ON L BOUNDS FOR KAKEYA MAXIMAL
FUNCTIONS AND THE MINKOWSKI DIMENSION IN
R2

U. KEICH

ABSTRACT. We prove that the bound on the LP norms of the
Kakeya type maximal functions studied by Cordoba [2], and by
Bourgain [1] are sharp for p > 2. The proof is based on a con-
struction originally due to Schoenberg [5], for which we provide
an alternative derivation. We also show that r2log(1/r) is the ex-
act Minkowski dimension of the class of Kakeya sets in R?, and
prove that the exact Hausdorff dimension of these sets is between
r2log(1/r) and 2 log(1/r) [loglog(1/r)]*.

1. INTRODUCTION

Consider the following two Kakeya type maximal operators. The
first, studied in [2], M;s : L*(R?) — L%*(R?), is defined for § > 0 as

d
(1) Mf@) £ sw & [ 171
mEREm(g
where s is the set of rectangles R € R? of size § x 1. The second was
introduced by Bourgain in [1]. We denote it by Kj : LP(R?) — LP(S?),
and it is defined as

1
Ksf(e) L sup s [ 111,
z€R? T ( ) TS (x)
where T?(x) is the J x 1 rectangle oriented in the e-direction with z at
its center.
In [2, prop. 1.2], Cordoba proves that for p > 2,

1 1/p
2) Il 5 (1o3)
In [1, (1.5)], Bourgain shows that for p > 2,

1 1/p
) Il 5 (1og)
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2 U. KEICH

More precisely, both authors prove this in the case p = 2. The case
p > 2 then follows from the obvious bounds, |Msf| < |fl|., [Ksf| <
||, and the Marcinkiewicz interpolation theorem.

For the case p = 2 these bounds were known to be sharp, for example,
by considering the function [3]

1 lz| <0
fi(w) £ 6/|x] §<|z|<1.
0 lz| > 1

The key to showing that (2) and (3) are sharp lies in a certain “optimal”
construction, due to Schoenberg [5], of a thin set which contains a unit
line segment in every direction. Unaware of his result we came up with
a different construction of essentially the same set. This is the content
of theorem 1.

Remark. For p € [1,2), it can be proved, using analogous arguments
as for the case p = 2, that

1Kl < 6157 1M5l], < 01727

Furthermore, this is known to be sharp by considering the function
fs(z) < XD(0,5), where D(0,9) is the disc of radius § about 0.

We need the following notations:

e Let [ be a line segment [ = {(z,az +b) : = € [0,1]}. We consider
lines with a(l) < a € [0,1] and b(1) £ b € [—1,0].

e For 4 > 0 and such an [, let Rs(l) be the triangle defined by
the vertices {(0,1(0)), (0,1(0) —6), (1,1(1))}, where I(z) denotes a
shorthand for a(l)x + b(1).

e Let Rs(1) be the triangle obtained by translating Rs(l) by 2v/2
along the direction of .

e For a set £ C R? let |E| denote its Lebesgue measure, and let
E(6) denote its d-neighborhood.

e 7, <y, means there exists a C' > 0 such that z,, < Cy,. x, =~ y,
is short for both 2 and <.

Theorem 1. For anyn, there exist 2" line segments {I* :,1 =10,1,...,2"—
1}, with a(l?) = 127", and such that the triangles Ro—n (1) satisfy the
following two properties:

(i)

1
< —.
n

R ()



ON L? BOUNDS FOR THE KAKEYA MAXIMAL FUNCTION 3
(ii) The translated triangles, Ro-n(I}') are disjoint.

Remark. Though not mentioned in [5], (ii) would follow from Schoen-
berg’s work as well.

Let
d >
(4) E, = | Ro-n (1)
=1

Then E, has a unit length line segment with any given slope a € [0, 1],
it is composed of triangles with eccentricity 2", and |E,| < 1/n. It
follows that:

Corollary 1. The bounds (2) and (3) are sharp for p > 2.

