ON L^{p} BOUNDS FOR KAKEYA MAXIMAL FUNCTIONS AND THE MINKOWSKI DIMENSION IN \mathbb{R}^{2}

U. KEICH

Abstract

We prove that the bound on the L^{p} norms of the Kakeya type maximal functions studied by Cordoba [2], and by Bourgain [1] are sharp for $p>2$. The proof is based on a construction originally due to Schoenberg [5], for which we provide an alternative derivation. We also show that $r^{2} \log (1 / r)$ is the exact Minkowski dimension of the class of Kakeya sets in \mathbb{R}^{2}, and prove that the exact Hausdorff dimension of these sets is between $r^{2} \log (1 / r)$ and $r^{2} \log (1 / r)[\log \log (1 / r)]^{2+\varepsilon}$.

1. Introduction

Consider the following two Kakeya type maximal operators. The first, studied in [2], $M_{\delta}: L^{2}\left(\mathbb{R}^{2}\right) \mapsto L^{2}\left(\mathbb{R}^{2}\right)$, is defined for $\delta>0$ as

$$
\begin{equation*}
M_{\delta} f(x) \stackrel{d}{=} \sup _{x \in R \in \mathfrak{R}_{\delta}} \frac{1}{R} \int_{R}|f|, \tag{1}
\end{equation*}
$$

where \mathfrak{R}_{δ} is the set of rectangles $R \in \mathbb{R}^{2}$ of size $\delta \times 1$. The second was introduced by Bourgain in [1]. We denote it by $K_{\delta}: L^{p}\left(\mathbb{R}^{2}\right) \mapsto L^{p}\left(S^{1}\right)$, and it is defined as

$$
K_{\delta} f(e) \stackrel{d}{=} \sup _{x \in \mathbb{R}^{2}} \frac{1}{T_{e}^{\delta}(x)} \int_{T_{e}^{\delta}(x)}|f|
$$

where $T_{e}^{\delta}(x)$ is the $\delta \times 1$ rectangle oriented in the e-direction with x at its center.

In [2, prop. 1.2], Cordoba proves that for $p \geq 2$,

$$
\begin{equation*}
\left\|M_{\delta}\right\|_{p} \lesssim\left(\log \frac{1}{\delta}\right)^{1 / p} \tag{2}
\end{equation*}
$$

In [1, (1.5)], Bourgain shows that for $p \geq 2$,

$$
\begin{equation*}
\left\|K_{\delta}\right\|_{p} \lesssim\left(\log \frac{1}{\delta}\right)^{1 / p} \tag{3}
\end{equation*}
$$

AMS 1991 subject classifications. 42B25, 28A78.

More precisely, both authors prove this in the case $p=2$. The case $p>2$ then follows from the obvious bounds, $\left|M_{\delta} f\right|_{\infty} \leq|f|_{\infty},\left|K_{\delta} f\right|_{\infty} \leq$ $|f|_{\infty}$ and the Marcinkiewicz interpolation theorem.

For the case $p=2$ these bounds were known to be sharp, for example, by considering the function [3]

$$
f_{\delta}(x) \stackrel{d}{=} \begin{cases}1 & |x|<\delta \\ \delta /|x| & \delta \leq|x| \leq 1 \\ 0 & |x|>1\end{cases}
$$

The key to showing that (2) and (3) are sharp lies in a certain "optimal" construction, due to Schoenberg [5], of a thin set which contains a unit line segment in every direction. Unaware of his result we came up with a different construction of essentially the same set. This is the content of theorem 1.

Remark. For $p \in[1,2)$, it can be proved, using analogous arguments as for the case $p=2$, that

$$
\left\|K_{\delta}\right\|_{p} \lesssim \delta^{1-2 / p} \quad\left\|M_{\delta}\right\|_{p} \lesssim \delta^{1-2 / p}
$$

Furthermore, this is known to be sharp by considering the function $f_{\delta}(x) \stackrel{d}{=} \chi_{D(0, \delta)}$, where $D(0, \delta)$ is the disc of radius δ about 0 .

