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Material covered
� Set notation, and number systems N ⊆ Z ⊆ Q ⊆ R ⊆ C, interval notation.
� Polynomial equations; solving quadratic equations over C.
� Plotting regions in the complex plane.
� Polar and Cartesian forms of a complex number, complex exponential.
� Modulus, argument, and principal argument of a complex number.

Outcomes
After completing this tutorial you should

� understand set notation and apply it in context of the number system;
� solve simple examples of polynomial equations over the complex numbers;
� construct proofs related to properties of the number system;
� be able to plot regions in the complex plane;
� understand the geometric interpretation of complex numbers;
� efficiently convert between polar and Cartesian forms;
� perform arithmetic in polar form.

Summary of essential material
Rational and irrational numbers: A real number r ∈ R is called rational if there are integers
p, q ∈ Z with q , 0 such that r = p/q. If it is not rational, it is called irrational. Interval notation if
a ≤ b:

[a, b] := {x ∈ R | a ≤ x ≤ b}, (a, b) := {x ∈ R | a < x < b}, (a,∞) := {x ∈ R | a < x}, etc. . .

Intersections and unions: If A, B are subsets of a larger set X we define

• the union of A and B: A ∪ B := {x ∈ X | x ∈ A or x ∈ B};
• the intersection of A and B: A ∩ B := {x ∈ X | x ∈ A and x ∈ B};
• the complement of A: Ac := {x ∈ X | x < A};
• the complement of B in A: A \ B := A ∩ Bc = {x ∈ A | x < B}.

Cartesian and Modulus–argument form (polar form) of complex numbers: Every complex
number z = x + iy represents a point on the plane with coordinates (x, y). With that identification
we obtain the complex plane or Argand diagram. We call x + iy the Cartesian form of z. We can
represent each point (x, y) in polar coordinates x = r cos θ and y = r sin θ where r is the distance from
the origin and θ is the angle from the positive x-axis measured anti-clockwise, usually in radians. The
modulus–argument form (or polar form) of z is

z = r(cos θ + i sin θ).

We call r = |z | =
√

x2 + y2 =
√

zz̄ themodulus and θ an argument of z, written arg z. The argument is
determined up to a multiple of 2π. The unique argument in the interval (−π, π] is called the principal
argument and denoted by Arg z.
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The complex exponential function: For any complex number z = x + iy, x, y ∈ R we let

ez := ex(cos y + i sin y)

We also sometimes write exp(z). Just as with the real exponential funciton the usual index laws apply,
that is, ez+w = ezew and e−z = 1/ez for all z,w ∈ C. It coincides with the real exponential function on
R and is 2π-periodic on iR, that is, ei(2π+θ) = eiθ for all θ ∈ R. Moreover, |eiθ | = 1 for all θ ∈ R.

De Moivre’s Theorem: Let n ∈ Z. If r > 0 and θ ∈ R then(
r(cos θ + i sin θ)

)n
= rn (cos(nθ) + i sin(nθ)

)
or

(
reiθ )n

= rneinθ .

The Fundamental Theorem of Algebra: The complex polynomial

f (z) = a0 + a1z + · · · + anzn with ak ∈ C and an , 0

factorises into precisely n linear factors (possiblywith repetition) over the complex numbers. Moreover,
if a0, . . . , an ∈ R, then for every root α ∈ C of p(z), the complex conjugate α is also a root.

Questions to complete during the tutorial
Questions marked with * are more difficult questions.

1. Express the following subsets of R as a union of intervals.
(a) {x ∈ R | −1 ≤ x < 5}

Solution: [−1, 5)

(b) (−∞, 3] \ (−6, 10].
Solution: (−∞, 6] (Draw a picture to see this).

(c) {x ∈ R | x2 + x > 2}

Solution: x2 + x − 2 = (x + 2)(x − 1) is a concave up parabola cutting the x-axis at
x = −2 and x = 1. Thus {x ∈ R | x2 + x ≥ 2} = (−∞,−2) ∪ (1,∞).

2. Sets are written between curly brackets in the form
{
typical member | defining properties

}
.

Use this notation to write down the following sets.
(a) The set of odd integers.

Solution: Every odd number is of the form 2k + 1, where k is an integer. Hence the set
is

{2k + 1 | k ∈ Z}.

(b) The complex numbers in the upper half line, excluding the real axis.
Solution: These are the numbers with positive imaginary part:

{x + iy ∈ C | x, y ∈ R and y > 0} = {z ∈ C | Im z > 0}.