Proof. Let E,, be defined as in (4), and let f, < XE,- Then by (i) of
theorem 1, [f,|, < (l)l/p. On the other hand, let M be defined as

n

in (1) but with rectangles of size 3v/2 x ¢ instead of 1 x §. Then one
can check that Msf(z) > C > 0 for 2 € |J, Ry»(I?) and it follows
that |M2—n(fn)|p > 1. But ]M(;(f)|p ~ |M;(f)l,, therefore the bound
in (2) is necessarily sharp. As for Ky-n, it is not hard to show that
Ky (xg,)(0) > C >0 for € [0, 7/4], which implies that (3) is sharp
for p > 2. |

A Kakeya set in R? is a set of Lebesgue measure 0 which contains a
unit length line segment in every direction in the plane.
The triangles mentioned above allow us to constructively prove that:

Lemma 1.1. There exists a (compact) Kakeya set E such that for any
e <1,

1
5 E@E)| < ———.
o) BE) S i
Since the reversed inequality is the rule for Kakeya sets, we can now
prove:

Theorem 2. The exact Minkowski dimension of the class of Kakeya
sets in R? is

1
h(r) = r?log —.
r

Finally, we provide some partial results for the exact Hausdorff di-
mension of the class of Kakeya sets. Specifically we show that it is
between 2 log(1/r) and r2log(1/r) (loglog(1/r))*™ for any & > 0.
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2. THE BASIC CONSTRUCTION

A few more notations are useful:

e A G-set for us means a compact set £ C [0,1] x R, such that for
any a € [0, 1] there exists a (unit length) line segment [, C E with
slope a.

e By the upper edge of the triangle Rs(l) we mean the segment
[, and by the lower edge the segment between (0,[(0) — J) and
(1,1(1)). The vertical edge is the third one.

e For a set £ C R? let |E|, be the (one-dimensional) Lebesgue
measure of its cross section at x.

e For k=0,1,...,2" — 1 we denote by ¢;(k) the ith binary digit in
the expansion

k - ,
2_n = 282272 g € {0, 1}
=1

Proof of theorem 1. We first provide the geometric view of the con-
struction which closely follows that of Sawyer [4] and Wolff [6]. Start
with a triangle with vertices at {(0,0), (0, —1),(1,0)}. Cut it into two
triangles by adding a vertex at (0,—1/2), and then slide the lower
triangle upward until the vertical edges of the two triangles overlap
completely. At the kth stage (k =1,2,...n —1) you have 2F triangles.
Cut each one of those into two triangles by adding a vertex in the mid-
dle of the vertical edge. For each of those newly created pairs, slide the
lower triangle upward until the upper edges of both triangles intersect
at © = k/n. This construction leaves us with 2" triangles of equal area
(27™71) and it is obvious that the union of those is a G-set. We next
show that this construction satisfies (i) and (ii) of the theorem.

We define our set of 2" lines [y, ...,lon 1 (these correspond to the
upper edges of the triangles in the above construction) as follows: [
has a slope

k
a(lk) i 2_na

and with ¢; 4 ei(a(ly)),

b(lk) i — zn:ffiZ_i + zn:&fi <1 —
1 1

Note that ) e; (1 — %) 27" is the total upward translation that was
applied to the kth line (triangle) in our construction. It is at times
convenient to index our lines by their strictly increasing slopes: {l, :

i—1 A "1—3 .
27" = 27
I ERED Dt

1



ON L? BOUNDS FOR THE KAKEYA MAXIMAL FUNCTION 5

a=0,5,2=,..., 5}, With this notation
lo(x) = T+ — €27
@=3 (=)

where ¢; = ¢;(a). To prove (ii) it suffices to show that for a > a,
lo(1) > l5(1). There exists a k € {1,...,n} such that ; = & for
ie{l,....k—1},and g, = 1> 0=¢}, so

+1—k ~n+1—1 e
(1) = (1) = ”Tz—’f +y %(@- )2

k+1
> ———2F -y ———27 >0
n k+1 "

To prove (i), it suffices to show that for any x € [0, 1],

1
< —.

(6)

For k =1,2,...n, we show that (6) holds in I}, = [ —, n] by grouping
the lines into 2~! sets of lines determined by the first ¥ — 1 binary
digits of their slopes. The triangles corresponding to each of these sets
contribute at most (2!7% —27") /n to the measure of the cross section at
any x € I),.. Since there are 281 such sets, (6) follows. More precisely,
let k€ {1,2,...,n}. For j =0,1,...,281 — 1 we define

ng{la:si(a):€i<#) fOI'Z:LQ,k—l}

Let I, € L; and with ¢; = ¢;(a), let r L 11%1512*7; (or, r = j/2k1).
Then

k-1 . .
Z(x+—> g2 +Z<x+ 1;1) &2,
1
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so for x € I,

1 — .
- n
1—k
<I.(x)+ (:B —) ex27"
1—k
<I.(x)+ <x + ) 2 F
n
— lr+27k (.l’)
Similarly,
n 1 .
lo(z) 2 () + Z (3j - Z £:27"
k+1 "
= 1—3\ _
zzr<x)+z(x+ >2z
kot n

= lryo-r_g-n(T).

Thus, for any j € 0,1,...,2¥1 — 1 and with r = j/2¥71  the set of
triangles {Ra-«(l) : | € L;} is bounded, for € I, from above by
the line [, o-«(z), and from below by I, o+ _o-n(z) —27"(1 — x). The
latter being the lower edge of Ry-n(l, 9-#_y-»). Hence

U Ro-n ()| < lsor(x) = [lor_gon(z) — 27(1 — )]

ZELJ' .

= ly-i(z) — [lg-r_g-n(x) —=27"(1 — 2)] .

But the lines ly-«(x) and ly—x_y-n(x) — 27"(1 — 2) are parallel, so

U{ Ron(l)] < lyn(” - Ly [zz_k_z_n (%) Coen <1 ok - 1)}
—0_ [ik;iw—?—" (1_/:1)]

k+1
21—k _9-n

T

Hence
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3. THE EXACT MINKOWSKI DIMENSION

Let F be a subset of R2. For a monotone increasing function f on
R, and 6 > 0 we define

N
M(F,0) < inf {N - f(r) : UD(xi,r) DFandr< (5} .
i=1
Let 9, (F) L sups M (F,d). By the exact Minkowski dimension for

the class of Kakeya sets, we mean a monotone increasing function h
such that:

e For any Kakeya set E, M, (F) > 0.
e There exists a Kakeya set £ with 9,(E) < oo.

Claim 3.1. For any n, there exists a G-set, G", such that
1
GTL 2—1"L <

Proof. Consider the set of triangles E, = |J;, Ro-~ (') that was con-
structed in the proof of theorem 1. Let I be the identity map on R
Then by (i),

(7 61(E,)] = || o1 <R2n<z?>>‘ <>

n

Let a < a(l?) € [0,1] and b < b(l*) € [—1,0]. We define the triangle
R? by its vertices as follows:
V(RN L {(1,a+6b—2-27"),(L,a+6b—3-27"),(2,2a+6b—2-27")}.
Since V(Ry- (1)) = {(0,0), (0,0 —27™), (1,a 4+ b)}, it is easy to verify
that R} is a translation of Ry-» (1), and that

R (27) € 61 Ry (1))

Hence, ‘UZ ]%?(2_”)’ < 36/n, and translating the triangles R? to the
left we get our G-set. OJ

Remarks:
eThe set G" constructed in the above claim is contained in [0, 1] x
[_67 6]
eWhen § = 27" we will also refer to G™ by G°.
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Proof of lemma 1.1. The proof is an adaptation of a standard limiting

argument (e.g. lemma 1.3 and corollary 1.4 in [6]). Let e, = 272", then
it suffices to prove that (5) holds for €,. Suppose that there exists a
sequence of G-sets, F},, such that

(i)
Fn (571) - Fn—l(£n—1)-
(i)

|FL(2e,)] <27
Let £ < M, Fn(en). Then by (i), £ is a G-set. Moreover,
E(e,) C (Fulen))(en) = Fu(2¢e,),

hence (ii) proves our lemma. Next, we inductively construct the se-
quence F,.

