ON L^p BOUNDS FOR KAKEYA MAXIMAL FUNCTIONS AND THE MINKOWSKI DIMENSION IN \mathbb{R}^2

U. KEICH

ABSTRACT. We prove that the bound on the L^p norms of the Kakeya type maximal functions studied by Cordoba [2], and by Bourgain [1] are sharp for p > 2. The proof is based on a construction originally due to Schoenberg [5], for which we provide an alternative derivation. We also show that $r^2 \log(1/r)$ is the exact Minkowski dimension of the class of Kakeya sets in \mathbb{R}^2 , and prove that the exact Hausdorff dimension of these sets is between $r^2 \log(1/r)$ and $r^2 \log(1/r) [\log \log(1/r)]^{2+\varepsilon}$.

1. INTRODUCTION

Consider the following two Kakeya type maximal operators. The first, studied in [2], $M_{\delta} : L^2(\mathbb{R}^2) \mapsto L^2(\mathbb{R}^2)$, is defined for $\delta > 0$ as

(1)
$$M_{\delta}f(x) \stackrel{d}{=} \sup_{x \in R \in \mathfrak{R}_{\delta}} \frac{1}{R} \int_{R} |f|,$$

where \mathfrak{R}_{δ} is the set of rectangles $R \in \mathbb{R}^2$ of size $\delta \times 1$. The second was introduced by Bourgain in [1]. We denote it by $K_{\delta} : L^p(\mathbb{R}^2) \mapsto L^p(S^1)$, and it is defined as

$$K_{\delta}f(e) \stackrel{d}{=} \sup_{x \in \mathbb{R}^2} \frac{1}{T_e^{\delta}(x)} \int_{T_e^{\delta}(x)} |f|,$$

where $T_e^{\delta}(x)$ is the $\delta \times 1$ rectangle oriented in the *e*-direction with x at its center.

In [2, prop. 1.2], Cordoba proves that for $p \ge 2$,

(2)
$$||M_{\delta}||_p \lesssim \left(\log \frac{1}{\delta}\right)^{1/p}$$

In [1, (1.5)], Bourgain shows that for $p \ge 2$,

(3)
$$\|K_{\delta}\|_{p} \lesssim \left(\log \frac{1}{\delta}\right)^{1/p}$$

AMS 1991 subject classifications. 42B25, 28A78.

More precisely, both authors prove this in the case p = 2. The case p > 2 then follows from the obvious bounds, $|M_{\delta}f|_{\infty} \leq |f|_{\infty}$, $|K_{\delta}f|_{\infty} \leq |f|_{\infty}$ and the Marcinkiewicz interpolation theorem.

For the case p = 2 these bounds were known to be sharp, for example, by considering the function [3]

$$f_{\delta}(x) \stackrel{d}{=} \begin{cases} 1 & |x| < \delta \\ \delta/|x| & \delta \le |x| \le 1 \\ 0 & |x| > 1 \end{cases}$$

The key to showing that (2) and (3) are sharp lies in a certain "optimal" construction, due to Schoenberg [5], of a thin set which contains a unit line segment in every direction. Unaware of his result we came up with a different construction of essentially the same set. This is the content of theorem 1.

Remark. For $p \in [1, 2)$, it can be proved, using analogous arguments as for the case p = 2, that

$$\|K_{\delta}\|_{p} \lesssim \delta^{1-2/p} \qquad \|M_{\delta}\|_{p} \lesssim \delta^{1-2/p}.$$

Furthermore, this is known to be sharp by considering the function $f_{\delta}(x) \stackrel{d}{=} \chi_{D(0,\delta)}$, where $D(0,\delta)$ is the disc of radius δ about 0.