(c) The set of complex numbers in the sector with arguments strictly between π/6 and 3π/2.
Solution: We can use the modulus-argument form to write this set:

{reit | r > 0, π/6 < θ < π/2} = {z ∈ C | π/6 < arg(z) < π/2}
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*(d) The set of points on the complex plane on the ellipse with focal points 0 and 1 + i and
major semi-axis of length 2.
Solution: Recall that the sum of the lenghts of the focal chords in an ellipse is constant.
The sum is the length of the major axis, that is 4 in our case. Hence the set is

{z ∈ C | |z | + |z − 1 − i | = 4}.

3. Prove that is log2 3 irrational. (Hint: Assume that log2 3 = p/q is rational use the definition of
log2 and derive a contradiction.)

Solution: If log2 3 is rational then log2 3 = p
q for some integers p and q. Then

log2 3 =
p
q
=⇒ 3 = 2p/q =⇒ 3q = 2p.

This is impossible, since the left hand side is odd and the right hand side is even. alternatively,
the left and right hand side do not share any prime number factors.

4. What are the complex numbers obtained from z by the following geometric transformations?

(a) 180◦ rotation about 0.
Solution: 180◦ rotation about 0 takes the point with co-ordinates (x, y) to the point with
co-ordinates (−x,−y). So it takes z to −z.

(b) Reflection at the imaginary axis.
Solution: Reflection at the imaginary axis takes z = x + iy to −z = −x + iy (the real
part changes sign, and the imaginary part stays the same).

(c) 45◦ clockwise rotation about 0.
Solution: 45◦ clockwise rotation about 0 sends z = reiθ to reiθ−i π4 . By the rule
for multiplying complex numbers in polar form, this is the same as multiplying by
e−i π4 = 1√

2
− i 1√

2
. So the answer is ze−i π4 .

*(d) Reflection at the line y = x.
Solution: Reflection in the line y = x takes the point with co-ordinates (x, y) to the point
with co-ordinates (y, x). So it takes z = x + iy to iz = y + ix. Another way to see this is
to carry out this reflection by a sequence of other rotations and reflections. For instance,
the line we want to reflect in is such that if we rotate it 45◦ clockwise, it becomes the
real axis. So we can carry out the reflection in three steps: first a 45◦ clockwise rotation
taking z to zei− π

4 ; then a reflection in the real axis, taking this to ze−i π4 = zei π4 ; then a
45◦ anticlockwise rotation, taking this to zei π4+

π
4 = iz.

5. Write the following complex numbers in Cartesian form:
(a) ei π4 ei 2π5 ei π3 ei π2 ei 11π60

Solution: When multiplying numbers in polar form we need to multiply the modulii
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(all one in this case) and add the arguments. Thus the number is

exp

(
i
π

4
+ i

2π

5
+ i

π

3
+ i

π

2
+ i

11π

60

)
= exp

(
i
15 + 24 + 20 + 30 + 11

60
π

)
= exp

(
i
100

60
π

)
= exp

(
i
5

3
π

)
=

1

2
−

√
3

2
i.

(b) (1 +
√

3 i)107

Solution: We have 1 +
√

3 i = 2eiπ/3. Thus by de Moivre’s Theorem
(
1 + i
√

3
)107
=

2107e107iπ/3. Since 107/3 = 35 + 2
3 we have

(1 +
√

3 i)107 = 2107 exp

(
35iπ +

2iπ
3

)
= 2106 − 2107i

√
3.

(c) (1 − i)−76

Solution: (1 − i)−76 =
(√

2e−iπ/4)−76 = 2−38e+76iπ/4 = 2−38e19iπ = −2−38.

6. Given z1, z2 ∈ C, discuss the geometric significance of the following operations.
(a) z1 + z2 = z1 + z2

Solution: The complex conjugates are obtained by reflecting the corresponding point
on the complex plane on the real axis. Hence

R

iR

0

z1

z1 + z2
z2

0 z̄1

z̄1 + z̄2 = z1 + z2

z̄2

To verify computationally, let z1 = x1 + iy1 and z2 = x2 + iy2, where x1, x2, y1, y2 are
real numbers. Then,

z1 + z2 = (x1 + x2) + i(y1 + y2)

= (x1 + x2) − i(y1 + y2)

= (x1 − iy1) + (x2 − iy2)
= z1 + z2.
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(b) z1z2 = z1 z2

Solution: We can see this geometrically since multiplication of two complex num-
bers means adding their arguments and multiplying the modulus. Taking the complex
conjugates, the modulus stays the same but the arguments are negative. Here is an
illustration:

R

iR

0

z1

|z
1 z

2 |

z1z2

0

z̄1|z 1
z 2
|

z̄1 z̄2 = z1z2

arg z1

− arg z1

arg z2

− arg z2

Let z1 = x1 + iy1 and z2 = x2 + iy2, where x1, x2, y1, y2 are real numbers. Then

z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1)
= (x1x2 − y1y2) − i(x1y2 + x2y1)
= (x1 − iy1)(x2 − iy2)
= z1 z2.

