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Abstract. We prove that the bound on the Lp norms of the
Kakeya type maximal functions studied by Cordoba [2], and by
Bourgain [1] are sharp for p > 2. The proof is based on a con-
struction originally due to Schoenberg [5], for which we provide
an alternative derivation. We also show that r2 log(1/r) is the ex-
act Minkowski dimension of the class of Kakeya sets in R

2, and
prove that the exact Hausdorff dimension of these sets is between
r2 log(1/r) and r2 log(1/r) [log log(1/r)]2+ε.

1. Introduction

Consider the following two Kakeya type maximal operators. The
first, studied in [2], Mδ : L2(R2) �→ L2(R2), is defined for δ > 0 as

Mδf(x)
d
= sup

x∈R∈Rδ

1

R

∫
R

|f |,(1)

where Rδ is the set of rectangles R ∈ R
2 of size δ× 1. The second was

introduced by Bourgain in [1]. We denote it by Kδ : Lp(R2) �→ Lp(S1),
and it is defined as

Kδf(e)
d
= sup

x∈R
2

1

T δ
e (x)

∫
T δ

e (x)

|f |,

where T δ
e (x) is the δ× 1 rectangle oriented in the e-direction with x at

its center.
In [2, prop. 1.2], Cordoba proves that for p ≥ 2,

‖Mδ‖p �
(

log
1

δ

)1/p

.(2)

In [1, (1.5)], Bourgain shows that for p ≥ 2,

‖Kδ‖p �
(

log
1

δ

)1/p

.(3)
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More precisely, both authors prove this in the case p = 2. The case
p > 2 then follows from the obvious bounds, |Mδf |∞ ≤ |f |∞, |Kδf |∞ ≤
|f |∞ and the Marcinkiewicz interpolation theorem.

For the case p = 2 these bounds were known to be sharp, for example,
by considering the function [3]

fδ(x)
d
=




1 |x| < δ

δ/|x| δ ≤ |x| ≤ 1

0 |x| > 1

.

The key to showing that (2) and (3) are sharp lies in a certain “optimal”
construction, due to Schoenberg [5], of a thin set which contains a unit
line segment in every direction. Unaware of his result we came up with
a different construction of essentially the same set. This is the content
of theorem 1.

Remark. For p ∈ [1, 2), it can be proved, using analogous arguments
as for the case p = 2, that

‖Kδ‖p � δ1−2/p ‖Mδ‖p � δ1−2/p.

Furthermore, this is known to be sharp by considering the function

fδ(x)
d
= χD(0,δ), where D(0, δ) is the disc of radius δ about 0.

We need the following notations:

• Let l be a line segment l = {(x, ax+ b) : x ∈ [0, 1]}. We consider

lines with a(l)
d
= a ∈ [0, 1] and b(l)

d
= b ∈ [−1, 0].

• For δ > 0 and such an l, let Rδ(l) be the triangle defined by
the vertices {(0, l(0)), (0, l(0)− δ), (1, l(1))}, where l(x) denotes a
shorthand for a(l)x + b(l).

• Let �Rδ(l) be the triangle obtained by translating Rδ(l) by 2
√

2
along the direction of l.

• For a set E ⊂ R
2 let |E| denote its Lebesgue measure, and let

E(δ) denote its δ-neighborhood.
• xn � yn means there exists a C > 0 such that xn ≤ Cyn. xn ≈ yn

is short for both � and �.

Theorem 1. For any n, there exist 2n line segments {lni :, i = 0, 1, . . . , 2n−
1}, with a(lni ) = i2−n, and such that the triangles R2−n(lni ) satisfy the
following two properties:

(i) ∣∣∣∣∣
⋃
i

R2−n(lni )

∣∣∣∣∣ < 1

n
.
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(ii) The translated triangles, �R2−n(lni ) are disjoint.

Remark. Though not mentioned in [5], (ii) would follow from Schoen-
berg’s work as well.

Let

En
d
=

2n⋃
i=1

R2−n(lni ).(4)

Then En has a unit length line segment with any given slope a ∈ [0, 1],
it is composed of triangles with eccentricity 2n, and |En| < 1/n. It
follows that:

Corollary 1. The bounds (2) and (3) are sharp for p > 2.