We need the following notations:

- Let *l* be a line segment $l = \{(x, ax + b) : x \in [0, 1]\}$. We consider lines with $a(l) \stackrel{d}{=} a \in [0, 1]$ and $b(l) \stackrel{d}{=} b \in [-1, 0]$.
- For $\delta > 0$ and such an l, let $R_{\delta}(l)$ be the triangle defined by the vertices $\{(0, l(0)), (0, l(0) \delta), (1, l(1))\}$, where l(x) denotes a shorthand for a(l)x + b(l).
- Let $\vec{R}_{\delta}(l)$ be the triangle obtained by translating $R_{\delta}(l)$ by $2\sqrt{2}$ along the direction of l.
- For a set $E \subset \mathbb{R}^2$ let |E| denote its Lebesgue measure, and let $E(\delta)$ denote its δ -neighborhood.
- $x_n \leq y_n$ means there exists a C > 0 such that $x_n \leq Cy_n$. $x_n \approx y_n$ is short for both \gtrsim and \lesssim .

Theorem 1. For any n, there exist 2^n line segments $\{l_i^n : i = 0, 1, ..., 2^n - 1\}$, with $a(l_i^n) = i2^{-n}$, and such that the triangles $R_{2^{-n}}(l_i^n)$ satisfy the following two properties:

(i)

$$\left|\bigcup_{i} R_{2^{-n}}(l_i^n)\right| < \frac{1}{n}.$$

 $\mathbf{2}$

(ii) The translated triangles, $\vec{R}_{2^{-n}}(l_i^n)$ are disjoint.

Remark. Though not mentioned in [5], (ii) would follow from Schoenberg's work as well.

Let

(4)
$$E_n \stackrel{d}{=} \bigcup_{i=1}^{2^n} R_{2^{-n}}(l_i^n)$$

Then E_n has a unit length line segment with any given slope $a \in [0, 1]$, it is composed of triangles with eccentricity 2^n , and $|E_n| < 1/n$. It follows that:

Corollary 1. The bounds (2) and (3) are sharp for p > 2.

Proof. Let E_n be defined as in (4), and let $f_n \stackrel{d}{=} \chi_{E_n}$. Then by (i) of theorem 1, $|f_n|_p < \left(\frac{1}{n}\right)^{1/p}$. On the other hand, let \tilde{M} be defined as in (1) but with rectangles of size $3\sqrt{2} \times \delta$ instead of $1 \times \delta$. Then one can check that $\tilde{M}_{\delta}f(x) > C > 0$ for $x \in \bigcup_i \vec{R}_{2^{-n}}(l_i^n)$ and it follows that $|\tilde{M}_{2^{-n}}(f_n)|_p \gtrsim 1$. But $|\tilde{M}_{\delta}(f)|_p \approx |M_{\delta}(f)|_p$, therefore the bound in (2) is necessarily sharp. As for $K_{2^{-n}}$, it is not hard to show that $K_{2^{-n}}(\chi_{E_n})(\theta) \ge C > 0$ for $\theta \in [0, \pi/4]$, which implies that (3) is sharp for $p \ge 2$.

A Kakeya set in \mathbb{R}^2 is a set of Lebesgue measure 0 which contains a unit length line segment in every direction in the plane.

The triangles mentioned above allow us to constructively prove that:

Lemma 1.1. There exists a (compact) Kakeya set E such that for any $\varepsilon < 1$,

(5)
$$|E(\varepsilon)| \lesssim \frac{1}{\log(1/\varepsilon)}$$

Since the reversed inequality is the rule for Kakeya sets, we can now prove:

Theorem 2. The exact Minkowski dimension of the class of Kakeya sets in \mathbb{R}^2 is

$$h(r) = r^2 \log \frac{1}{r}.$$

Finally, we provide some partial results for the exact Hausdorff dimension of the class of Kakeya sets. Specifically we show that it is between $r^2 \log(1/r)$ and $r^2 \log(1/r) (\log \log(1/r))^{2+\varepsilon}$ for any $\varepsilon > 0$.