(c) |z1 + z2 | ≤ |z1 | + |z2 |

Solution: There are quite a few approaches to this important result.
(1) Here is a geometric proof, which gives the real ‘intuition’ behind the triangle inequal-
ity. Let T be the triangle in complex plane with vertices 0, z1, z1 + z2. Then the lengths
of the three sides are |z1 − 0| = |z1 |, |(z1 + z2) − z1 | = |z2 |, and |(z1 + z2) − 0| = |z1 + z2 |.
Geometrically we know that the length of one side of a triangle is lest than or equal to
the sum of the other two side lengths (this is because the shortest distance between two
points is via a straight line), and so

|z1 + z2 | ≤ |z1 | + |z2 |.

The picture accompanying this proof is as follows:

R

iR

0

z1

|z1|

|z2 |

z1 + z2

|z 1
+

z 2
|

z2
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(2) Here is a brute-force algebraic proof. Let z1 = a+ ib and z2 = c+ id, where a, b, c, d
are real numbers. The inequality we need to prove is√

(a + c)2 + (b + d)2 ≤
√

a2 + b2 +
√

c2 + d2.

Because both sides are nonnegative, it is equivalent to prove that the square of the
left-hand side is less than or equal to the square of the right-hand side:

(a + c)2 + (b + d)2 ≤ a2 + b2 + c2 + d2 + 2
√

a2 + b2
√

c2 + d2.

After tidying up, this becomes:

ac + bd ≤
√

a2 + b2
√

c2 + d2.

Again, since the right-hand side is nonnegative, it suffices to prove that the square of the
left-hand side less than or equal to the square of the right-hand side:

a2c2 + b2d2 + 2abcd ≤ (a2 + b2)(c2 + d2).

After tidying up, this becomes:

0 ≤ a2d2 + b2c2 − 2abcd,

which is true because the right-hand side is (ad − bc)2. Hence the result.
(3) Here is a more elegant algebraic proof. First, recall the following facts: If z is a
complex number, then |z |2 = zz, and z + z = 2 Re(z), and Re(z) ≤ |z |. To see this last
statement, write z = x + iy, and notice that Re(z) = x ≤ |x | =

√
x2 ≤

√
x2 + y2 = |z |.

Then,

|z1 + z2 |2 = (z1 + z2)(z1 + z2)
= (z1 + z2)(z1 + z2)
= z1z1 + z2z2 + z1z2 + z1z2

= |z1 |2 + |z2 |2 + 2 Re(z1z2) (since z1z2 = z1z2)
≤ |z1 |2 + |z2 |2 + 2|z1z2 | (using Re(z) ≤ |z |)
= |z1 |2 + |z2 |2 + 2|z1 | |z2 | (using |zw | = |z | |w | and |z | = |z |)
= (|z1 | + |z2 |)2.

Therefore |z1 + z2 | ≤ |z1 | + |z2 |.

7. For t ∈ R we defined eit := cos t + i sin t arguing it behaves like the exponential function in the
sense that it satisfies the familiar index laws such as eiteis = ei(t+s). This is true for every base,
not just base e. The question motivates the fact that the base should be the Euler number e: If
a ∈ R, then

d
dt

eat = aet .

This is only true for base e, not for any other base. Assuming you differentiate a complex
valued function by differentiating its real and imaginary part, show that

d
dt

eit = ieit,
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similar to the real exponential function.

Solution: Differentiating real and imaginary parts separately we have

d
dt

eit =
d
dt
(cos t + i sin t) = − sin t + i cos t = i(cos t + i sin t) = ieit

as required.

8. Solve the following equations for z ∈ C:
(a) z2 + z + 1 = 0

Solution: The quadratic formula is perfectly valid when solving quadratic equations in
C (after all, it just comes from completing the square). Thus z = −1±

√
−3

2 . The expression
±
√
−3 means either of the two complex square roots of −3, namely ±i

√
3. The solutions

are therefore z = −1±i
√
3

2 .