Proof. Let En be defined as in (4), and let fn
d
= χEn . Then by (i) of

theorem 1, |fn|p <
(

1
n

)1/p
. On the other hand, let M̃ be defined as

in (1) but with rectangles of size 3
√

2 × δ instead of 1 × δ. Then one

can check that M̃δf(x) > C > 0 for x ∈
⋃

i
�R2−n(lni ) and it follows

that |M̃2−n(fn)|p � 1. But |M̃δ(f)|p ≈ |Mδ(f)|p, therefore the bound

in (2) is necessarily sharp. As for K2−n , it is not hard to show that
K2−n(χEn)(θ) ≥ C > 0 for θ ∈ [0, π/4], which implies that (3) is sharp
for p ≥ 2.

A Kakeya set in R
2 is a set of Lebesgue measure 0 which contains a

unit length line segment in every direction in the plane.
The triangles mentioned above allow us to constructively prove that:

Lemma 1.1. There exists a (compact) Kakeya set E such that for any
ε < 1,

|E(ε)| � 1

log(1/ε)
.(5)

Since the reversed inequality is the rule for Kakeya sets, we can now
prove:

Theorem 2. The exact Minkowski dimension of the class of Kakeya
sets in R

2 is

h(r) = r2 log
1

r
.

Finally, we provide some partial results for the exact Hausdorff di-
mension of the class of Kakeya sets. Specifically we show that it is
between r2 log(1/r) and r2 log(1/r) (log log(1/r))2+ε for any ε > 0.
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2. The basic construction

A few more notations are useful:

• A G-set for us means a compact set E ⊂ [0, 1] × R, such that for
any a ∈ [0, 1] there exists a (unit length) line segment la ⊂ E with
slope a.

• By the upper edge of the triangle Rδ(l) we mean the segment
l, and by the lower edge the segment between (0, l(0) − δ) and
(1, l(1)). The vertical edge is the third one.

• For a set E ⊂ R
2 let |E|x be the (one-dimensional) Lebesgue

measure of its cross section at x.
• For k = 0, 1, . . . , 2n − 1 we denote by εi(k) the ith binary digit in

the expansion

k

2n
=

n∑
i=1

εi2
−i εi ∈ {0, 1}.

Proof of theorem 1. We first provide the geometric view of the con-
struction which closely follows that of Sawyer [4] and Wolff [6]. Start
with a triangle with vertices at {(0, 0), (0,−1), (1, 0)}. Cut it into two
triangles by adding a vertex at (0,−1/2), and then slide the lower
triangle upward until the vertical edges of the two triangles overlap
completely. At the kth stage (k = 1, 2, . . . n− 1) you have 2k triangles.
Cut each one of those into two triangles by adding a vertex in the mid-
dle of the vertical edge. For each of those newly created pairs, slide the
lower triangle upward until the upper edges of both triangles intersect
at x = k/n. This construction leaves us with 2n triangles of equal area
(2−n−1) and it is obvious that the union of those is a G-set. We next
show that this construction satisfies (i) and (ii) of the theorem.

We define our set of 2n lines l0, . . . , l2n−1 (these correspond to the
upper edges of the triangles in the above construction) as follows: lk
has a slope

a(lk)
d
=

k

2n
,

and with εi
d
= εi(a(lk)),

b(lk)
d
= −

n∑
1

εi2
−i +

n∑
1

εi

(
1 − i− 1

n

)
2−i =

n∑
1

1 − i

n
εi2

−i.

Note that
∑

εi

(
1 − i−1

n

)
2−i is the total upward translation that was

applied to the kth line (triangle) in our construction. It is at times
convenient to index our lines by their strictly increasing slopes: {la :
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a = 0, 1
2n ,

2
2n , . . . ,

2n−1
2n }. With this notation

la(x) =
n∑

i=1

(
x +

1 − i

n

)
εi2

−i,

where εi = εi(a). To prove (ii) it suffices to show that for a > ã,
la(1) ≥ lã(1). There exists a k ∈ {1, . . . , n} such that εi = ε̃i for
i ∈ {1, . . . , k − 1}, and εk = 1 > 0 = ε̃k, so

la(1) − lã(1) =
n + 1 − k

n
2−k +

n∑
k+1

n + 1 − i

n
(εi − ε̃i)2

−i

≥ n + 1 − k

n
2−k −

n∑
k+1

n + 1 − i

n
2−i > 0.

