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Harish-Chandra isomorphism

We will regard the basis elements Ej; of gl, as generators of the

universal enveloping algebra U(gl,,).

We will think of U(gl,) as the associative algebra with these

generators subject to the defining relations
E;Ey — EyE; = 5kJ~E,-1 — 0, Exj, i,j,k,l e {l,...,n}.
The center Z(gl,,) of U(gl,) is defined by
Z(gl,) ={z € U(gl,) | zu=uz forall uc U(gl,)}.

Any element of the center is called a Casimir element.
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Given an n-tuple of complex numbers A = (A;,..., \,), the
corresponding irreducible highest weight representation L()\) of

gl, is generated by a nonzero vector £ € L(\) such that

E; =0 for 1<i<j<n, and

Eiifz)\if for 1<i<n.

Any element z € Z(gl,,) acts in L(\) by multiplying each vector
by a scalar x(z). When regarded as a function of the highest
weight, x(z) is @ symmetric polynomial in the variables

bi,....0,,where {; = \;+n—1i.
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The Harish-Chandra isomorphism is the map
X : Z(gl,) — C[ly,...,6,)%",

where C[(y,...,£,]®" denotes the algebra of symmetric

polynomials in ¢4, ..., 4,.

[A. Okounkov and G. Olshanski, 1996]:
The quantum immanants S, form a basis of Z(gl,) as . runs

over Young diagrams with at most n rows. Moreover,
X Sp s,

the s7, are the shifted Schur polynomials.
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The Capelli determinant [1890] is defined by

_u+n—1+E11

E
C(u) = cdet 2

Enl

This is a polynomial in u,

Clu)=u"+Cru" ' 4.

with

X:Cu)— (u+Lr)...(u+4y).

Ei

u+n—2+E»

+ Gy

The coefficients Cy, ..., C, are free generators of Z(gl,,).
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Gelfand invariants

Combine the generators Ej; into the matrix

Eyn ... Ey,

Eyq ... Em

The traces tr E™ are Casimir elements known as

the Gelfand invariants [1950].

The Harish-Chandra images x(tr E™) were first calculated by

[A. Perelomov and V. Popov, 1966]:

1) (b — b+ 1)
Em .
x(ir Zek el—ek A=t
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A short proof is based on the formula

o0
(=)™ E™  Cu+1)
1 =
T

generalizing both the Newton formula and Liouville formula.

Under the Harish-Chandra isomorphism,

Clu+1)  (ut+b+1)...(u+l,+1)
XTCw) T bt by
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Drinfeld—Jimbo quantum group U,(gl,)

The algebra U,(gl,) is generated by ey, ..., e,—1, fi, ...

and invertible elements 7y, .. ., f,,, subject to relations

Lt =11,
-1 _ 0ij—0; -1 _ =8+,
tiejti = ej qy ,/+17 tij}ti _fj q v g ,
ki — k! . .
[ei,‘f}] = (51] ