University of Sydney
School of Mathematics and Statistics
Applied Mathematics 4th Year Honours Students, 2000
University of Sydney
Wednesday, October 25th, 2-4pm, Carslaw 173, moving to 275 (to be
confirmed) at 3pm.
Timothy Schaerf: Nonlinear Evolution of Three Contour Rankine Vortices
on the f-plane (Big Whirlpools in the Ocean)
Vast and gentle oceanic vortices are often observed travelling around
the North Atlantic ocean. These vortices have cores of warm salty
Mediterranean water and are approximately 100km in diameter. They are
commonly referred to as Mediterranean water eddies, or meddies.
One of the simplest models relevant to the study of oceanic vortices,
such as Mediterranean water eddies, is the Three Contour Rankine
Vortex. When perturbed in azimuthal modes, three contour Rankine
vortices exhibit a wide range of interesting behaviour. The
development of satellite vortices, merger of like signed vortices and
the exchange of dipole partners may all be observed.
During the course of my project work I ran many simulations of the
evolution of three contour Rankine vortices on the f-plane. The fluid
flow was modelled using the commonly employed quasigeostrophic
approximation and simulated using the Contour-Advective
Semi-Lagrangian algorithm.
In this seminar I will present the results of some of my numerical
simulations, as well as the results of a simple analysis of the
development of individual azimuthal modes.
Lei Zhang: Gravitational collapse and Einstein's field equations.
Gravitational collapse is the very last stage of stellar evolution. At
this stage, a star will collapse due to its own gravitational
force. The end point of collapse can be a white dwarf, a neutron star
or a black hole. It is the gravity of the star's mass that drives
stellar evolution and its rate from beginning to end. Spacetime
is curved under strong gravitational field. This situation is
described by Einstein's General Relativity Theory.
K. Schwarzschild was the first to discover the exact solution of
Einstein's field equation. Here the Schwarzschild exterior solution
and interior solution are derived, and they are continous across the
Schwarzschild radius.
The three classical tests, perihelion
shift, bending of light and gravitational redshift confirm Einstein's
General Relativity theory and are the foundation of modern
astrophysics. The physical significance of these classical tests will
be discussed.
Feraz Azhar:
Ashtekar's variables in canonical gravity
In 1986 Abhay
Ashtekar introduced new variables on the phase space of general
relativity. This led to a considerable simplification of the
constraints of general relativity and has since had important
ramifications for the canonical approach to quantum gravity.
In
this talk Ashtekar's approach to canonical gravity will be presented.
A quick tour through the Hamiltonian formulation of general relativity
will be followed by a discussion of an extension of classical general
relativity known as the Einstein-Cartan theory. This will hopefully
provide us with enough background to appreciate Ashtekar's work. The
significance of the new variables in the context of quantum gravity
will also be touched upon.
Stephanie Goulter: Modern Portfolio Theory
In the seminar I will present some basic concepts behind financial
mathematics which involve, in the instance of the essay, elements of
forecasting and risk-management. I will then extend the discussion to
include select components of each chapter, using graphs to support the
arguments. In summary, the seminar will be a brief introduction to
Modern Portfolio Theory presented in chronological order.