(b) z2 + 2z + 1 = 0

Solution: Note that this is not a quadratic (because of the z), and so we cannot use the
quadratic formula. Instead, we set z = a + bi for a, b real. Then

z2 + 2z + 1 = (a2 − b2) + 2abi + 2(a − bi) + 1

= (a2 − b2 + 2a + 1) + (2ab − 2b)i.

This is zero if and only if both the real and imaginary parts are zero, that is, a2 − b2 +
2a + 1 = 0 and 2ab− 2b = 0. The second equation can also be written as 2(a − 1)b = 0,
which gives two cases: either a = 1 or b = 0. If a = 1, the first equation becomes
1− b2 + 2+ 1 = 0, which has solutions b = ±2. If b = 0, then the first equation becomes
a2 + 2a + 1 = 0, which has solution a = −1. So the solutions to the original equation
are z = −1 and z = 1 ± 2i.

9. Sketch the following sets in the complex plane. Recall that |z − α | is the distance between z
and α in the Argand diagram.
(a) {z ∈ C | |z + i | = 5}

Solution: The set {z ∈ C | |z + i | = 5} is a circle of radius 5, centred at −i, illustrated
below:

−i R

iR

5

(b) {z ∈ C | Im z ≥ −1}

Solution: The set {z ∈ C | Im z ≥ −1} is shaded below (it includes the horizontal line):
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−i

R

iR

Im z = −1

(c) {z ∈ C | |z − i | ≤ |z − 1|}

Solution: The set {z ∈ C | |z − i | ≤ |z − 1|} is shaded below:

Im z = Re z

R

iR

(d)
{
z ∈ C |

�� z−1
z−2

�� ≤ 3
}

Solution: This set is the region outside of the circle of radius 3
8 centred at the point

z0 = 17
8 + 0i (including the circle itself). To see this, rewrite the condition as |z − 1|2 ≤

9|z − 2|2, substitute z = x + iy and simplify. Along the way you will need to complete
the square (in x). The working is as follows: The condition |z − 1|2 ≤ 9|z − 2|2 reads

(x − 1)2 + y2 ≤ 9
(
(x − 2)2 + y2

)
,

and hence after some algebra,

x2 − (17/4)x + y2 ≥ −35/8.

Using a completion of squares we have x2−(17/4)x = x2−(17/4)x+(17/8)2−(17/8)2 =
(x − 17/8)2 − (17/8)2 and thus

(x − 17/8)2 + y2 ≥ (17/8)2 − 35/8 = 9/64 = (3/8)2.
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17/8

3/8 R

iR

Extra questions for further practice
10. You are told that α = 2 + i is a root of the polynomial

p(z) = z6 − 4z5 + 8z4 − 12z3 + 5z2 + 40z − 50.

You will need to use polynomial long division and the fact that ᾱ = 2− i is a root as well.
(a) Factorise the polynomial p(z) into linear factors over C.

Solution: Since the polynomial has real coefficients we know that 2 + i = 2 − i is also
a root. Thus

(z − (2 + i))(z − (2 − i)) = z2 − 4z + 5

is a factor of z6−4z5+8z4−12z3+5z2+40z−50. We can use polynomial long division
to factorise:

z4 + 3z2 − 10

z2 − 4z + 5
)

z6 − 4z5 + 8z4 − 12z3 + 5z2 + 40z − 50
− z6 + 4z5 − 5z4

3z4 − 12z3 + 5z2

− 3z4 + 12z3 − 15z2

− 10z2 + 40z − 50
10z2 − 40z + 50

0

to see that z6 − 4z5 + 8z4 − 12z3 + 5z2 + 40z− 50 = (z2 − 4z+ 5)(z4 + 3z2 − 10). Another
way to do this step is to argue as follows: Consider

z6 − 4z5 + 8z4 − 12z3 + 5z2 + 40z − 50 = (z2 − 4z + 5)(z4 + az3 + bz2 + cz + d),

where we are trying to find a, b, c, d. By considering the constant terms on both sides
we get −50 = 5d, and hence d = −10. Then by looking at the coefficients of z on both
sides we get 40 = −4d + 5c, and hence c = 0. Now looking at coefficients of z2 we get
5 = d − 4c + 5b, and hence b = (5 + 10)/5 = 3. Finally, looking at the coefficient of z3

we get −12 = c − 4b + 5a, and hence a = 0.
In any case, we have arrived at

z6 − 4z5 + 8z4 − 12z3 + 5z2 + 40z − 50 = (z2 − 4z + 5)(z4 + 3z2 − 10).