2. The basic construction

A few more notations are useful:

- A G-set for us means a compact set $E \subset [0, 1] \times \mathbb{R}$, such that for any $a \in [0, 1]$ there exists a (unit length) line segment $l_a \subset E$ with slope a.
- By the upper edge of the triangle $R_{\delta}(l)$ we mean the segment l, and by the lower edge the segment between $(0, l(0) \delta)$ and (1, l(1)). The vertical edge is the third one.
- For a set $E \subset \mathbb{R}^2$ let $|E|_x$ be the (one-dimensional) Lebesgue measure of its cross section at x.
- For $k = 0, 1, ..., 2^n 1$ we denote by $\varepsilon_i(k)$ the *i*th binary digit in the expansion

$$\frac{k}{2^n} = \sum_{i=1}^n \varepsilon_i 2^{-i} \qquad \varepsilon_i \in \{0, 1\}.$$

Proof of theorem 1. We first provide the geometric view of the construction which closely follows that of Sawyer [4] and Wolff [6]. Start with a triangle with vertices at $\{(0,0), (0,-1), (1,0)\}$. Cut it into two triangles by adding a vertex at (0, -1/2), and then slide the lower triangle upward until the vertical edges of the two triangles overlap completely. At the kth stage (k = 1, 2, ..., n - 1) you have 2^k triangles. Cut each one of those into two triangles by adding a vertex in the middle of the vertical edge. For each of those newly created pairs, slide the lower triangle upward until the upper edges of both triangles intersect at x = k/n. This construction leaves us with 2^n triangles of equal area (2^{-n-1}) and it is obvious that the union of those is a G-set. We next show that this construction satisfies (i) and (ii) of the theorem.

We define our set of 2^n lines l_0, \ldots, l_{2^n-1} (these correspond to the upper edges of the triangles in the above construction) as follows: l_k has a slope

$$a(l_k) \stackrel{d}{=} \frac{k}{2^n}$$

and with $\varepsilon_i \stackrel{d}{=} \varepsilon_i(a(l_k)),$

$$b(l_k) \stackrel{d}{=} -\sum_{1}^{n} \varepsilon_i 2^{-i} + \sum_{1}^{n} \varepsilon_i \left(1 - \frac{i-1}{n}\right) 2^{-i} = \sum_{1}^{n} \frac{1-i}{n} \varepsilon_i 2^{-i}.$$

Note that $\sum \varepsilon_i \left(1 - \frac{i-1}{n}\right) 2^{-i}$ is the total upward translation that was applied to the *k*th line (triangle) in our construction. It is at times convenient to index our lines by their strictly increasing slopes: $\{l_a :$

 $a = 0, \frac{1}{2^n}, \frac{2}{2^n}, \dots, \frac{2^n - 1}{2^n} \}$. With this notation

$$l_a(x) = \sum_{i=1}^n \left(x + \frac{1-i}{n} \right) \varepsilon_i 2^{-i},$$

where $\varepsilon_i = \varepsilon_i(a)$. To prove (ii) it suffices to show that for $a > \tilde{a}$, $l_a(1) \ge l_{\tilde{a}}(1)$. There exists a $k \in \{1, \ldots, n\}$ such that $\varepsilon_i = \tilde{\varepsilon_i}$ for $i \in \{1, \ldots, k-1\}$, and $\varepsilon_k = 1 > 0 = \tilde{\varepsilon_k}$, so

$$l_a(1) - l_{\tilde{a}}(1) = \frac{n+1-k}{n} 2^{-k} + \sum_{k+1}^n \frac{n+1-i}{n} (\varepsilon_i - \tilde{\varepsilon_i}) 2^{-i}$$
$$\geq \frac{n+1-k}{n} 2^{-k} - \sum_{k+1}^n \frac{n+1-i}{n} 2^{-i} > 0.$$

To prove (i), it suffices to show that for any $x \in [0, 1]$,

(6)
$$\left\| \bigcup_{i=0}^{2^n-1} R_{2^{-n}}(l_i) \right\|_x < \frac{1}{n}.$$

For k = 1, 2, ..., n, we show that (6) holds in $I_k \stackrel{d}{=} [\frac{k-1}{n}, \frac{k}{n}]$, by grouping the lines into 2^{k-1} sets of lines determined by the first k-1 binary digits of their slopes. The triangles corresponding to each of these sets contribute at most $(2^{1-k}-2^{-n})/n$ to the measure of the cross section at any $x \in I_k$. Since there are 2^{k-1} such sets, (6) follows. More precisely, let $k \in \{1, 2, ..., n\}$. For $j = 0, 1, ..., 2^{k-1} - 1$ we define

$$L_j \stackrel{d}{=} \left\{ l_a : \varepsilon_i(a) = \varepsilon_i\left(\frac{j}{2^{k-1}}\right) \quad \text{for } i = 1, 2, \dots k - 1 \right\}.$$