Start with, say, Fy = G/2. Given F, we define F,|; so that (i) and
(ii) will be satisfied: Since F,, is a G-set, it contains a unit line segment

Iy, for slopes m; = jo, where § is short for 0,41 4 £,/256 = 272" 78,
and j =0,1,...,6 7" —1. Let A% : R s R? be A%((2,1)) = (, L, () +
dy). Note that A% affinely maps [0, 1] x [—6,6] onto the parallelogram

d
SO = {(z,y) : = € [0,1] and |y — Ly, ()] < 66}. Let n stand for

J
d o _on
Nyt = 272" 711 and define

Fn+1 g UA;S(Gn)
J

Since A? maps segments with slope p to segments with slope p + m;;,
F,11 is a G-set. Since § = ¢,,/256, for each 7,

[A%GM] (en41) C (I, ) (126 + £n41) C Fulen),

and (i) follows.
As for (ii), note that with 6 € (0, 1] and m € [0, 1],

(21 — .7:2)2 + [m(xy — 22) + 5(h — yg)]2 < 6%p?,
implies
(1 — $2)2 + (1 — 3/2)2 < 5p.

Hence,

30m] () € Al E)).
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on
4

Fo(2en01) = | [A3(GM] (59) € UA5 [G"(n)].
J

and so as 2e,11 =

Since A? reduces areas by a factor of 9, by claim 3.1,
AS[G"()]| < C6———
45670 < Co——,
which implies that
1 C
|[Fus1(2041)] < ) C8
J

logn=1! - logn—1t

The proof is now completed observing that

1 1
~ 2"~ log .
25n+1 Tn+1

log

O

Proof of theorem 2. For any r > 0 and a covering of a Kakeya set F
by N, discs of radius r, we have N,r? > |E(r)|, so by (3),
1 1
N,h(r) = N,r*log — 2 |E(r)|log — > 1.
r r

Thus, M, (E,0) 2 1, and so M (E) > 0. On the other hand, let E be
the Kakeya set obtained from the construction in lemma 1.1. For any
d > 0, there exists a covering of E by Ns & |E(d)|/6? discs of radius 4.
With this covering and by lemma 1.1 we have

1 1
My (E,0) S N55210g < |Es|log - 5 S S 1
L

As for the exact Hausdorff dimension of the class of Kakeya sets in
R2, our results are not sharp. You can borrow the lower bound of
h > r?log(1/r) from the analysis of the Minkowski dimension, but the
upper bound we currently have is strictly larger:

Claim 3.2. Let E be a Kakeya set and for ¢ > 0, let

1 24-¢
he(r )—r log — (loglog ) .

Then there exists a C. > 0 such that for any covering of E by |J, D(x;, ;)
with r; < 5, Zz hE(T'i) > CE.
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Proof. The proof is a variation on lemma 2.15 in [1]. Let
J, < {j 27 <y < 2*2'“‘1},

and let v, < |Je|. Since for small r and ¢ > 1, h(cr) < 2h(r), we
can assume without loss of generality that r; = mi2_21c with m; €
{1,2,...,22"""}. Bach such disc, D(z,m - 272"), can be covered by
< m?2 discs of radius 272" and since

log 92! [log log(ZQk_I)}

> ~
~Y

log 22" [loglog(2?")] e

2+e
h(m - 272)
m2h(2-2")

)

N[ —

we can assume, without loss of generality, that r; = 272" for all J € Jy.
Keeping with the notation in [6], denote D(z;,r;) by D;, and let

EkiEﬂ<U D]) D]iD(ZL’],QTJ) Eki U[)]

J€Jk J€Jk

Let e € S'. Since E is a Kakeya set, there exists a unit length line
segment in the e-direction, l., contained in E. Suppose that |l. N E| >
% for some C' > 0. Then, as explained in [6], K, s (xgz,)(e) > =,
thus,

C C
HeESl D Ky ok (xg,)(€) > k1+5}‘ > HeESl |l N Ey| > k1+s}

)
*

. 2
where |F|, is the outer measure of F'. Note that |Ey| < vy <2_2k> , SO
(3) with p = 2 yields,

> |Ek’ IOg 22k

_gk C
l/kh(Q 2 ) > W e ’{6 c st K2,2k(XEk)(€) > k1+6}’.
k

Summing over k£ we find that,

C
Sz U{ees s wnni> )
j k

But for each e € S, >, |l.NEx| = 1 s0 if we let C < > kl—lﬁ)_l, then
by the pigeonhole principle the union is S', and therefore > i h(r;) Z

*

Y

1. U

I would like to express my gratitude to Tom Wolff for his invaluable
advice.
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