We have z4 + 3z2 − 10 = (z2 − 2)(z2 + 5), and hence the complete factorisation of p(z) is

p(z) = (z − (2 + i))(z − (2 − i))(z −
√

2)(z +
√

2)(z − i
√

5)(z + i
√

5).
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(b) What can you say about factorisations of p(z) over R and Q?
Solution: First a clarification. When we say “the factorisation over R” we mean the
decomposition of the polynomial into factors of the lowest possible degrees subject to
the condition that all of the coefficients of each factor are in R. The last few lines of the
solution to the previous part tells us that this factorisation is:

p(z) = (z2 − 4z + 5)(z −
√

2)(z +
√

2)(z2 + 5).

Note that neither z2 − 4z + 5 nor z2 + 5 can be factorised further over R, since the roots
are complex numbers.
The factorisation in the previous part is not the factorisation over Q, because

√
2 is an

irrational number. The factorisation over Q is

p(z) = (z2 − 4z + 5)(z2 − 2)(z2 + 5).

None of these quadratics factorise further over Q, since they either have complex roots,
or irrational roots.

11. Solve the following equations.
(a) z4 − 16 = 0

Solution: z4 − 16 = 0 ⇐⇒ z2 = ±4 ⇐⇒ z = ±2,±2i.
(b) z2 + 3z + 2 = 0

Solution: We have z2 + 3z + 2 = (z + 2)(z + 1), and so z = −2 or z = −1.
(c) z2 + z + 1 + i = 0.

Solution: Using the quadratic formula we find

z =
−1 ±

√
1 − 4(1 + i)

2
=
−1 ±

√
−3 − 4i
2

.

The expression ±
√
−3 − 4i represents the two numbers whose square is −3−4i. In other

words, we need to find the numbers a + ib such that (a + ib)2 = −3 − 4i. That is,

(a2 − b2) + 2abi = −3 − 4i.

This yields the two equations:

a2 − b2 = −1

2ab = −4.

From the second we have b = −2/a and substituting this into the first yields

a2 −
4

a2
= −3.

Rearranging gives a4 + 3a2 − 4 = 0, which is a quadratic in a2. Thus by the quadratic
formula

a2 =
−3 ±

√
32 − 4(−4)

2
=
−3 ± 5

2
.

Since a is real, a2 must be non-negative and hence a2 = 1. Thus a = ±1, b = ∓2 and
there are two solutions, 1 − 2i and −1 + 2i.
So substituting these values in for ±

√
−3 − 4i we see that the required solutions are

z = −i and z = −1 + i.
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(d) z2 + (2 + 3i)z − 1 + 3i = 0.
Solution: Using the quadratic formula,

z = −
2 + 3i

2
±

√
(2 + 3i)2 − 4(−1 + 3i)

2
= −1 −

3

2
i ±

1

2

√
−1,

and so z = −1 − i and z = −1 − 2i are the solutions.

12. Solve z5 − 2z4 + 2z3 − z2 + 2z − 2 = 0, given that z = 1 + i is a solution.

Solution: The polynomial has real coefficients, therefore since z = 1 + i is a root we know
that 1 + i = 1 − i is also a root. Thus (z − (1 + i))(z + (1 + i)) = z2 − 2z + 2 is a factor of
z5 − 2z4 + 2z3 − z2 + 2z − 2. By polynomial long division,

z3 − 1

z2 − 2z + 2
)

z5 − 2z4 + 2z3 − z2 + 2z − 2
− z5 + 2z4 − 2z3

− z2 + 2z − 2
z2 − 2z + 2

0

and so
z5 − 2z4 + 2z3 − z2 + 2z − 2 = (z2 − 2z + 2)(z3 − 1).

Therefore the roots are z = 1 + i, 1 − i, along with the solutions to z3 = 1. The latter are
z = 1,−1

2 +
√
3
2 i,−1

2 −
√
3
2 i.

13. For all complex numbers z, prove that
(a) |z |2 = zz.

Solution: Let z = x + iy. By definition we have |z | =
√

x2 + y2, and so

|z |2 = x2 + y2 = (x + iy)(x − iy) = zz.