We need the following notations:

- Let l be a line segment $l=\{(x, a x+b): x \in[0,1]\}$. We consider lines with $a(l) \stackrel{d}{=} a \in[0,1]$ and $b(l) \stackrel{d}{=} b \in[-1,0]$.
- For $\delta>0$ and such an l, let $R_{\delta}(l)$ be the triangle defined by the vertices $\{(0, l(0)),(0, l(0)-\delta),(1, l(1))\}$, where $l(x)$ denotes a shorthand for $a(l) x+b(l)$.
- Let $\vec{R}_{\delta}(l)$ be the triangle obtained by translating $R_{\delta}(l)$ by $2 \sqrt{2}$ along the direction of l.
- For a set $E \subset \mathbb{R}^{2}$ let $|E|$ denote its Lebesgue measure, and let $E(\delta)$ denote its δ-neighborhood.
- $x_{n} \lesssim y_{n}$ means there exists a $C>0$ such that $x_{n} \leq C y_{n} . x_{n} \approx y_{n}$ is short for both \gtrsim and \lesssim.

Theorem 1. For any n, there exist 2^{n} line segments $\left\{l_{i}^{n}:, i=0,1, \ldots, 2^{n}-\right.$ $1\}$, with $a\left(l_{i}^{n}\right)=i 2^{-n}$, and such that the triangles $R_{2^{-n}}\left(l_{i}^{n}\right)$ satisfy the following two properties:
(i)

$$
\left|\bigcup_{i} R_{2^{-n}}\left(l_{i}^{n}\right)\right|<\frac{1}{n}
$$

(ii) The translated triangles, $\vec{R}_{2^{-n}}\left(l_{i}^{n}\right)$ are disjoint.

Remark. Though not mentioned in [5], (ii) would follow from Schoenberg's work as well.

Let

$$
\begin{equation*}
E_{n} \stackrel{d}{=} \bigcup_{i=1}^{2^{n}} R_{2^{-n}}\left(l_{i}^{n}\right) \tag{4}
\end{equation*}
$$

Then E_{n} has a unit length line segment with any given slope $a \in[0,1]$, it is composed of triangles with eccentricity 2^{n}, and $\left|E_{n}\right|<1 / n$. It follows that:

Corollary 1. The bounds (2) and (3) are sharp for $p>2$.
Proof. Let E_{n} be defined as in (4), and let $f_{n} \stackrel{d}{=} \chi_{E_{n}}$. Then by (i) of theorem 1, $\left|f_{n}\right|_{p}<\left(\frac{1}{n}\right)^{1 / p}$. On the other hand, let \tilde{M} be defined as in (1) but with rectangles of size $3 \sqrt{2} \times \delta$ instead of $1 \times \delta$. Then one can check that $\tilde{M}_{\delta} f(x)>C>0$ for $x \in \bigcup_{i} \vec{R}_{2^{-n}}\left(l_{i}^{n}\right)$ and it follows that $\left|\tilde{M}_{2^{-n}}\left(f_{n}\right)\right|_{p} \gtrsim 1$. But $\left|\tilde{M}_{\delta}(f)\right|_{p} \approx\left|M_{\delta}(f)\right|_{p}$, therefore the bound in (2) is necessarily sharp. As for $K_{2^{-n}}$, it is not hard to show that $K_{2^{-n}}\left(\chi_{E_{n}}\right)(\theta) \geq C>0$ for $\theta \in[0, \pi / 4]$, which implies that (3) is sharp for $p \geq 2$.

A Kakeya set in \mathbb{R}^{2} is a set of Lebesgue measure 0 which contains a unit length line segment in every direction in the plane.

