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Factoring local sequence composition in motif significance analysis
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We recently introduced a biologically realistic and reliable significance analysis of the
output of a popular class of motif finders [16]. In this paper we further improve our
significance analysis by incorporating local base composition information. Relying on
realistic biological data simulation, as well as on FDR analysis applied to real data,
we show that our method is significantly better than the increasingly popular practice
of using the normal approximation to estimate the significance of a finder’s output.
Finally we turn to leveraging our reliable significance analysis to improve the actual motif
finding task. Specifically, endowing a variant of the Gibbs Sampler [18] with our improved
significance analysis we demonstrate that de novo finders can perform better than has
been perceived. Significantly, our new variant outperforms all the finders reviewed in
a recently published comprehensive analysis [23] of the Harbison genome-wide binding
location data [9]. Interestingly, many of these finders incorporate additional information
such as nucleosome positioning and the significance of binding data.

1. Introduction

Much of the recent progress in the area of motif finding can be attributed to lever-

aging additional pieces of data that are increasingly becoming available. These in-

clude quantitative binding assays (p-values) from ChIP-on-chip technology ( [5],

[31], [11], [8]), phylogenetic ( [17] [32] [30] [21]), transcription factor structural class

( [24], [22]), and nucleosome positioning information [23]. It has been convincingly

demonstrated that finders incorporating such additional information can signifi-

cantly outperform de novo finders† ( [24], [23]). It is therefore somewhat surprising

that we can report here on a de novo motif finding tool that outperforms all other

finders reviewed in a recently published comprehensive analysis [23] of the Harbi-

son genome-wide binding location data [9]. We stress that many of those finders

incorporate additional data as described above suggesting that de novo finders can

perform significantly better than has been perceived.

Local base composition has long been taken into consideration in sequence anal-

ysis. For example, isochores are taken into account in the GENSCAN gene finding

tool [4]. A considerable effort was made into incorporating sequence composition

in pairwise local alignment significance analysis (e.g., [1]). Another example is the

∗to whom correspondence should be addressed
†A de novo motif finder is one that uses only the given sets and possibly a null reference set.



May 12, 2008 13:59 WSPC - Proceedings Trim Size: 9.75in x 6.5in giw2008

2

motif finder NestedMICA incorporating a “mosaic background” model. The latter

is a mixture of several, differently parametrized, low order, Markov chains which

allow one to factor in local composition [7]. Regardless of whether or not our finder

incorporates such mixture models, we argue here that the local composition should

be taken into account when analyzing the significance of its results. Intuitively,

imagine a set of sequences containing stretches made only from A. In this case a

motif such as AAAAAAAA should not be too surprising.

A reliable significance evaluation should be considered an essential component

of any motif finder. Indeed, it is often the only information available to the users

before they decide on whether to invest significant resources in further exploration

or verification of the reported motifs. We recently introduced a reliable method to

estimate “confidence” p-values from a small sample of the empirical null distribution

of a motif finder’s results [16]. In this paper, we naturally extend our confidence

p-value approach to incorporate local base composition information. As the original

confidence p-value estimate was rather robust and applicable to a wide range of

finders and scoring schemes, we expect this extension to be fairly widely applicable

as well. We demonstrate the ability of our local composition aware significance

evaluation to reliably predict significant motifs in real biological setting.

Our confidence p-values are derived assuming the finder’s null score follows a

3-parameter Gamma, or 3-Gamma, distribution‡ [16]. An often used alternative in

this context is to derive the p-value using a point estimator assuming a normal

distribution (e.g., [19], [9], [21], [23]). We provide multiple evidence that such an

estimation tends to inflate the significance of the reported motif. In particular, using

an FDR analysis [3] we show that our p-values are significantly better calibrated

than the normal derived ones mentioned above.

Finally, we leverage our significance analysis to improve de novo motif finding.

Specifically, we introduce GibbsMarkov, a new variant of the Gibbs Sampler [18],

which relies on our p-values to choose between multiple suggested motifs of different

widths. The result is a de novo finder that attains the surprising results mentioned

above.