(b) z = z if and only if z is real.
Solution: Let z = x + iy. Then z = z if and only if x − iy = x + iy, which occurs if and
only if y = 0, which occurs if and only if z is real.

(c) Re(z) ≤ |z | and Im(z) ≤ |z |.
Solution: Let z = x + iy, so that Re(z) = x and Im(z) = y. Then

Re(z) = x ≤ |x | =
√

x2 ≤
√

x2 + y2 = |z |.

Similarly, Im(z) = y ≤
√
y2 ≤ |z |.

(d) 1/z = 1/z for z , 0.
Solution: We could either argue directly, or use the fact that z1z2 = z1 z2 (proved above)
to note that

z × 1/z = z × 1/z = 1 = 1,

and thus 1/z = 1/z.

14. Sketch the following sets in the complex plane.
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(a) {z ∈ C | Re z < −1}

Solution: The set {z ∈ C | Re z < −1} is shaded below (it does not include the vertical
line):

−1 R

iR

(b) {z ∈ C | 12 ≤ |z + i | < 1}

Solution: The set {z ∈ C | 12 ≤ |z + i | < 1} is an annulus, as illustrated below:

−i

R

iR

(c) { z ∈ C | |z + i | > 2 }

Solution: The set {z ∈ C | |z + i | > 2} is the ‘outside’ of the circle of radius 2 centred
at −i, not including the circle itself.

−i

i

R

iR

2

(d) {z ∈ C | Im(z2) < Re z}

Solution: Let z = x + iy. Then z2 = (x2 − y2) + 2xyi, so the condition in the question
becomes 2xy < x or equivalently x(2y − 1) < 0. This is satisfied exactly when

x < 0, y >
1

2
or x > 0, y <

1

2
.
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So the set consists of the following two regions (dashed boundary lines not included):

R

iR

i/2

(e) { z ∈ C | Im(2z − z(1 + i)) = 0 and Re(2z − z(1 + i)) < 4 }

Solution: Writing z = x + iy we see that 2z − z(1 + i) = x − y + i(3y − x). This has
imaginary part zero if and only if 3y = x. Thus the required complex numbers z are
those numbers z = 3y + iy = y(3 + i) where 3y − y = 2y < 4, that is, y < 2. This is the
open half-line shown in the diagram.

R

iR

6 + 2i

0

15. (a) Let r > 2. The set {z ∈ C | |z + 1| + |z − 1| = r} is a curve in the plane. Describe it and
then find its equation in terms of x and y, where x, y are real and z = x + iy.

(b) Given −2 < r < 2, describe the curve {z ∈ C | |z+1| − |z−1| = r} and find its equation.

Solution: The condition which defines the set in part (a) can be interpreted geometrically as
“the distance from z to −1 plus the distance from z to 1 is a constant which is greater than 2”.
Therefore the set in this part is an ellipse. The (real) equation of the ellipse is x2

( r2 )
2 +

y2

( r2 )
2−1
= 1.

The interpretation of the set in part (b) is done in a similar fashion. If r = 0 then we have
|z + 1| = |z − 1|, which is the imaginary axis. If r , 0 we have a hyperbola with equation

x2
( r2 )

2 −
y2

1−( r2 )
2 = 1.

These results can be obtained algebraically by setting z = x + iy and transforming the given
conditions into Cartesian equations in x and y. This process will be a test of your skill in
algebraic manipulation, let us just go through the details for part (a). Writing z = x + iy the
condition |z + 1| + |z − 1| = r gives√

(x + 1)2 + y2 = r −
√
(x − 1)2 + y2.

13



Squaring both sides yields

x2 + 2x + 1 + y2 = r2 − 2r
√
(x − 1)2 + y2 + x2 − 2x + 1 + y2.

Rearranging gives
2r

√
(x − 1)2 + y2 = r2 − 4x,

and squaring this tells us that

4r2
(
x2 − 2x + 1 + y2

)
= r4 − 8xr2 + 16x2.

After tidying up we get
4(r2 − 4)x2 + 4r2y2 = r2(r2 − 4).

We are told that r > 2, and so r2 − 4 > 0. Therefore we arrive at

x2

a2
+

y2

b2
= 1, where a =

r
2

and b =

√
r2

4
− 1.

Revision questions on complex numbers
The questions below are particularly relevant for those students who have not seen complex numbers
at high school level.