The triangles mentioned above allow us to constructively prove that:
Lemma 1.1. There exists a (compact) Kakeya set E such that for any $\varepsilon<1$,

$$
\begin{equation*}
|E(\varepsilon)| \lesssim \frac{1}{\log (1 / \varepsilon)} \tag{5}
\end{equation*}
$$

Since the reversed inequality is the rule for Kakeya sets, we can now prove:

Theorem 2. The exact Minkowski dimension of the class of Kakeya sets in \mathbb{R}^{2} is

$$
h(r)=r^{2} \log \frac{1}{r}
$$

Finally, we provide some partial results for the exact Hausdorff dimension of the class of Kakeya sets. Specifically we show that it is between $r^{2} \log (1 / r)$ and $r^{2} \log (1 / r)(\log \log (1 / r))^{2+\varepsilon}$ for any $\varepsilon>0$.

2. The basic construction

A few more notations are useful:

- A G-set for us means a compact set $E \subset[0,1] \times \mathbb{R}$, such that for any $a \in[0,1]$ there exists a (unit length) line segment $l_{a} \subset E$ with slope a.
- By the upper edge of the triangle $R_{\delta}(l)$ we mean the segment l, and by the lower edge the segment between $(0, l(0)-\delta)$ and $(1, l(1))$. The vertical edge is the third one.
- For a set $E \subset \mathbb{R}^{2}$ let $|E|_{x}$ be the (one-dimensional) Lebesgue measure of its cross section at x.
- For $k=0,1, \ldots, 2^{n}-1$ we denote by $\varepsilon_{i}(k)$ the i th binary digit in the expansion

$$
\frac{k}{2^{n}}=\sum_{i=1}^{n} \varepsilon_{i} 2^{-i} \quad \varepsilon_{i} \in\{0,1\}
$$

Proof of theorem 1. We first provide the geometric view of the construction which closely follows that of Sawyer [4] and Wolff [6]. Start with a triangle with vertices at $\{(0,0),(0,-1),(1,0)\}$. Cut it into two triangles by adding a vertex at $(0,-1 / 2)$, and then slide the lower triangle upward until the vertical edges of the two triangles overlap completely. At the k th stage ($k=1,2, \ldots n-1$) you have 2^{k} triangles. Cut each one of those into two triangles by adding a vertex in the middle of the vertical edge. For each of those newly created pairs, slide the lower triangle upward until the upper edges of both triangles intersect at $x=k / n$. This construction leaves us with 2^{n} triangles of equal area $\left(2^{-n-1}\right)$ and it is obvious that the union of those is a G-set. We next show that this construction satisfies (i) and (ii) of the theorem.

We define our set of 2^{n} lines $l_{0}, \ldots, l_{2^{n}-1}$ (these correspond to the upper edges of the triangles in the above construction) as follows: l_{k} has a slope

$$
a\left(l_{k}\right) \stackrel{d}{=} \frac{k}{2^{n}}
$$

and with $\varepsilon_{i} \stackrel{d}{=} \varepsilon_{i}\left(a\left(l_{k}\right)\right)$,

$$
b\left(l_{k}\right) \stackrel{d}{=}-\sum_{1}^{n} \varepsilon_{i} 2^{-i}+\sum_{1}^{n} \varepsilon_{i}\left(1-\frac{i-1}{n}\right) 2^{-i}=\sum_{1}^{n} \frac{1-i}{n} \varepsilon_{i} 2^{-i} .
$$

Note that $\sum \varepsilon_{i}\left(1-\frac{i-1}{n}\right) 2^{-i}$ is the total upward translation that was applied to the k th line (triangle) in our construction. It is at times convenient to index our lines by their strictly increasing slopes: $\left\{l_{a}\right.$:
$\left.a=0, \frac{1}{2^{n}}, \frac{2}{2^{n}}, \ldots, \frac{2^{n}-1}{2^{n}}\right\}$. With this notation

$$
l_{a}(x)=\sum_{i=1}^{n}\left(x+\frac{1-i}{n}\right) \varepsilon_{i} 2^{-i}
$$

where $\varepsilon_{i}=\varepsilon_{i}(a)$. To prove (ii) it suffices to show that for $a>\tilde{a}$, $l_{a}(1) \geq l_{\tilde{a}}(1)$. There exists a $k \in\{1, \ldots, n\}$ such that $\varepsilon_{i}=\tilde{\varepsilon_{i}}$ for $i \in\{1, \ldots, k-1\}$, and $\varepsilon_{k}=1>0=\tilde{\varepsilon_{k}}$, so