Let $l_a \in L_j$ and with $\varepsilon_i = \varepsilon_i(a)$, let $r \stackrel{d}{=} \sum_{1}^{k-1} \varepsilon_i 2^{-i}$ (or, $r = j/2^{k-1}$). Then

$$l_a(x) = \sum_{1}^{k-1} \left(x + \frac{1-i}{n} \right) \varepsilon_i 2^{-i} + \sum_{k}^{n} \left(x + \frac{1-i}{n} \right) \varepsilon_i 2^{-i},$$

so for $x \in I_k$,

$$l_a(x) = l_r(x) + \sum_k^n \left(x + \frac{1-i}{n}\right) \varepsilon_i 2^{-i}$$

$$\leq l_r(x) + \left(x + \frac{1-k}{n}\right) \varepsilon_k 2^{-k}$$

$$\leq l_r(x) + \left(x + \frac{1-k}{n}\right) 2^{-k}$$

$$= l_{r+2^{-k}}(x).$$

Similarly,

$$l_{a}(x) \ge l_{r}(x) + \sum_{k+1}^{n} \left(x + \frac{1-i}{n} \right) \varepsilon_{i} 2^{-i}$$
$$\ge l_{r}(x) + \sum_{k+1}^{n} \left(x + \frac{1-i}{n} \right) 2^{-i}$$
$$= l_{r+2^{-k}-2^{-n}}(x).$$

Thus, for any $j \in 0, 1, \ldots, 2^{k-1} - 1$ and with $r = j/2^{k-1}$, the set of triangles $\{R_{2^{-n}}(l) : l \in L_j\}$ is bounded, for $x \in I_k$, from above by the line $l_{r+2^{-k}}(x)$, and from below by $l_{r+2^{-k}-2^{-n}}(x) - 2^{-n}(1-x)$. The latter being the lower edge of $R_{2^{-n}}(l_{r+2^{-k}-2^{-n}})$. Hence

$$\left| \bigcup_{l \in L_j} R_{2^{-n}}(l) \right|_x \le l_{r+2^{-k}}(x) - \left[l_{r+2^{-k}-2^{-n}}(x) - 2^{-n}(1-x) \right]$$
$$= l_{2^{-k}}(x) - \left[l_{2^{-k}-2^{-n}}(x) - 2^{-n}(1-x) \right].$$

But the lines $l_{2^{-k}}(x)$ and $l_{2^{-k}-2^{-n}}(x) - 2^{-n}(1-x)$ are parallel, so

$$\left| \bigcup_{l \in L_j} R_{2^{-n}}(l) \right|_x \le l_{2^{-k}} \left(\frac{k-1}{n} \right) - \left[l_{2^{-k}-2^{-n}} \left(\frac{k-1}{n} \right) - 2^{-n} \left(1 - \frac{k-1}{n} \right) \right]$$
$$= 0 - \left[\sum_{k+1}^n \frac{k-i}{n} 2^{-i} - 2^{-n} \left(1 - \frac{k-1}{n} \right) \right]$$
$$= \frac{2^{1-k} - 2^{-n}}{n}.$$

Hence

$$\left|\bigcup_{l} R_{2^{-n}}(l)\right|_{x} \le 2^{k-1} \frac{2^{1-k} - 2^{-n}}{n} < \frac{1}{n}.$$

3. The exact Minkowski dimension

Let F be a subset of \mathbb{R}^2 . For a monotone increasing function f on \mathbb{R} , and $\delta > 0$ we define

$$\mathfrak{M}_f(F,\delta) \stackrel{d}{=} \inf \left\{ N \cdot f(r) : \bigcup_{i=1}^N D(x_i,r) \supset F \text{ and } r < \delta \right\}.$$

Let $\mathfrak{M}_f(F) \stackrel{d}{=} \sup_{\delta} \mathfrak{M}_f(F, \delta)$. By the exact Minkowski dimension for the class of Kakeya sets, we mean a monotone increasing function h such that:

- For any Kakeya set $E, \mathfrak{M}_h(E) > 0.$
- There exists a Kakeya set E with $\mathfrak{M}_h(E) < \infty$.

Claim 3.1. For any n, there exists a G-set, G^n , such that

$$|G^n(2^{-n})| \lesssim \frac{1}{\log 2^n}$$

Proof. Consider the set of triangles $E_n = \bigcup_i R_{2^{-n}}(l_i^n)$ that was constructed in the proof of theorem 1. Let I be the identity map on \mathbb{R}^2 . Then by (i),

(7)
$$|6I(E_n)| = \left| \bigcup_i 6I(R_{2^{-n}}(l_i^n)) \right| < \frac{36}{n}$$

Let $a \stackrel{d}{=} a(l_i^n) \in [0,1]$ and $b \stackrel{d}{=} b(l_i^n) \in [-1,0]$. We define the triangle \hat{R}_i^n by its vertices as follows:

$$V(\hat{R}_{i}^{n}) \stackrel{d}{=} \left\{ (1, a + 6b - 2 \cdot 2^{-n}), (1, a + 6b - 3 \cdot 2^{-n}), (2, 2a + 6b - 2 \cdot 2^{-n}) \right\}$$

Since $V(R_{2^{-n}}(l_{i}^{n})) = \{ (0, b), (0, b - 2^{-n}), (1, a + b) \}$, it is easy to verify

that \hat{R}_i^n is a translation of $R_{2^{-n}}(l_i^n)$, and that

$$\hat{R}_{i}^{n}(2^{-n}) \subset 6I(R_{2^{-n}}(l_{i}^{n}))$$

Hence, $\left|\bigcup_{i} \hat{R}_{i}^{n}(2^{-n})\right| < 36/n$, and translating the triangles \hat{R}_{i}^{n} to the left we get our *G*-set.

Remarks:

- •The set G^n constructed in the above claim is contained in $[0, 1] \times [-6, 6]$.
- •When $\delta = 2^{-n}$ we will also refer to G^n by G^{δ} .

Proof of lemma 1.1. The proof is an adaptation of a standard limiting argument (e.g. lemma 1.3 and corollary 1.4 in [6]). Let $\varepsilon_n \stackrel{d}{=} 2^{-2^n}$, then it suffices to prove that (5) holds for ε_n . Suppose that there exists a sequence of G-sets, F_n , such that

(i)

$$F_n(\varepsilon_n) \subset F_{n-1}(\varepsilon_{n-1}).$$

(ii)

$$|\overline{F_n(2\varepsilon_n)}| \lesssim 2^{-n}.$$

Let $E \stackrel{d}{=} \bigcap_n \overline{F_n(\varepsilon_n)}$. Then by (i), E is a G-set. Moreover,

$$E(\varepsilon_n) \subset (F_n(\varepsilon_n))(\varepsilon_n) = F_n(2\varepsilon_n),$$

hence (ii) proves our lemma. Next, we inductively construct the sequence F_n .

Start with, say, $F_0 = G^{1/2}$. Given F_n we define F_{n+1} so that (i) and (ii) will be satisfied: Since F_n is a *G*-set, it contains a unit line segment l_{m_j} for slopes $m_j = j\delta$, where δ is short for $\delta_{n+1} \stackrel{d}{=} \varepsilon_n/256 = 2^{-2^n-8}$, and $j = 0, 1, \ldots, \delta^{-1} - 1$. Let $A_j^{\delta} : \mathbb{R}^2 \to \mathbb{R}^2$ be $A_j^{\delta}((x, y)) \stackrel{d}{=} (x, l_{m_j}(x) + \delta y)$. Note that A_j^{δ} affinely maps $[0, 1] \times [-6, 6]$ onto the parallelogram $S_j^{\delta} \stackrel{d}{=} \{(x, y) : x \in [0, 1] \text{ and } |y - l_{m_j}(x)| \leq 6\delta\}$. Let η stand for $\eta_{n+1} \stackrel{d}{=} 2^{-2^n+11}$ and define

$$F_{n+1} \stackrel{d}{=} \bigcup_{j} A_{j}^{\delta}(G^{\eta}).$$

Since A_j^{δ} maps segments with slope μ to segments with slope $\mu + m_j$, F_{n+1} is a *G*-set. Since $\delta = \varepsilon_n/256$, for each *j*,

$$\left[A_j^{\delta}(G^{\eta})\right](\varepsilon_{n+1}) \subset (l_{m_j})(12\delta + \varepsilon_{n+1}) \subset F_n(\varepsilon_n),$$

and (i) follows.

