/2xo

)
(k), (19)

where xe, xo ∈ CN/2 are, respectively, the even and odd entries of x, and k is taken modulo N/2 on the
right-hand side.

Note that (17) is trivial for K = 0, so we need only to establish the inductive step. For α ∈ C, as before,
we denote by α̃ its machine estimator and define eα = α̃ − α. For α, β ∈ C, we define

eα+β = ˜̃α + β̃ − (α + β),

and similarly for eαβ . It follows from (13) that

|eα+β | ≤ (|eα| + |eβ |)(1 + ε∗)+ ε∗|α + β|. (20)

Similarly, for w, z ∈ C with |w| = 1 and assuming |ew| ≤ ε∗,3

|ewz| ≤ |ez|(1 + 4ε∗ + 6ε2∗)+ |z|(4ε∗ + 6ε2∗). (21)

The latter inequality follows from (12): when applied to x, y ∈ C with x = x̃ and y = ỹ, it holds with
|εxy | < 4ε∗ + 2ε2∗. Plugging it into (15) yields the desired result.

Let α = (
DN/2xe

)
(k), z = (

DN/2xo
)
(k), w = ζ k , and β = wz. By induction,

|eα| ≤ 5Kε∗‖xe‖1 + 13K2ε2∗‖xe‖1, |ez| ≤ 5Kε∗‖xo‖1 + 13K2ε2∗‖xo‖1.

Thus, using (21) and the fact that |z| ≤ ‖xo‖1, we find that

|eβ | ≤
[
(5K + 4)ε∗ + (13K2 + 20K + 6)ε2∗ + γ3ε

3∗ + γ4ε
4∗
]
‖xo‖1,

where γ3 and γ4 are fixed quadratic polynomials in K. Thus,

|eα| + |eβ | ≤
[
(5K + 4)ε∗ + (13K2 + 20K + 6)ε2∗ + γ3ε

3∗ + γ4ε
4∗
]
‖x‖1,

and it follows from (19) and (20) and from |α + β| ≤ ‖x‖1 that∣∣[(D̃N −DN
)
(x)
]
(k)
∣∣ ≤

[
5(K + 1)ε∗ + (13K2 + 25K + 10)ε2∗ + γ ′

3ε
3∗ + γ ′

4ε
4∗ + γ ′

5ε
5∗
]
‖x‖1

≤
[
5(K + 1)ε∗ + 13(K + 1)2ε2∗

]
‖x‖1,

where the last inequality holds for any usable K (recall that K = log2N). This completes the inductive
step in proving (17).

3This assumption clearly depends on the particular implementation of the FFT. We can, however, assume that such
an implementation is possible.

keich
Comment on Text
5 NOT 4

keich
Comment on Text
The following comment made on 20/6/12 looks wrong (3/7/14): compare with Tasche & Zeuner's papers and cor 4.2 in their earlier paper 2001.
1 NOT 4 \eps^s & 4 NOT 6 \eps^2This implies that the bound on the higher order term in (17), (18) could have a factor of 2 rather than 5.

keich
Comment on Text
In the analysis here 3\eps_* is in fact used while \mu_C = 4\sqrt{3}/3 ~ 2.31 can be used (Tasche & Zeuner)

sFFT 425

Next, we estimate the error in an FFT-based convolution. For the sake of notation sanity, we assume
N = 2K = ML.

Lemma 5. Let q ∈ RM , qi ≥ 0 with ‖q‖1 = 1 (i.e., q is a pmf). Assume that q̃ ∈ RM satisfies
|qi − q̃i | < qicδε∗. Assume further that q̃∗L is computed as described in Section 2. Then,

‖q̃∗L − q∗L‖∞ ≤ c(cδ +K)Lε∗,

where c is a small universal constant.

Proof. We identify q with a vector in CN by padding it with zeros. Note that for x ∈ CN , ‖Dx‖∞ ≤ ‖x‖1
and that |‖̃q‖1 − 1| < cδε∗. Thus, it follows from Lemma 4 and the triangle inequality that

‖D̃q̃ −Dq‖∞ ≤ ‖D(̃q − q)‖∞ + ‖(D − D̃)̃q‖∞
≤ cδε∗‖q‖1 + cKε∗‖̃q‖1

≤ c(cδ +K)ε∗.

(22)

Note that c here means a small constant though it might not be the same constant throughout. Note also
that in the spirit of the remark following Lemma 4 we absorb higher powers of ε∗ in the linear term.