2. Factoring local base composition in motif significance analysis

2.1. Background: 3-Gamma and the finder’s null distribution

In [25] we argue that the finder’s null distribution is well suited for estimating the

significance of a finder’s output. This null distribution is defined as the distribution

of the score of the finder on a randomly drawn set, generated for example by resam-

pling a large genomic file. Note that this distribution varies not only with the null

model that generates the dataset (including the set’s dimensions), but also with

‡The distribution function of a 3-parameters Gamma with θ = (a, b, µ) is a given by Fθ(s) =
FΓ(a,b)(s − µ) where FΓ(a,b) is the Gamma distribution with it usual shape and scale parameters
and µ is the location parameter [14].
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the parameters of the finder (e.g., width). Since there are typically infinitely many

combinations of these problem-parameters (finder and dataset) it is impossible to

precompute this distribution.

For any specific set of problem-parameters we can approximate the finder’s null

distribution with an empirical null distribution. The latter is obtained by applying

the motif finder to a sample of randomly drawn null sets. Increasing the sample

size improves the quality of our approximation but at a significant cost: each new

sample point essentially takes as much running time as the original run whose

significance we are trying to estimate. Thus, using this non-parametric approach to

reliably estimate small p-values, as we often need to when correcting for multiple

hypotheses, is typically forbiddingly expensive (e.g. Harbison dataset has over 300

experiments [9]).

If, however, we know that the finder’s null distribution can be well approximated

by some parametric family then we only need to estimate these parameters. While

the normal distribution is often used in this context ( [19] [9] [21] [23]), we find that

it consistently offers a relatively poor approximation to the finder’s null distribution.

In particular, using the normal approximation tends to inflate the significance of

high scores which are the ones we are interested in (see Figure 2 below). Instead we

find that the 3-parameter Gamma [14], or 3-Gamma for short, appears to fit very

well the empirical null distribution for many combinations of motif finders and null

models including the biologically realistic, genomic resampling (see Figure 2).

The parameters of the (Gumbel EVD) distribution of the optimal pairwise un-

gapped local alignment can be computed analytically [15] based on the theory of [6].

In our case the problem is complicated further by the dependence on the finder: our

null distribution is of the finder’s optimal score rather than the optimal alignment

score [25]. Thus, it remains a challenging open problem whether a theory can be

developed to estimate the parameters of the 3-Gamma from those of the problem.

In the meantime we can resort to parametric statistical estimation. For example,

suppose we want to estimate the p-value of the observed score s, denoted by p(s).

We can generate a small sample X = (X1, . . . , Xn) from the finder’s null distri-

bution and find the 3-Gamma MLE (maximum likelihood estimator) θ̂ = θ̂(X).

We can then find the MLE of p(s), p̂(s) = p̂(s, X), by using the popular plug-in

method: p̂(s) = 1−F
θ̂
(s), where Fθ is the 3-Gamma CDF (cumulative distribution

function).

As noted in [16] for a realistically small sample size such as n = 20§, p̂(s) can

grossly over-estimate the significance of the observed score s. This type of MLE

estimation, albeit using the normal approximation, is used in ( [19] [9] [21] [23]).

We suspect that it further inflated the significance of the observed scores beyond

that due to the selection of the normal approximation (see Figure 1 and Section 4.2

for evidence).

Our conservative “confidence p-value”, p̂c(s, X), presented in [16] corrects the

§A sample of size n increases the runtime by a factor of n.
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tendency of the point estimator p̂(s) to over-estimate the 3-Gamma p-value, p(s). It

does so by constructing a confidence interval for the estimated p(s). In principle, the

confidence p-value can be applied whenever the 3-Gamma distribution is expected

to offer a reasonably good fit to the finder’s null distribution.

Fig. 1: Comparing the estimators p̂n and p̂c(s, X) of p-value= 10−3
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(a) p̂n overestimates the significance
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(b) p̂c(s, X) is mostly conservative

Histograms of 104 independent evaluations of the point estimator p̂n(s)and of the conservative p̂c(s, X),
where s was set to the empirical 0.999 quantile. p̂n is the MLE plug-in estimator of the p-value assuming
a normal approximation, and p̂c(s, X) is our conservative “confidence p-value” assuming a 3-Gamma
distribution. The quantile s was learned from the scores of GibbsMarkov on 10,000 resampled sets of
30 sequences each of length 1,000. The resampling was done from the human genomic file. This set of
null scores was then used to create the 10,000 resamples X of size n = 20 drawn with repetitions. An
ideal estimator of p(s) should have all the mass concentrated on the point -3 because s was set to the
0.999 quantile. It is clear from the graphs that p̂n has a considerably larger variance than p̂c and that
it can badly over-estimate the significance of the score s. GibbsMarkov was run in OOPS mode with
the parameters -l 23 -gibbsamp -best ent -t 170 -L 100 -em 0 -markov 3 -p 0.10. Statistical
estimations were done in R [27].