To prove (i), it suffices to show that for any x ∈ [0, 1],

∣∣∣∣∣
2n−1⋃
i=0

R2−n(li)

∣∣∣∣∣
x

<
1

n
.(6)

For k = 1, 2, . . . n, we show that (6) holds in Ik
d
= [k−1

n
, k

n
], by grouping

the lines into 2k−1 sets of lines determined by the first k − 1 binary
digits of their slopes. The triangles corresponding to each of these sets
contribute at most (21−k−2−n)/n to the measure of the cross section at
any x ∈ Ik. Since there are 2k−1 such sets, (6) follows. More precisely,
let k ∈ {1, 2, . . . , n}. For j = 0, 1, . . . , 2k−1 − 1 we define

Lj
d
=

{
la : εi(a) = εi

(
j

2k−1

)
for i = 1, 2, . . . k − 1

}
.

Let la ∈ Lj and with εi = εi(a), let r
d
=

∑k−1
1 εi2

−i (or, r = j/2k−1).
Then

la(x) =
k−1∑
1

(
x +

1 − i

n

)
εi2

−i +
n∑
k

(
x +

1 − i

n

)
εi2

−i,
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so for x ∈ Ik,

la(x) = lr(x) +
n∑
k

(
x +

1 − i

n

)
εi2

−i

≤ lr(x) +

(
x +

1 − k

n

)
εk2

−k

≤ lr(x) +

(
x +

1 − k

n

)
2−k

= lr+2−k(x).

Similarly,

la(x) ≥ lr(x) +
n∑

k+1

(
x +

1 − i

n

)
εi2

−i

≥ lr(x) +
n∑

k+1

(
x +

1 − i

n

)
2−i

= lr+2−k−2−n(x).

Thus, for any j ∈ 0, 1, . . . , 2k−1 − 1 and with r = j/2k−1, the set of
triangles {R2−n(l) : l ∈ Lj} is bounded, for x ∈ Ik, from above by
the line lr+2−k(x), and from below by lr+2−k−2−n(x) − 2−n(1 − x). The
latter being the lower edge of R2−n(lr+2−k−2−n). Hence∣∣∣∣∣∣

⋃
l∈Lj

R2−n(l)

∣∣∣∣∣∣
x

≤ lr+2−k(x) −
[
lr+2−k−2−n(x) − 2−n(1 − x)

]
= l2−k(x) −

[
l2−k−2−n(x) − 2−n(1 − x)

]
.

But the lines l2−k(x) and l2−k−2−n(x) − 2−n(1 − x) are parallel, so∣∣∣∣∣∣
⋃
l∈Lj

R2−n(l)

∣∣∣∣∣∣
x

≤ l2−k(
k − 1

n
) −

[
l2−k−2−n

(
k − 1

n

)
− 2−n

(
1 − k − 1

n

)]

= 0 −
[

n∑
k+1

k − i

n
2−i − 2−n

(
1 − k − 1

n

)]

=
21−k − 2−n

n
.

Hence ∣∣∣∣∣
⋃

l

R2−n(l)

∣∣∣∣∣
x

≤ 2k−1 21−k − 2−n

n
<

1

n
.
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3. The exact Minkowski dimension

Let F be a subset of R
2. For a monotone increasing function f on

R, and δ > 0 we define

Mf (F, δ)
d
= inf

{
N · f(r) :

N⋃
i=1

D(xi, r) ⊃ F and r < δ

}
.

Let Mf (F )
d
= supδ Mf (F, δ). By the exact Minkowski dimension for

the class of Kakeya sets, we mean a monotone increasing function h
such that:

• For any Kakeya set E, Mh(E) > 0.
• There exists a Kakeya set E with Mh(E) < ∞.