As for (ii), note that with $\delta \in (0, 1]$ and $m \in [0, 1]$,

$$(x_1 - x_2)^2 + [m(x_1 - x_2) + \delta(y_1 - y_2)]^2 < \delta^2 \rho^2,$$

implies

$$(x_1 - x_2)^2 + (y_1 - y_2)^2 < 5\rho^2.$$

Hence,

$$\left[A_j^{\delta}(G^{\eta})\right](\frac{\delta\eta}{4}) \subset A_j^{\delta}\left[G^{\eta}(\eta)\right],$$

and so as $2\varepsilon_{n+1} = \frac{\delta\eta}{4}$,

$$F_{n+1}(2\varepsilon_{n+1}) = \bigcup_{j} \left[A_{j}^{\delta}(G^{\eta}) \right] \left(\frac{\delta\eta}{4} \right) \subset \bigcup_{j} A_{j}^{\delta} \left[G^{\eta}(\eta) \right].$$

Since A_j^{δ} reduces areas by a factor of δ , by claim 3.1,

$$\left|A_j^{\delta}\left[G^{\eta}(\eta)\right]\right| \le C\delta \frac{1}{\log \eta^{-1}},$$

which implies that

$$|F_{n+1}(2\varepsilon_{n+1})| \le \sum_{j} C\delta \frac{1}{\log \eta^{-1}} = \frac{C}{\log \eta^{-1}}.$$

The proof is now completed observing that

$$\log \frac{1}{2\varepsilon_{n+1}} \approx 2^{n+1} \approx \log \frac{1}{\eta_{n+1}}.$$

Proof of theorem 2. For any r > 0 and a covering of a Kakeya set E by N_r discs of radius r, we have $N_r r^2 \gtrsim |E(r)|$, so by (3),

$$N_r h(r) = N_r r^2 \log \frac{1}{r} \gtrsim |E(r)| \log \frac{1}{r} \gtrsim 1.$$

Thus, $\mathfrak{M}_h(E, \delta) \gtrsim 1$, and so $\mathfrak{M}_h(E) > 0$. On the other hand, let E be the Kakeya set obtained from the construction in lemma 1.1. For any $\delta > 0$, there exists a covering of E by $N_{\delta} \approx |E(\delta)|/\delta^2$ discs of radius δ . With this covering and by lemma 1.1 we have

$$\mathfrak{M}_g(E,\delta) \lesssim N_\delta \delta^2 \log \frac{1}{\delta} \lesssim |E_\delta| \log \frac{1}{\delta} \lesssim 1.$$

As for the exact Hausdorff dimension of the class of Kakeya sets in \mathbb{R}^2 , our results are not sharp. You can borrow the lower bound of $h \ge r^2 \log(1/r)$ from the analysis of the Minkowski dimension, but the upper bound we currently have is strictly larger:

Claim 3.2. Let E be a Kakeya set and for $\varepsilon > 0$, let

$$h_{\varepsilon}(r) \stackrel{d}{=} r^2 \log \frac{1}{r} \left(\log \log \frac{1}{r} \right)^{2+\varepsilon}.$$

Then there exists a $C_{\varepsilon} > 0$ such that for any covering of E by $\bigcup_i D(x_i, r_i)$ with $r_i < \delta$, $\sum_i h_{\varepsilon}(r_i) \ge C_{\varepsilon}$.