$$
\begin{aligned}
l_{a}(1)-l_{\tilde{a}}(1) & =\frac{n+1-k}{n} 2^{-k}+\sum_{k+1}^{n} \frac{n+1-i}{n}\left(\varepsilon_{i}-\tilde{\varepsilon}_{i}\right) 2^{-i} \\
& \geq \frac{n+1-k}{n} 2^{-k}-\sum_{k+1}^{n} \frac{n+1-i}{n} 2^{-i}>0 .
\end{aligned}
$$

To prove (i), it suffices to show that for any $x \in[0,1]$,

$$
\begin{equation*}
\left|\bigcup_{i=0}^{2^{n}-1} R_{2^{-n}}\left(l_{i}\right)\right|_{x}<\frac{1}{n} \tag{6}
\end{equation*}
$$

For $k=1,2, \ldots n$, we show that (6) holds in $I_{k} \stackrel{d}{=}\left[\frac{k-1}{n}, \frac{k}{n}\right]$, by grouping the lines into 2^{k-1} sets of lines determined by the first $k-1$ binary digits of their slopes. The triangles corresponding to each of these sets contribute at most $\left(2^{1-k}-2^{-n}\right) / n$ to the measure of the cross section at any $x \in I_{k}$. Since there are 2^{k-1} such sets, (6) follows. More precisely, let $k \in\{1,2, \ldots, n\}$. For $j=0,1, \ldots, 2^{k-1}-1$ we define

$$
L_{j} \stackrel{d}{=}\left\{l_{a}: \varepsilon_{i}(a)=\varepsilon_{i}\left(\frac{j}{2^{k-1}}\right) \quad \text { for } i=1,2, \ldots k-1\right\} .
$$

Let $l_{a} \in L_{j}$ and with $\varepsilon_{i}=\varepsilon_{i}(a)$, let $r \stackrel{d}{=} \sum_{1}^{k-1} \varepsilon_{i} 2^{-i}\left(\right.$ or, $\left.r=j / 2^{k-1}\right)$. Then

$$
l_{a}(x)=\sum_{1}^{k-1}\left(x+\frac{1-i}{n}\right) \varepsilon_{i} 2^{-i}+\sum_{k}^{n}\left(x+\frac{1-i}{n}\right) \varepsilon_{i} 2^{-i}
$$

so for $x \in I_{k}$,

$$
\begin{aligned}
l_{a}(x) & =l_{r}(x)+\sum_{k}^{n}\left(x+\frac{1-i}{n}\right) \varepsilon_{i} 2^{-i} \\
& \leq l_{r}(x)+\left(x+\frac{1-k}{n}\right) \varepsilon_{k} 2^{-k} \\
& \leq l_{r}(x)+\left(x+\frac{1-k}{n}\right) 2^{-k} \\
& =l_{r+2^{-k}}(x) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
l_{a}(x) & \geq l_{r}(x)+\sum_{k+1}^{n}\left(x+\frac{1-i}{n}\right) \varepsilon_{i} 2^{-i} \\
& \geq l_{r}(x)+\sum_{k+1}^{n}\left(x+\frac{1-i}{n}\right) 2^{-i} \\
& =l_{r+2^{-k}-2^{-n}}(x) .
\end{aligned}
$$