Define y ∈ CN as y(i) = [
(Dq) (i)

]L (with ỹ its analogously defined estimator). From ‖Dq‖∞ ≤ 1
and (22),

‖y − ỹ‖∞ ≤ c(cδ +K)Lε∗. (23)

Note that, typically, for most entries |Dq(i)| � 1/L so |y(i)− ỹ(i)| ≤ c(cδ +K)ε∗, but in any case L is
relatively small for our applications. Since ‖y‖1 ≤ N , it follows from (23) that

‖ỹ‖1 ≤ N [1 + c(cδ +K)Lε∗]. (24)

At the last step we compute q̃∗L = D̃−1ỹ. Since for x ∈ CN ‖D−1x‖∞ ≤ 1
N

‖x‖1, by using Lemma 4,
(23), and (24), we find that

‖q∗L − q̃∗L‖∞ ≤ ‖D−1(y − ỹ)‖∞ + ‖(D−1 − D̃−1)̃y‖∞

≤ 1

N
‖y − ỹ‖1 + cKε∗

N
‖ỹ‖1

≤ c(cδ +K)Lε∗.

We are now ready to find what is the overall error of sFFT(s, θ) in estimating F̄ ∗L
δ (s). Recall that

invoking sFFT(s, θ) means θ is given rather than being optimized.

Claim 2. Let

EB(s, θ) := c(cδ +K)L
(∑
s′≥s

e−θs′+L logM(θ)
)
ε∗. (25)

Then

|F̄ ∗L
δ (s)− sFFT(s, θ)| ≤ EB(s, θ). (26)

Remarks.

• Note that (26) holds for every θ (and not only the one that minimizes (6)).
• Comparing this bound with the computed p-value, sFFT(s, θ), we can gauge the latter’s accuracy. There

are, however, more ad hoc ways to assess the accuracy of the p-value as well. For example, the imaginary

426 KEICH

part of the p-value should, of course, be 0. Thus, its actual computed value yields an estimate of the
level of numerical noise. Alternatively, one can slightly vary θ and observe its effect on the computed
p-value.

• Refer to Section 5 for concrete examples of the utility of this upper bound.

Proof. Our proof relies on examination of the accumulated round-off errors at each step of the al-

gorithm. Let p̃θ (s) = ˜pδ(s)eθs/Mδ(θ), where Mδ(θ) is the moment generating function of pδ and p̃θ is
short for p̃θ,δ . Note that the error in estimating Mδ(θ) can be rather large since Mδ(θ) itself can be very
large. Fortunately though, we can ignore this error since Mδ(θ) is simply a multiplicative factor whose
sole utility here is to enhance numerical stability. Thus, we might as well assume that M̃δ(θ) = Mδ(θ).
It therefore follows from (16) that at the end of step 3 of our algorithm (skipping step 2)

|p̃θ (s)− pθ(s)| < (c · cδ · ε∗)pθ (s).
Let p̃∗L

θ denote the L-fold convolution computed in step 4 of sFFT. By Lemma 5,

‖p̃∗L
θ − p∗L

θ ‖∞ ≤ c(cδ +K)Lε∗. (27)

Peeling off the exponential shift, we get the estimate of p∗L(s) obtained through the θ shift:

p̃∗L
δ [θ](s) = ˜

p̃∗L
δ (s)e

−θs [Mδ(θ)]L.

It follows from (27) that

‖p̃∗L
δ [θ](s)− p∗L

δ ‖∞ ≤ c(cδ +K)Le−θs+L logMδ(θ)ε∗.

The proof is now completed by the definition of sFFT(s, θ) = ∑
s′:s′≥s p̃∗L

δ [θ](s′).

4.5. Which θ?

Following the definition of θ0 = θ0(s0) in (6), we gave an intuitive explanation as to why it should be a
good choice of θ . We can now provide additional motivation for that. Following on (25) and (26), we have

|F̄ ∗L
δ (s0)− sFFT(s0)| ≤ c(cδ +K)L

smax − s0

δ
e−θs0+L logM(θ)ε∗, (28)

where smax is the maximal possible score. Clearly, the right-hand side is minimized for θ = θ0 as defined
in (6).