16. Express the following complex numbers in Cartesian form:
(a) (1 + i)(1 − i)

Solution: (1 + i)(1 − i) = (1 + 1) + (−1 + 1)i = 2

(b) (2 + 3i) − (4 − 5i)

Solution: (2 + 3i) − (4 − 5i) = −2 + 8i

(c)
1 + 2i
3 − 4i

Solution:
1 + 2i
3 − 4i

=
(1 + 2i)(3 + 4i)
(3 − 4i)(3 + 4i)

=
−5

25
+

10

25
i

(d) (1 + i)2

Solution: (1 + i)2 = 1 + 2i + i2 = 2i.

(e) (3 − 2i)
(5

2
− 7i

)
Solution: (3 − 2i)

(5

2
− 7i

)
=

(15

2
− 14

)
+ (−5 − 21)i = −

13

2
− 26i

(f)
3i − 5

i + 7

Solution:
3i − 5

i + 7
=
−5 + 3i

7 + i
×

7 − i
7 − i

= −
16

25
+

13

25
i

(g) i−1

Solution: i−1 =
1

i
=

1

i
×

i
i
= −i.

(h) i9

Solution: i9 = i(i2)4 = i(−1)4 = i.

14



(i) i123 − 4i8 − 4i.
Solution: i123 − 4i8 − 4i = i(i2)61 − 4(i2)4 − 4i = −i − 4 − 4i = −4 − 5i.

17. Find the principal argument of the following complex numbers.
(a) −1 + i

Solution: The principal argument is 3π/4.

(b) −3i

Solution: The principal argument is −π/2.

(c) −5ei7π/2

Solution: We have −5ei7π/2 = −5(−i) = 5i, and so the principal argument is π/2.

(d) 6 − 5i.
Solution: − tan−1(5/6) ≈ −0.6947 radians.

18. Write the following complex numbers in polar form.
(a) 1 + i

Solution:
√

2ei π4

(b) 1 +
√

3i

Solution: 2ei π3

(c) 3
√

3 + 3i

Solution: 6ei π6

(d) 1 + i

Solution: 1 + i =
√

2eiπ/4.

(e) −1 +
√

3i

Solution: −1 +
√

3i = 2ei2π/3

(f) −5

Solution: −5 = 5eiπ

(g) i

Solution: i = eiπ/2

(h) 5 − 7i

Solution: |5 − 7i | =
√

52 + 72 =
√

74, and θ = − tan(7/5). Thus 5 − 7i =√
74 cis (− tan(7/5)) .

19. Find the following, expressing your final answers first in polar form, and then in Cartesian form.

(a) (1 + i)11

Solution: Using part (a), 32
√

2ei 11π4 = 32(−1 + i) = −32 + 32i

(b) (1 +
√

3i)7

Solution: Using part (a), 128ei 7π3 = 64 + 64i
√

3

15



(c) (3
√

3 + 3i)3

Solution: Using part (a), 216e
π
2 = 216i

(d)
1 + i

1 +
√

3i

Solution: Using part (a), the polar form is
1
√

2
e−i π

12 . To find the Cartesian form it is

easiest to make a direct calculation (unless you remember exact formulae for cos(π/12)
and sin(π/12)). We have

1 + i

1 +
√

3i
=
(1 + i)(1 +

√
3i)

(1 +
√

3i)(1 −
√

3i)
=

1 −
√

3

4
+

1 +
√

3

4
i

By the way, comparing with
1
√

2
e−iπ/12 =

1
√

2
(cos(π/12) − i sin(π/12)) we see that

cos(π/12) =
√

2(
√

3 + 1)/4 and sin(π/12) =
√

2(
√

3 − 1)/4.

(e)
3
√

3 + 3i
1 + i

Solution: Using part (a), the polar form is
6
√

2
ei− π

12 , and direct calculation gives the

Cartesian form:

3
√

3 + 3i
1 + i

=
3(
√

3 + i)(1 − i)
(1 + i)(1 − i)

=
3(
√

3 + 1)

2
−

3(
√

3 − 1)

2
i.

(f)
1 +
√

3i

3
√

3 + 3i

Solution: Using part (a),
1

3
e

i
π

6 =
1

2
√

3
+

1

6
i

Challenge questions (optional)
*20. Use the binomial expansion (a+b)5 = a5+5a4b+10a3b2+10a2b3+5ab4+b5 and deMoivre’s

Theorem to express cos 5θ and sin 5θ in terms of cos θ and sin θ, respectively. Hence show that

cos(π/5) =
1 +
√

5

4
and sin(π/5) =

√
2(5 −

√
5)

4
.