2.2. Incorporating local GC content in our confidence p-value

We can factor local, or any other, composition information in our significance analy-

sis in a rather straightforward manner. In principle, all we need to do is to condition

our generated random sets on the relevant set of constraints. If the null distribution

of the finder’s score on these conditioned sets can be well approximated by the 3-

Gamma distribution, then our confidence p-value method should be valid. Having

no theory that could justify this approximation we resort to the empirical studies

as we previously did. Indeed, we can simply think of our conditional generating

model described below as just another null set generator. Figure 2 below compares

the normal with the 3-Gamma approximation of such a conditional empirical null

distribution.

Technically, our local GC-content adjusted resampling is done as follows. We first

divide our genomic reference file into partially overlapping windows of a fixed size

L (overlap size is L/2). We then place each window in one of K bins that uniformly

cover the entire spectrum of GC-content. This preprocessing step need only be done

once. Given an input set we generate local GC-content adjusted resampled images

of it as follows. We first divide each sequence into non-overlapping windows of size

L and determine their GC-content. We then replace each of the original windows

with a randomly drawn genomic window from the appropriate bin. Note that within
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Fig. 2: Approximating a finder’s null distribution conditioned on local GC-content
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The figure demonstrates the difference between the quality of the normal and the 3-Gamma approx-
imations to a finder’s null distribution. In this example, GibbsMarkov was applied to 10,000 sets of
GC-content adjusted resampled sequences (L = 100, K = 20). The sequences were resampled from the
S. cerevisiae intergenic file. The mold, or input, set was the Harbison REB1 H2O2Hi dataset consisting of
48 sequences of average length 431bp [9]. The 3-Gamma seems to offer a reasonably good fit for this con-
ditional null distribution while the normal does not. GibbsMarkov was run in ZOOPS mode with the pa-
rameters -l 8 -gibbsamp -p 0.05 -best ent -cput 300 -L 200 -em 0 -markov 5 -r 1 -ds -zoops 0.2

a set we draw windows without replacement as repetitive elements can wreak havoc

on motif finding. For the same reason we exclude overlapping windows within a set.

The same kind of exclusion applies to our “uniform” resampling strategy.

Does factoring local GC content make a difference in the significance analysis?

We give two different types of evidence that it does. First, Figure 3 compares his-

tograms of our GibbsMarkov run on null sets that were generated according to the

two models we are comparing. One model was generating sets using uniform re-

sampling of a S. cerevisiae intergenic file while the other was using the local GC

content framework described above. Notice that the two histograms are distinctly

different. For example, a score whose p-value, when factoring in local GC content,

is 0.0002 has a p-value of only 0.001 when assuming the uniform model.

As we just saw, taking into account the local GC-content can considerably im-

pact the significance of an observed score s. Our original construction of the con-

fidence p-value [16] did not account even for the global base composition of the

sample as outlined above. Indeed we followed the common procedure of resampling

a relevant genomic file. To demonstrate the potential difference between such a

naive approach and our local GC-content adjusted one we devised the following ex-

periments. This experiment is realistic in the sense that it emulates a real problem

we encountered when analyzing DNA replication origins in Saccharomyces kluyveri.

We first generated 200 random datasets by resampling from our human genomic file

(see Section 5). To make these sequences look closer to the S. kluyveri sequences

we were analyzing, we accepted only sequences whose AT-content is above 65%. We

then implanted in each sequence exactly one site generated from the Saccharomyces
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Fig. 3: Comparing the uniform and the local composition aware null generators
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The data for “right” histogram was generated by applying GibbsMarkov to 10,000 sets that were resam-
pled uniformly from the S. cerevisiae intergenic file. The “left” histogram was generated using the same
local GC-content preserving scheme as described for Figure 2. To highlight the difference both histogram
were ML-fitted with a 3-Gamma distribution. GibbsMarkov was run in ZOOPS mode with the parame-
ters -l 8 -gibbsamp -p 0.05 -best ent -cput 300 -L 200 -em 0 -markov 5 -r 1 -ds -zoops 0.2

cerevisiae AT-rich ACS profile (see Figure 4)¶. We next ran our GibbsMarkov in

OOPS mode on each of these 200 datasets, and noted the score, as well as whether

or not the finder succeeded in uncovering the implanted ACS motif. Finally, we com-

puted confidence p-values for each of these 200 scores in two different ways. The

first was derived from our previous approach of uniform genomic resampling‖. The

second was derived from the new local GC-content preserving resampling scheme.