Thus, for any $j \in 0,1, \ldots, 2^{k-1}-1$ and with $r=j / 2^{k-1}$, the set of triangles $\left\{R_{2^{-n}}(l): l \in L_{j}\right\}$ is bounded, for $x \in I_{k}$, from above by the line $l_{r+2^{-k}}(x)$, and from below by $l_{r+2^{-k} 2^{-n}}(x)-2^{-n}(1-x)$. The latter being the lower edge of $R_{2^{-n}}\left(l_{r+2^{-k}-2^{-n}}\right)$. Hence

$$
\begin{aligned}
\left|\bigcup_{l \in L_{j}} R_{2^{-n}}(l)\right|_{x} & \leq l_{r+2^{-k}}(x)-\left[l_{r+2^{-k}-2^{-n}}(x)-2^{-n}(1-x)\right] \\
& =l_{2^{-k}}(x)-\left[l_{2^{-k-2^{-n}}}(x)-2^{-n}(1-x)\right]
\end{aligned}
$$

But the lines $l_{2^{-k}}(x)$ and $l_{2^{-k-2^{-n}}}(x)-2^{-n}(1-x)$ are parallel, so

$$
\begin{aligned}
\left|\bigcup_{l \in L_{j}} R_{2^{-n}}(l)\right|_{x} & \leq l_{2^{-k}}\left(\frac{k-1}{n}\right)-\left[l_{2^{-k-2^{-n}}}\left(\frac{k-1}{n}\right)-2^{-n}\left(1-\frac{k-1}{n}\right)\right] \\
& =0-\left[\sum_{k+1}^{n} \frac{k-i}{n} 2^{-i}-2^{-n}\left(1-\frac{k-1}{n}\right)\right] \\
& =\frac{2^{1-k}-2^{-n}}{n} .
\end{aligned}
$$

Hence

$$
\left|\bigcup_{l} R_{2^{-n}}(l)\right|_{x} \leq 2^{k-1} \frac{2^{1-k}-2^{-n}}{n}<\frac{1}{n}
$$

3. The exact Minkowski dimension

Let F be a subset of \mathbb{R}^{2}. For a monotone increasing function f on \mathbb{R}, and $\delta>0$ we define

$$
\mathfrak{M}_{f}(F, \delta) \stackrel{d}{=} \inf \left\{N \cdot f(r): \bigcup_{i=1}^{N} D\left(x_{i}, r\right) \supset F \text { and } r<\delta\right\} .
$$

Let $\mathfrak{M}_{f}(F) \stackrel{d}{=} \sup _{\delta} \mathfrak{M}_{f}(F, \delta)$. By the exact Minkowski dimension for the class of Kakeya sets, we mean a monotone increasing function h such that:

- For any Kakeya set $E, \mathfrak{M}_{h}(E)>0$.
- There exists a Kakeya set E with $\mathfrak{M}_{h}(E)<\infty$.

Claim 3.1. For any n, there exists a G-set, G^{n}, such that

$$
\left|G^{n}\left(2^{-n}\right)\right| \lesssim \frac{1}{\log 2^{n}}
$$

Proof. Consider the set of triangles $E_{n}=\bigcup_{i} R_{2^{-n}}\left(l_{i}^{n}\right)$ that was constructed in the proof of theorem 1 . Let I be the identity map on \mathbb{R}^{2}. Then by (i),

$$
\begin{equation*}
\left|6 I\left(E_{n}\right)\right|=\left|\bigcup_{i} 6 I\left(R_{2^{-n}}\left(l_{i}^{n}\right)\right)\right|<\frac{36}{n} \tag{7}
\end{equation*}
$$

Let $a \stackrel{d}{=} a\left(l_{i}^{n}\right) \in[0,1]$ and $b \stackrel{d}{=} b\left(l_{i}^{n}\right) \in[-1,0]$. We define the triangle \hat{R}_{i}^{n} by its vertices as follows:
$V\left(\hat{R}_{i}^{n}\right) \stackrel{d}{=}\left\{\left(1, a+6 b-2 \cdot 2^{-n}\right),\left(1, a+6 b-3 \cdot 2^{-n}\right),\left(2,2 a+6 b-2 \cdot 2^{-n}\right)\right\}$.
Since $V\left(R_{2^{-n}}\left(l_{i}^{n}\right)\right)=\left\{(0, b),\left(0, b-2^{-n}\right),(1, a+b)\right\}$, it is easy to verify that \hat{R}_{i}^{n} is a translation of $R_{2^{-n}}\left(l_{i}^{n}\right)$, and that

$$
\hat{R}_{i}^{n}\left(2^{-n}\right) \subset 6 I\left(R_{2^{-n}}\left(l_{i}^{n}\right)\right) .
$$

Hence, $\left|\bigcup_{i} \hat{R}_{i}^{n}\left(2^{-n}\right)\right|<36 / n$, and translating the triangles \hat{R}_{i}^{n} to the left we get our G-set.