Moreover, a theorem of Bahadur and Ranga Rao (1960) guarantees that as m → ∞

P
(1

m

m∑
i=1

I (i) ≥ s0/L
)

= e−θ0s0m/L+m logM(θ0)

√
2πm

(c + o(1)).4 (29)

If we plug m = L in (29), we get the estimate

F̄ ∗L
δ (s0) ≈ c

1√
2πL

e−θ0s0+L logM(θ0).

Plugging this estimate into (28), we get the approximate upper bound:

|F̄ ∗L
δ (s0)− sFFT(s0)| �

[
c(cδ +K)L

smax − s0

δ

√
2πLε∗

]
F̄ ∗L
δ (s0).

In other words, the relative error in our estimation of F̄ ∗L
δ (s0) is given by the term in the brackets, which

is typically small.

4Technically this only holds for s0/L bigger than the average entropy score of one column, but this condition is
satisfied in our applications.

sFFT 427

Of course, the last argument hinges on the applicability of the asymptotic behavior described in (29) to a
finite m = L. While this is typically valid for most s0, like Hertz and Stormo’s large deviation argument, it
comes up short for s0 ≈ smax. Nevertheless, the next section provides empirical evidence that EB(s, θ0(s)),
the error bound defined in (25), is usable even for s0 ≈ smax. More important is the implicit statement that
sFFT(s) provides an accurate estimate for s all the way up to smax.

5. EMPIRICAL RESULTS

This section presents experimental evidence that supports the claim that sFFT is at times

• significantly more accurate than LD, and
• significantly faster than NC.

In the example that we chose, n = 20 (sequences), M = 105 (lattice size), A = 4 (DNA letters), and
q = [0.2499, 0.2501, 0.2497, 0.2503] (background frequencies).

5.1. Accuracy

Our benchmark is the NC algorithm whose accuracy we established in Section 4.3. Note, however, that
when comparing with Hertz and Stormo’s LD algorithm, we need to adjust for the possible lattice errors
of NC (Section 4.1).

Let LD(s), NC(s), and sFFT(s) denote the p-values of s as estimated by the respective algorithm. Figure 2
essentially shows log10 LD(s)/NC(s), however, to account for possible lattice errors of NC, (8), the graph
shown is somewhat more conservative. More precisely, the graph in Fig. 2 is of

ψ(s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log10

LD(s)

LBδ(s)
if
∣∣ log10

LD(s)

LBδ(s)

∣∣ ≤ ∣∣ log10
LD(s)

UBδ(s)

∣∣
log10

LD(s)

UBδ(s)
otherwise.

(30)

FIG. 2. LD errors. The graph of ψ(s) as defined in (30) is a lower bound on how far off (in log10 units) is LD(s)
from the p-value it tries to estimate. The gaps indicate areas of unattainable entropy values.

428 KEICH

FIG. 3. sFFT errors. This figure illustrates the relative error (in log10 units) between sFFT and NC which is provably
accurate.

In contrast with the performance of LD(s) in our example, sFFT(s) stays with NC(s) all the way to
smax: Fig. 3 shows the relative error between NC(s) and sFFT(s) for a wide sample S of values of s near
smax for which p∗L

δ (s) > 0. The sample S was generated with decreasing interspacing as we get closer to
smax so as to get more “resolution” near smax. The gaps in S are in areas with unattainable values of entropy.

Figure 4 demonstrates the potential utility of the error bound EB(s, θ0) specified in (25). The graph
shows log10 EB(s, θ0)/NC(s) for s in the previously mentioned sample S, and θ0 = θ0(s) defined by (6).

FIG. 4. Sizing EB(s, θ0), the bound on the error of sFFT. This figure illustrates the utility of the upper bound given
in (26): it depicts log10 EB(s, θ0)/NC(s), where θ0 = θ0(s) is defined by (6).

sFFT 429

In studying the utility of EB(s, θ0) and the accuracy of sFFT(s), we restricted attention to s ≈ smax.
This is justified by the discussion in Section 4.5 which ensures us that, away from s ≈ smax, EB(s, θ0)

should be a reasonably tight upper bound and, in particular, that sFFT(s) should be accurate.

5.2. Speed

For the example studied here, computing sFFT(s) took 4 seconds for each s while computing NC(s)
took 5,215 seconds. Moreover, as mentioned in Section 3.2, sFFT can handle logarithmic computations to
avoid underflowed p-values. The associated speed penalty is barely observable. By comparison, a similar
extension to NC would be extremely taxing since one would need to carry out essentially O(L2M2) calls
to “log” and “exp.” Granted, by using tables one can greatly reduce that number of calls but at a price of
increased numerical errors and it would still be significantly slower than sFFT.