Table 1 summarizes the results. Notably, the latter identifies 50% more TPs. The

FPs are under control in both cases as expected.

Fig. 4: The ACS motif
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3. A hybrid Gibbs Sampler

By GibbsMarkov we refer here to our variant of a Gibbs Sampler finder [18]. Cur-

rently it handles an OOPS (one occurrence per sequence) or a ZOOPS (zero or one)

model [2]. Its scoring function and sampling steps follow the techniques developed

by Jun Liu and his colleagues in [20] and [13]. There are a couple of distinctions

between the original work of Liu et al. and our implementation. First, neither of

the above papers specifically addresses the ZOOPS model. Second, Liu and his col-

leagues use a complete Bayesian framework which includes a prior on the matrices.

Instead, we use a hybrid model which incorporates a prior on the percentage of

¶The ACS is a 17bp site to which the S. cerevisiae ORC (origin recognition complex) binds to
initiate local chromosomal replication [28]. We expect its S. kluyveri analogue to be somewhat
similar.
‖For technical reasons we used the same human genomic file which has roughly the same AT-level
as that of S. kluyveri.
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Table 1: The effect of base composition on significance analysis

p-value threshold TP TN FP FN

0.1 26/49 78/77 0/1 96/73

0.05 21/33 78/78 0/0 101/89
The first number in each entry is the number of sets (out of 200) for which the p-value derived from
sets generated by a uniform genomic resampling (57% AT-content). The second number is for the locally
adjusted p-value. Notably, the latter identifies 50% more TPs. The overall high number of FNs is partly
due to the conservative nature of the confidence p-value and partly due to the fact that these sets were
designed as twilight zone ones [25].
Each of the 200 implanted sets consists of 30 sequences of length 2500 resampled from the human
genomic file conditional on having an AT-content ≥ 65%. Each sequence was implanted with exactly
one site generated by drawing from the ACS matrix. This ACS matrix (Figure 4) was generated by
us from a compiled list of confirmed ARSs on OriDB [26]. GibbsMarkov was run in OOPS mode with
the parameters -l 17 -gibbsamp -p 0.05 -best ent -cput 300 -L 200 -em 0 -markov 3 -r 1 -s 123. The
confidence p-values were derived from sets resampled in two different ways. Both resampled from our
human genomic file but one conditioned the resampling on the local GC-content observed in the input
dataset. Note that each one of these 200 input sets had a different local GC-content pattern.

sequences that include sites but we use a maximum likelihood approach for the ma-

trix. While the latter is fairly similar to using the Stirling approximation to the full

Bayesian model [13], it is not exactly the same. The ZOOPS model is specifically

used in [24] and [23] but, again, there are some differences between the functions

optimized there and ours∗∗. A detailed account of GibbsMarkov’s sampling step

and scoring function will be described in another paper.

4. Results on the Harbison dataset

All the tests below refer to the Harbison dataset of 310 ChIP-chip, genome-wide

location analysis, experiments of 203 yeast transcription factors [9]. By the “Narlikar

test” we refer to the dataset consisting of the 156 sequence-sets from 80 TFs used

in [23]. The literature consensus for each of these 80 TFs is published. We obtained

these from [9], with the exception of DAL82, RTG1, and the modified CIN5 which

we took from [21]. By the “MacIsaac test” we refer to the dataset consisting of 188

sequence-sets which include all 124 TFs whose matrices are reported in [21]. See

more details in Section 5. In the following analysis our confidence p-values factor in

the local GC-content as described in Section 2.2.

4.1. GibbsMarkov performance on the Narlikar test

We compared our motif finder GibbsMarkov with results from Table S1 in [23].

GibbsMarkov with fixed width w = 8 was run on the 156 sequence-sets. Using the

same definition of success as defined in [23], GibbsMarkov successfully finds the

correct motif in 71 of the 156 experiments. This is better than all other finders

although PRIORITY-DN [23] which uses nucleosome positioning information is a

close second with 70 successes. The next best de novo finder is PRIORITY-N [23]

with 51 successes. The full list which includes many more finders can be found

in [23].