Remarks:
-The set G^{n} constructed in the above claim is contained in $[0,1] \times$ [-6, 6].
-When $\delta=2^{-n}$ we will also refer to G^{n} by G^{δ}.

Proof of lemma 1.1. The proof is an adaptation of a standard limiting argument (e.g. lemma 1.3 and corollary 1.4 in [6]). Let $\varepsilon_{n} \stackrel{d}{=} 2^{-2^{n}}$, then it suffices to prove that (5) holds for ε_{n}. Suppose that there exists a sequence of G-sets, F_{n}, such that

$$
\begin{equation*}
F_{n}\left(\varepsilon_{n}\right) \subset F_{n-1}\left(\varepsilon_{n-1}\right) \tag{i}
\end{equation*}
$$

(ii)

$$
\left|\overline{F_{n}\left(2 \varepsilon_{n}\right)}\right| \lesssim 2^{-n}
$$

Let $E \stackrel{d}{=} \bigcap_{n} \overline{F_{n}\left(\varepsilon_{n}\right)}$. Then by (i), E is a G-set. Moreover,

$$
E\left(\varepsilon_{n}\right) \subset\left(F_{n}\left(\varepsilon_{n}\right)\right)\left(\varepsilon_{n}\right)=F_{n}\left(2 \varepsilon_{n}\right),
$$

hence (ii) proves our lemma. Next, we inductively construct the sequence F_{n}.

Start with, say, $F_{0}=G^{1 / 2}$. Given F_{n} we define F_{n+1} so that (i) and (ii) will be satisfied: Since F_{n} is a G-set, it contains a unit line segment $l_{m_{j}}$ for slopes $m_{j}=j \delta$, where δ is short for $\delta_{n+1} \stackrel{d}{=} \varepsilon_{n} / 256=2^{-2^{n}-8}$, and $j=0,1, \ldots, \delta^{-1}-1$. Let $A_{j}^{\delta}: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ be $A_{j}^{\delta}((x, y)) \stackrel{d}{=}\left(x, l_{m_{j}}(x)+\right.$ $\delta y)$. Note that A_{j}^{δ} affinely maps $[0,1] \times[-6,6]$ onto the parallelogram $S_{j}^{\delta} \stackrel{d}{=}\left\{(x, y): x \in[0,1]\right.$ and $\left.\left|y-l_{m_{j}}(x)\right| \leq 6 \delta\right\}$. Let η stand for $\eta_{n+1} \stackrel{d}{=} 2^{-2^{n}+11}$ and define

$$
F_{n+1} \stackrel{d}{=} \bigcup_{j} A_{j}^{\delta}\left(G^{\eta}\right)
$$

Since A_{j}^{δ} maps segments with slope μ to segments with slope $\mu+m_{j}$, F_{n+1} is a G-set. Since $\delta=\varepsilon_{n} / 256$, for each j,

$$
\left[A_{j}^{\delta}\left(G^{\eta}\right)\right]\left(\varepsilon_{n+1}\right) \subset\left(l_{m_{j}}\right)\left(12 \delta+\varepsilon_{n+1}\right) \subset F_{n}\left(\varepsilon_{n}\right),
$$

and (i) follows.
As for (ii), note that with $\delta \in(0,1]$ and $m \in[0,1]$,

$$
\left(x_{1}-x_{2}\right)^{2}+\left[m\left(x_{1}-x_{2}\right)+\delta\left(y_{1}-y_{2}\right)\right]^{2}<\delta^{2} \rho^{2}
$$