5.3. Computing p∗L
δ in its entirety

As mentioned in the introduction, one advantage NC has over LD is that, in fact, it computes the pmf
p∗L
δ (s) for all s at the same time. Clearly we cannot hope to achieve this by simply invoking sFFT once,

for the same reason that the unshifted FFT typically fails in estimating the p-value. However, calculating a
different θ0 = θ0(s) for every s in the range is clearly an overkill since sFFT typically accurately recovers
a range of s values rather than simply the point estimate at s0. Indeed, with hardly any planning, we could
easily find as few as four values of θ with which we were able to recover p∗L

δ in its entirety.

More precisely, for each θ ∈ {−4, 0, 1, 1.5}, we generated p̃∗L
δ [θ] using sFFT(θ). Define u(k) =[

D̃p̃δ,θ (k)
]L. Selecting only entries p̃∗L

δ [θ](jδ) for which (see the remarks following Claim 2)

Real{u(j)} > 1000‖Imag{u}‖∞,

we stitched together an estimator p̃∗L
δ of p∗L

δ which satisfies

|p̃∗L
δ (jδ)− pNC(jδ)| < 4.3 · 10−4pNC(jδ),

where pNC(jδ) is the reliable estimator of p∗L
δ (jδ) obtained by NC.

6. CONCLUSION AND FUTURE WORK

We present sFFT, an algorithm which can greatly speed up computing a reliable estimate of the p-value
of the entropy score. By applying an exponential shift prior to FFT-based convolution, we are able to
retain the accuracy of the rather slow naive convolution (O(L2M2)) at a speed of FFT-based convolution:
O(LM log(LM)).

We anchor the accuracy of sFFT in theoretical and experimental results. One of these allows us to equip
sFFT with a guaranty for its accuracy: (26) provides an upper bound on the error which can be compared
with the computed p-value.

Our experiments show that by combining a few runs of sFFT with different values of θ , we can potentially
recover an estimate of p∗L in its entirety. This promising observation requires further study.

Finally, in this paper, sFFT was used to compute the p-value of the entropy score. However, the underlying
method may be applicable in a wider context. For example, (26) and the discussion in Section 4.5 hold for
any lattice pmf for which (16) holds. More generally, the applicability scope of sFFT requires further study.

ACKNOWLEDGMENTS

We would like to thank Neil Jones and Pavel Pevzner for fruitful discussions on this subject. We would
also like to thank the anonymous referee and Niranjan Nagarajan for many insightful comments.

430 KEICH

REFERENCES

Bahadur, R.R., and Ranga Rao, R. 1960. On deviations of the sample mean. Ann. Math. Statist. 31, 1015–1027.
Bailey, T.L., and Elkan, C. 1994. Fitting a mixture model by expectation maximization to discover motifs in biopoly-

mers. Proc. 2nd Int. Conf. on Intelligent Systems for Molecular Biology, 28–36.
Bailey, T.L., and Gribskov, M. 1998. Combining evidence using p-values: Application to sequence homology searches.

Bioinformatics 14, 48–54.
Hertz, G.Z., and Stormo, G.D. 1999. Identifying DNA and protein patterns with statistically significant alignments of

multiple sequences. Bioinformatics 15, 563–577.
Jones, N., Keich, U., and Pevzner, P.A. Evaluating profile seeking algorithms. In preparation.
Kaneko, T., and Liu, B. 1970. Accumulation of round-off error in fast fourier transforms. J. ACM 17(4), 637–654.
Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. 1992. Numerical Recipes in C. The Art of Scientific

Computing, 2nd ed., Cambridge University Press, London.
Rice, J.A. 1995. Mathematical Statistics and Data Analysis, 2nd ed., Duxbury Press, Belmont, CA.
Staden, R. 1989. Methods for discovering novel motifs in nucleic acid seqences. Comput. Appl. Biosci. 5, 293–298.
Stoer, J., and Bulirsch, R. 1992. Introduction to Numercal Analysis, 2nd ed., Springer-Verlag, Berlin.
Stormo, G.D. 2000. DNA binding sites: Representation and discovery. Bioinformatics 16(1), 16–23.

Address correspondence to:
Uri Keich

Computer Science Department
Cornell University
4130 Upson Hall
Ithaca, NY 14853

E-mail: keich@cs.cornell.edu