Claim 3.1. For any n, there exists a G-set, Gn, such that

|Gn(2−n)| � 1

log 2n

Proof. Consider the set of triangles En =
⋃

i R2−n(lni ) that was con-
structed in the proof of theorem 1. Let I be the identity map on R

2.
Then by (i),

|6I(En)| =

∣∣∣∣∣
⋃
i

6I (R2−n(lni ))

∣∣∣∣∣ < 36

n
.(7)

Let a
d
= a(lni ) ∈ [0, 1] and b

d
= b(lni ) ∈ [−1, 0]. We define the triangle

R̂n
i by its vertices as follows:

V (R̂n
i )

d
=

{
(1, a + 6b− 2 · 2−n), (1, a + 6b− 3 · 2−n), (2, 2a + 6b− 2 · 2−n)

}
.

Since V (R2−n(lni )) = {(0, b), (0, b− 2−n), (1, a + b)}, it is easy to verify

that R̂n
i is a translation of R2−n(lni ), and that

R̂n
i (2−n) ⊂ 6I (R2−n(lni )) .

Hence,
∣∣∣⋃i R̂

n
i (2−n)

∣∣∣ < 36/n, and translating the triangles R̂n
i to the

left we get our G-set.

Remarks:

•The set Gn constructed in the above claim is contained in [0, 1]×
[−6, 6].
•When δ = 2−n we will also refer to Gn by Gδ.
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Proof of lemma 1.1. The proof is an adaptation of a standard limiting

argument (e.g. lemma 1.3 and corollary 1.4 in [6]). Let εn
d
= 2−2n

, then
it suffices to prove that (5) holds for εn. Suppose that there exists a
sequence of G-sets, Fn, such that

(i)

Fn(εn) ⊂ Fn−1(εn−1).

(ii)

|Fn(2εn)| � 2−n.

Let E
d
=

⋂
n Fn(εn). Then by (i), E is a G-set. Moreover,

E(εn) ⊂ (Fn(εn))(εn) = Fn(2εn),

hence (ii) proves our lemma. Next, we inductively construct the se-
quence Fn.

Start with, say, F0 = G1/2. Given Fn we define Fn+1 so that (i) and
(ii) will be satisfied: Since Fn is a G-set, it contains a unit line segment

lmj
for slopes mj = jδ, where δ is short for δn+1

d
= εn/256 = 2−2n−8,

and j = 0, 1, . . . , δ−1−1. Let Aδ
j : R

2 �→ R
2 be Aδ

j((x, y))
d
= (x, lmj

(x)+

δy). Note that Aδ
j affinely maps [0, 1] × [−6, 6] onto the parallelogram

Sδ
j

d
= {(x, y) : x ∈ [0, 1] and |y − lmj

(x)| ≤ 6δ}. Let η stand for

ηn+1
d
= 2−2n+11 and define

Fn+1
d
=

⋃
j

Aδ
j(G

η).

Since Aδ
j maps segments with slope µ to segments with slope µ + mj,

Fn+1 is a G-set. Since δ = εn/256, for each j,[
Aδ

j(G
η)

]
(εn+1) ⊂ (lmj

)(12δ + εn+1) ⊂ Fn(εn),

and (i) follows.
As for (ii), note that with δ ∈ (0, 1] and m ∈ [0, 1],

(x1 − x2)
2 + [m(x1 − x2) + δ(y1 − y2)]

2 < δ2ρ2,

implies

(x1 − x2)
2 + (y1 − y2)

2 < 5ρ2.

Hence, [
Aδ

j(G
η)

]
(
δη

4
) ⊂ Aδ

j [Gη(η)] ,
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and so as 2εn+1 = δη
4
,

Fn+1(2εn+1) =
⋃
j

[
Aδ

j(G
η)

]
(
δη

4
) ⊂

⋃
j

Aδ
j [Gη(η)] .