implies

$$
\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}<5 \rho^{2} .
$$

Hence,

$$
\left[A_{j}^{\delta}\left(G^{\eta}\right)\right]\left(\frac{\delta \eta}{4}\right) \subset A_{j}^{\delta}\left[G^{\eta}(\eta)\right]
$$

and so as $2 \varepsilon_{n+1}=\frac{\delta \eta}{4}$,

$$
F_{n+1}\left(2 \varepsilon_{n+1}\right)=\bigcup_{j}\left[A_{j}^{\delta}\left(G^{\eta}\right)\right]\left(\frac{\delta \eta}{4}\right) \subset \bigcup_{j} A_{j}^{\delta}\left[G^{\eta}(\eta)\right]
$$

Since A_{j}^{δ} reduces areas by a factor of δ, by claim 3.1,

$$
\left|A_{j}^{\delta}\left[G^{\eta}(\eta)\right]\right| \leq C \delta \frac{1}{\log \eta^{-1}},
$$

which implies that

$$
\left|F_{n+1}\left(2 \varepsilon_{n+1}\right)\right| \leq \sum_{j} C \delta \frac{1}{\log \eta^{-1}}=\frac{C}{\log \eta^{-1}}
$$

The proof is now completed observing that

$$
\log \frac{1}{2 \varepsilon_{n+1}} \approx 2^{n+1} \approx \log \frac{1}{\eta_{n+1}} .
$$

Proof of theorem 2. For any $r>0$ and a covering of a Kakeya set E by N_{r} discs of radius r, we have $N_{r} r^{2} \gtrsim|E(r)|$, so by (3),

$$
N_{r} h(r)=N_{r} r^{2} \log \frac{1}{r} \gtrsim|E(r)| \log \frac{1}{r} \gtrsim 1 .
$$

Thus, $\mathfrak{M}_{h}(E, \delta) \gtrsim 1$, and so $\mathfrak{M}_{h}(E)>0$. On the other hand, let E be the Kakeya set obtained from the construction in lemma 1.1. For any $\delta>0$, there exists a covering of E by $N_{\delta} \approx|E(\delta)| / \delta^{2}$ discs of radius δ. With this covering and by lemma 1.1 we have

$$
\mathfrak{M}_{g}(E, \delta) \lesssim N_{\delta} \delta^{2} \log \frac{1}{\delta} \lesssim\left|E_{\delta}\right| \log \frac{1}{\delta} \lesssim 1
$$

As for the exact Hausdorff dimension of the class of Kakeya sets in \mathbb{R}^{2}, our results are not sharp. You can borrow the lower bound of $h \geq r^{2} \log (1 / r)$ from the analysis of the Minkowski dimension, but the upper bound we currently have is strictly larger:

Claim 3.2. Let E be a Kakeya set and for $\varepsilon>0$, let

$$
h_{\varepsilon}(r) \stackrel{d}{=} r^{2} \log \frac{1}{r}\left(\log \log \frac{1}{r}\right)^{2+\varepsilon} .
$$

Then there exists a $C_{\varepsilon}>0$ such that for any covering of E by $\bigcup_{i} D\left(x_{i}, r_{i}\right)$ with $r_{i}<\delta, \sum_{i} h_{\varepsilon}\left(r_{i}\right) \geq C_{\varepsilon}$.

Proof. The proof is a variation on lemma 2.15 in [1]. Let

$$
J_{k} \stackrel{d}{=}\left\{j: 2^{-2^{k}} \leq r_{j} \leq 2^{-2^{k-1}}\right\}
$$

and let $\nu_{k} \stackrel{d}{=}\left|J_{k}\right|$. Since for small r and $c>1, h(c r)<c^{2} h(r)$, we can assume without loss of generality that $r_{i}=m_{i} 2^{-2^{k}}$ with $m_{i} \in$ $\left\{1,2, \ldots, 2^{2^{k-1}}\right\}$. Each such disc, $D\left(x, m \cdot 2^{-2^{k}}\right)$, can be covered by $\lesssim m^{2}$ discs of radius $2^{-2^{k}}$ and since
we can assume, without loss of generality, that $r_{j}=2^{-2^{k}}$ for all $j \in J_{k}$.
Keeping with the notation in [6], denote $D\left(x_{j}, r_{j}\right)$ by D_{j}, and let