Solution: Expanding (cos θ + i sin θ)5 yields

(cos θ + i sin θ)5 = (cos θ)5 + 5(cos θ)4i sin θ + 10(cos θ)3(i sin θ)2

+ 10(cos θ)2(i sin θ)3 + 5 cos θ(i sin θ)4 + (i sin θ)5

= (cos θ)5 + 5(cos θ)4 sin θ i − 10(cos θ)3(sin θ)2

− 10(cos θ)2(sin θ)3 i + 5 cos θ(sin θ)4 + (sin θ)5 i.

On the other hand, (cos θ + i sin θ)5 = cos 5θ + i sin 5θ.
Equating real and imaginary parts of each expression yields

cos 5θ = cos5 θ − 10 cos3 θ sin2 θ + 5 cos θ sin4 θ

= 16 cos5 θ − 20 cos3 θ + 5 cos θ

16



and

sin 5θ = 5 cos4 θ sin θ − 10 cos2 θ sin3 θ + sin5 θ

= 16 sin5 θ − 20 sin3 θ + 5 sin θ.

Plugging θ = π/5 into the formula for sin 5θ we arrive at

0 = 16 sin5(π/5) − 20 sin3(π/5) + 5 sin(π/5)

= sin(π/5)
(
16 sin4(π/5) − 20 sin2(π/5) + 5

)
.

Since sin(π/5) , 0 we may divide by it to obtain

16 sin4(π/5) − 20 sin2(π/5) + 5 = 0.

This is a quadratic equation in sin2(π/5), and the quadratic formula gives

sin2(π/5) =
5 ±
√

5

8
.

Should we take the + or − sign? Note that sin2(π/5) ≤ sin2(π/4) = 0.5, and since (5+
√

5)/8 ≥
(5 + 2)/8 = 7/8 > 0.5 we conclude that the − sign is the right choice. Therefore

sin(π/5) = ±

√
5 −
√

5

2
√

2
= ±

1

4

√
2(5 −

√
5).

Again we must choose the sign correctly, however clearly sin(π/5) > 0, and thus

sin(π/5) =
1

4

√
2(5 −

√
5).

Using cos(π/5) =
√

1 − sin2(π/5) gives

cos(π/5) =

√
6 + 2

√
5

4
.

This last formula actually simplifies a little:√
6 + 2

√
5 =

√
1 + 2

√
5 + (
√

5)2 =

√
(1 +
√

5)2 = 1 +
√

5,

and so we get the neater formula

cos(π/5) =
1 +
√

5

4
.

As a concluding remark for interest only, note that our formulae for cos(π/5) and sin(π/5)
are built up from integers using only the operations of addition, subtraction, multiplication,
division, and square roots. It is a remarkable fact that if p > 2 is a prime number, then there
are formulae like those above for cos(π/p) and sin(π/p) if and only if p = 22

k
+ 1 for some

integer k. You can learn about this in the third year course MATH3962: Rings, fields, and
Galois theory. Prime numbers of the form p = 22

k
+ 1 are called Fermat primes, and the only

known examples are given by k = 0, 1, 2, 3, 4 (nobody knows if there are any more examples!).
The case k = 1 gives p = 5, and if k = 2 then p = 17. So there must be formulae like those
above for cos(π/17) and sin(π/17). However these formulae aren’t so nice – the exact formula
for cos(2π/17) is given by

1

16

[
− 1 +

√
17 +

√
34 − 2

√
17 +

√
68 + 12

√
17 − 16

√
34 + 2

√
17 − 2(1 −

√
17)

√
34 − 2

√
17

]
,

and the formulae for cos(π/17) and sin(π/17) follow from double angle formulae.
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*21. Prove the following property of the real numbers: Given any two numbers a < b there is a
rational number r and an irrational number s such that a < r < b and a < s < b. You may use
that
√

2 is irrational.

Solution: If a < b then b−a > 0, and so we can choose n ∈ N large enough so that n(b−a) > 1.
Thus there is an integer k with na < k < nb (because nb and na differ by more than 1). Taking
r = k

n we have a < r < b, and so there is a rational number between the irrational numbers a
and b.
We now show that there is an irrational number between a and b. Since a < b also a−

√
2 < b−√

2. Bywhat we have just shown there exists a rational number r1 such that a−
√

2 < r1 < b−
√

2.
Setting s := r1 +

√
2 we have a < s < b. As r1 is rational and

√
2 is irrational it follows that s

is irrational.
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