Proof. The proof is a variation on lemma 2.15 in [1]. Let

$$J_k \stackrel{d}{=} \left\{ j : 2^{-2^k} \le r_j \le 2^{-2^{k-1}} \right\},$$

and let $\nu_k \stackrel{d}{=} |J_k|$. Since for small r and c > 1, $h(cr) < c^2 h(r)$, we can assume without loss of generality that $r_i = m_i 2^{-2^k}$ with $m_i \in \{1, 2, \ldots, 2^{2^{k-1}}\}$. Each such disc, $D(x, m \cdot 2^{-2^k})$, can be covered by $\lesssim m^2$ discs of radius 2^{-2^k} and since

$$\frac{h(m \cdot 2^{-2^k})}{m^2 h(2^{-2^k})} \gtrsim \frac{\log 2^{2^{k-1}} \left[\log \log(2^{2^{k-1}})\right]^{2+\varepsilon}}{\log 2^{2^k} \left[\log \log(2^{2^k})\right]^{2+\varepsilon}} \approx \frac{1}{2},$$

we can assume, without loss of generality, that $r_j = 2^{-2^k}$ for all $j \in J_k$. Keeping with the notation in [6], denote $D(x_j, r_j)$ by D_j , and let

$$E_k \stackrel{d}{=} E \cap \left(\bigcup_{j \in J_k} D_j\right) \qquad \tilde{D}_j \stackrel{d}{=} D(x_j, 2r_j) \qquad \tilde{E}_k \stackrel{d}{=} \bigcup_{j \in J_k} \tilde{D}_j.$$

Let $e \in S^1$. Since E is a Kakeya set, there exists a unit length line segment in the *e*-direction, l_e , contained in *E*. Suppose that $|l_e \cap E_k| > \frac{C}{k^{1+\varepsilon}}$ for some C > 0. Then, as explained in [6], $K_{2^{-2^k}}(\chi_{\tilde{E}_k})(e) > \frac{C}{k^{1+\varepsilon}}$. thus,

$$\left|\left\{e \in S^1 : K_{2^{-2^k}}(\chi_{\tilde{E}_k})(e) > \frac{C}{k^{1+\varepsilon}}\right\}\right| \ge \left|\left\{e \in S^1 : |l_e \cap E_k| > \frac{C}{k^{1+\varepsilon}}\right\}\right|_*$$

where $|F|_*$ is the outer measure of F. Note that $|\tilde{E}_k| \leq \nu_k \left(2^{-2^k}\right)^2$, so (3) with p = 2 yields,

$$\nu_k h(2^{-2^k}) \gtrsim \frac{|\tilde{E}_k| \log 2^{2^k}}{(\frac{1}{k})^{2+\varepsilon}} \gtrsim \left| \left\{ e \in S^1 : K_{2^{-2^k}}(\chi_{\tilde{E}_k})(e) > \frac{C}{k^{1+\varepsilon}} \right\} \right|.$$

Summing over k we find that,

$$\sum_{j} h(r_j) \gtrsim \left| \bigcup_{k} \left\{ e \in S^1 : |l_e \cap E_k| > \frac{C}{k^{1+\varepsilon}} \right\} \right|_*$$

But for each $e \in S^1$, $\sum_k |l_e \cap E_k| = 1$ so if we let $C \stackrel{d}{=} \left(\sum_k \frac{1}{k^{1+\varepsilon}}\right)^{-1}$, then by the pigeonhole principle the union is S^1 , and therefore $\sum_j h(r_j) \gtrsim 1$ 1.

I would like to express my gratitude to Tom Wolff for his invaluable advice.

References

- Bourgain, J. (1991). Besicovitch type maximal operators and applications to Fourier analysis. Geometric and Functional Analysis, 1, 147-187.
- [2] Cordoba, A. (1977). The Kakeya maximal function and spherical summation multipliers. Amer. J. Math. 99, 1-22.
- [3] Müller, D. (1987). A note on the Kakeya maximal function. Arch. Math., 49, 66-71.
- [4] Sawyer, E. (1987). Families of plane curves having translates in a set of measure zero. Mathematika, 34, 69-76.
- [5] Schoenberg, I.J. (1962). On the Besicovitch-Perron solution of the Kakeya problem. Studies in mathematical analysis and related topics, 359-363. Stanford Univ. Press.
- [6] Wolff, T. (1997). Recent work connected with the Kakeya problem. To appear in Anniversary Proceedings, Princeton 1996.

APPLIED MATH, CALTECH 217-50, CA 91125 *E-mail address*: keich@ama.caltech.edu