∗∗Our target function is different than theirs even in the case of uninformative prior they consider.
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4.2. How well calibrated are these p-values?

If our p-values are well calibrated then the false discovery rate for any given thresh-

old should be consistent with the rate guaranteed by the theory. To test that we

applied the original FDR test [3] to find our p-value cutoff corresponding to an FDR

of 5%. We applied this test separately to the p-values we assign to the 156 sets of

the Narlikar test and then to the p-values we assign to the 188 sets of the MacIsaac

test.

In order to get an accurate classification of predicted motifs, we disregarded

motifs where (1) the consensus sequence of the predicted motif is AC-repeat or GT-

repeat, and (2) the predicted motif does not match the literature motif but has a

statisically significant match to a motif in the MacIsaac set of motifs [21] (see Sec-

tion 5 for details). Type (1) motifs which we found in ACE2 YPD, AFT2 H2O2Hi,

ARR1 YPD, and SWI5 YPD were disregarded because GT-repeats are possibly func-

tional in yeast ( [8], [12]). Type (2) motifs were disregarded because TFs often have

co-factors that are DNA-binding. Such detected motifs should therefore not be con-

sidered false positives as they could still be biologically relevant.

At a 5% FDR threshold, for the MacIsaac test, our observed FDR comes at

about 6.67%: 4/60, while for the Narlikar test it is about 7.41%: 4/54. At a 10%

threshold, the observed FDR of the MacIsaac test and Narlikar test were 11.4% and

10.2%, respectively. Hence it is reasonable to conclude that our confidence p-values

are well calibrated.

We also looked at the observed FDR of the results of [23] which are based on the

normal MLE of the p-value. Their results were already disregarding the GT-repeats

(type (1) from above), but we could not disregard possible type (2) motifs because

we do not have access to their predicted motifs. At the 5% threshold their observed

FDR on the Narlikar test is about 48%: 63/132, which is significantly higher than

the expected 5%. For comparsion, we repeated the FDR analysis on our confidence

p-value by disregarding only the GT-repeats so that the comparison was on equal

footing. At that 5% threshold, our observed FDR comes to about 12%: 7/57.

4.3. Using the p-values to improve our results

GibbsMarkov was run with multiple widths on the 156 sets of the Narlikar test,

and a single predicted motif among the multiple widths was selected based on our

confidence p-values. In the Narlikar test, our results improved from 71 successes

with w = 8 to 76 with multiple widths. The improvement was more significant in

the MacIsaac test: the multiple widths method correctly identified 114 motifs while

GibbsMarkov using w = 8 found only 97 out of 188 sequence-sets.

To test our performance of using confidence p-values for multiple widths selec-

tion, we compare it against naively selecting widths according to average entropy.

Thus instead of choosing a predicted motif among widths with the best confidence

p-value, a prediction is chosen based on average entropy, which is simply the entropy

score averaged over the width of a motif. In the MacIsaac test, width selection based
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on average entropy found 99 while selection based on confidence p-values found 114

as reported above.

We have yet to throughly explore our predictions but one interesting dimer of

width 18 caught our eyes. It appears essentially the same in three different exper-

iments: DIG1 Alpha, TEC1 Alpha, and STE12 Alpha (see Figure 5). In all three

cases width 18 exhibits the most significant p-value at: 3.7e-15, 1.3e-04, and 7.2e-

08 respectively. A closer inspection shows the dimer is made of a repetition of the

known motif common to DIG1 and STE12 (see Figure 6). This dimer was recently

independently reported in [12].

Fig. 5: An interesting dimer picked up by GibbsMarkov

(a) DIG1 Alpha (b) TEC1 Alpha (c) STE12 Alpha

Fig. 6: Known motifs from [21]

(a) DIG1 (b) STE12

5. Methods

5.1. Confidence p-value

All confidence p-values were computed in R [27] using functions described in [16].

The necessary samples were derived from resampled data generated as described in

the text.

5.2. Genomic files

For historical reasons we used two genomic files for resampling purposes. In both

cases resampling was done by extracting contiguous sequences from a concatenated

filtered genomic sequence. The “human genomic” contiguous sequence is from Homo

sapiens chromosome 1 (HSA1). HSA1 was downloaded from the Ensembl Genome

Browser v38 (NCBI build 36) [10]. RepeatMasker, TandemRepeatFinder, and DUST

were applied to the data. The S. cerevisiae intergenic file was generated by removing

from the S. cerevisiae genome downloaded from SGD [29] all protein and RNA cod-

ing sequences including tRNA, rRNA, snoRNA, snRNA, LTR, and other repetitive

sequences.