$$
E_{k} \stackrel{d}{=} E \cap\left(\bigcup_{j \in J_{k}} D_{j}\right) \quad \tilde{D}_{j} \stackrel{d}{=} D\left(x_{j}, 2 r_{j}\right) \quad \tilde{E}_{k} \stackrel{d}{=} \bigcup_{j \in J_{k}} \tilde{D}_{j} .
$$

Let $e \in S^{1}$. Since E is a Kakeya set, there exists a unit length line segment in the e-direction, l_{e}, contained in E. Suppose that $\left|l_{e} \cap E_{k}\right|>$ $\frac{C}{k^{1+\varepsilon}}$ for some $C>0$. Then, as explained in [6], $K_{2^{-2^{k}}}\left(\chi_{\tilde{E}_{k}}\right)(e)>\frac{C}{k^{1+\varepsilon}}$, thus,

$$
\left|\left\{e \in S^{1}: K_{2^{-2^{k}}}\left(\chi_{\tilde{E}_{k}}\right)(e)>\frac{C}{k^{1+\varepsilon}}\right\}\right| \geq\left|\left\{e \in S^{1}:\left|l_{e} \cap E_{k}\right|>\frac{C}{k^{1+\varepsilon}}\right\}\right|_{*},
$$ where $|F|_{*}$ is the outer measure of F. Note that $\left|\tilde{E}_{k}\right| \lesssim \nu_{k}\left(2^{-2^{k}}\right)^{2}$, so (3) with $p=2$ yields,

$$
\nu_{k} h\left(2^{-2^{k}}\right) \gtrsim \frac{\left|\tilde{E}_{k}\right| \log 2^{2^{k}}}{\left(\frac{1}{k}\right)^{2+\varepsilon}} \gtrsim\left|\left\{e \in S^{1}: K_{2^{-2^{k}}}\left(\chi_{\tilde{E}_{k}}\right)(e)>\frac{C}{k^{1+\varepsilon}}\right\}\right| .
$$

Summing over k we find that,

$$
\sum_{j} h\left(r_{j}\right) \gtrsim\left|\bigcup_{k}\left\{e \in S^{1}:\left|l_{e} \cap E_{k}\right|>\frac{C}{k^{1+\varepsilon}}\right\}\right|_{*}
$$

But for each $e \in S^{1}, \sum_{k}\left|l_{e} \cap E_{k}\right|=1$ so if we let $C \stackrel{d}{=}\left(\sum_{k} \frac{1}{k^{1+\varepsilon}}\right)^{-1}$, then by the pigeonhole principle the union is S^{1}, and therefore $\sum_{j} h\left(r_{j}\right) \gtrsim$ 1.

I would like to express my gratitude to Tom Wolff for his invaluable advice.

References

[1] Bourgain, J. (1991). Besicovitch type maximal operators and applications to Fourier analysis. Geometric and Functional Analysis, 1, 147-187.
[2] Cordoba, A. (1977). The Kakeya maximal function and spherical summation multipliers. Amer. J. Math. 99, 1-22.
[3] Müller, D. (1987). A note on the Kakeya maximal function. Arch. Math., 49, 66-71.
[4] Sawyer, E. (1987). Families of plane curves having translates in a set of measure zero. Mathematika, 34, 69-76.
[5] Schoenberg, I.J. (1962). On the Besicovitch-Perron solution of the Kakeya problem. Studies in mathematical analysis and related topics, 359-363. Stanford Univ. Press.
[6] Wolff, T. (1997). Recent work connected with the Kakeya problem. To appear in Anniversary Proceedings, Princeton 1996.

Applied Math, Caltech 217-50, CA 91125
E-mail address: keich@ama.caltech.edu