Since Aδ
j reduces areas by a factor of δ, by claim 3.1,

∣∣Aδ
j [Gη(η)]

∣∣ ≤ Cδ
1

log η−1
,

which implies that

|Fn+1(2εn+1)| ≤
∑

j

Cδ
1

log η−1
=

C

log η−1
.

The proof is now completed observing that

log
1

2εn+1

≈ 2n+1 ≈ log
1

ηn+1

.

Proof of theorem 2. For any r > 0 and a covering of a Kakeya set E
by Nr discs of radius r, we have Nrr

2 � |E(r)|, so by (3),

Nrh(r) = Nrr
2 log

1

r
� |E(r)| log

1

r
� 1.

Thus, Mh(E, δ) � 1, and so Mh(E) > 0. On the other hand, let E be
the Kakeya set obtained from the construction in lemma 1.1. For any
δ > 0, there exists a covering of E by Nδ ≈ |E(δ)|/δ2 discs of radius δ.
With this covering and by lemma 1.1 we have

Mg(E, δ) � Nδδ
2 log

1

δ
� |Eδ| log

1

δ
� 1.

As for the exact Hausdorff dimension of the class of Kakeya sets in
R

2, our results are not sharp. You can borrow the lower bound of
h ≥ r2 log(1/r) from the analysis of the Minkowski dimension, but the
upper bound we currently have is strictly larger:

Claim 3.2. Let E be a Kakeya set and for ε > 0, let

hε(r)
d
= r2 log

1

r

(
log log

1

r

)2+ε

.

Then there exists a Cε > 0 such that for any covering of E by
⋃

i D(xi, ri)
with ri < δ,

∑
i hε(ri) ≥ Cε.
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Proof. The proof is a variation on lemma 2.15 in [1]. Let

Jk
d
=

{
j : 2−2k ≤ rj ≤ 2−2k−1

}
,

and let νk
d
= |Jk|. Since for small r and c > 1, h(cr) < c2h(r), we

can assume without loss of generality that ri = mi2
−2k

with mi ∈
{1, 2, . . . , 22k−1}. Each such disc, D(x,m · 2−2k

), can be covered by

� m2 discs of radius 2−2k
and since

h(m · 2−2k
)

m2h(2−2k)
�

log 22k−1
[
log log(22k−1

)
]2+ε

log 22k
[
log log(22k)

]2+ε ≈ 1

2
,

we can assume, without loss of generality, that rj = 2−2k
for all j ∈ Jk.

Keeping with the notation in [6], denote D(xj, rj) by Dj, and let

Ek
d
= E ∩

( ⋃
j∈Jk

Dj

)
D̃j

d
= D(xj, 2rj) Ẽk

d
=

⋃
j∈Jk

D̃j.

Let e ∈ S1. Since E is a Kakeya set, there exists a unit length line
segment in the e-direction, le, contained in E. Suppose that |le∩Ek| >

C
k1+ε for some C > 0. Then, as explained in [6], K

2−2k (χẼk
)(e) > C

k1+ε ,
thus,∣∣∣∣
{
e ∈ S1 : K

2−2k (χẼk
)(e) >

C

k1+ε

}∣∣∣∣ ≥
∣∣∣∣
{
e ∈ S1 : |le ∩ Ek| >

C

k1+ε

}∣∣∣∣
∗
,

where |F |∗ is the outer measure of F . Note that |Ẽk| � νk

(
2−2k

)2

, so

(3) with p = 2 yields,

νkh(2−2k

) � |Ẽk| log 22k

( 1
k
)2+ε

�
∣∣∣∣
{
e ∈ S1 : K

2−2k (χẼk
)(e) >

C

k1+ε

}∣∣∣∣ .
Summing over k we find that,

∑
j

h(rj) �
∣∣∣∣∣
⋃
k

{
e ∈ S1 : |le ∩ Ek| >

C

k1+ε

}∣∣∣∣∣
∗

.

But for each e ∈ S1,
∑

k |le∩Ek| = 1 so if we let C
d
=

(∑
k

1
k1+ε

)−1
, then

by the pigeonhole principle the union is S1, and therefore
∑

j h(rj) �
1.

I would like to express my gratitude to Tom Wolff for his invaluable
advice.
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