5.3. Is the predicted motif a known motif?

Given a database of known motifs, we would like to determine whether a predicted

motif has a statistically significant match to a known motif. For each predicted

motif, we first obtained an empirical null distribution of maximal similarity scores
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(a higher score implies more similar motifs). Each score from this null is the max-

imal similarity score over all database PFMs against a random permutation of

positions/columns of the predicted motif. Then the p-value for similarity is simply

estimated from the null distribution described above and the similarity score be-

tween the predicted motif and its most similar motif within the database. Note that

this technique accounts for evaluating statistical significance at the extreme value

case of choosing the most similar motif within the database. In our FDR analysis,

the empirical null of each predicted motifs was generated with 10,000 randomly

permuted motifs as described above and ignored cases where the predicted motif

does not match the literature but has a p-value < 0.05 for similarity.

5.4. Harbison dataset

All the consensus sequences were converted to PFM by the same method as [9].

For the MacIsaac tests, we used the same definition of success as defined in [9].

Likewise, we used the definition of success defined in [23] for the Narlikar test

with fixed width w = 8. For the Narlikar test with multiple widths, we slightly

modified the average entropy constraint of inter-motif distance used in [23]. The

average entropy of the predicted motif was taken over corresponding non-N positions

of the literature consensus within an alignment, because predicted motifs such as

GAL4 with literature consensus CGGnnnnnnnnnnnCCG should not be penalized for having

degenerate positions at consensus positions with n.

GibbsMarkov was run with a fifth-order Markovian background estimated from

the S. cerevisiae intergenic file. The strength of prior parameter in ZOOPS is α =

0.2. The finder was allowed to run for 5 minutes with a plateau period of 200

iterations. All experiments were run under Red Hat Enterprise Linux 4 on a cluster

with nodes that have AMD 248 2Ghz 64-bit processors with 2GB RAM and 1GB

swap. The confidence p-values were computed from applying GibbsMarkov to 50

sequence-sets of local GC-content adjusted resampled sequences (L = 100, K = 20).

For GibbsMarkov with multiple widths selection, GibbsMarkov parameterized with

widths 8, 12, 15, and 18 were run separately on the input sequence-set, and then each

were applied separately on the same 50 sequence-sets of local GC-content adjusted

resampled sequences.

6. Conclusion & Future Research

We show that incorporating local base composition can improve the fidelity of our

recently published confidence p-value method of estimating the significance of a

finder’s output [16]. We also demonstrate the practical advantage of this improve-

ment over the previous method in identifying true motifs in a realistic experiment.

We give evidence that the practice of using a normal approximation to estimate the

significance of a finder’s output is ill-advised on two counts. First, the normal distri-

bution generally fits the finder’s null distribution rather poorly. Second, the normal

MLE point estimator of the p-value has a significant bias toward over-estimating
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the significance of the observed score. To drive home this point we show that the

use of this p-value on a real biological dataset creates a FDR which is significantly

higher than the stated one. In contrast, a FDR analysis based on our confidence

p-value is much closer to the declared rate. Our evaluation method is based on the

validity of the 3-Gamma approximation of the finder’s null distribution. As such, it

is likely to be applicable to many more finders than the ones explored here.

We also develop GibbsMarkov, a variant of the Gibbs Sampler de novo motif

finder. GibbsMarkov outperforms all the finders reviewed in a recent well designed

study [23] of the Harbison genome-wide location analysis data [9]. Surprisingly,

many of the finders that GibbsMarkov outperforms rely on additional information

such as, the confidence of the binding, phylogenetic, and nucleosome positioning

information [23]. Moreover, when we choose the best p-value among several Gibbs-

Markov runs using different widths, we get a roughly 10% increase in our TP rate.

As far as future issues, we could benefit from a more sophisticated alternative

to the window based method that we currently use to track the local GC-content.

HMM models naturally fit in this context. Regardless, note that, in principle, our

method can be extended to factor any local composition feature that the user might

be interested in accounting for. Eventually it all boils down to two things: do we

have sufficient data to generate random sets that satisfy the required local conditions

and is the associated finder’s null distribution well approximated by the 3-Gamma

distribution.
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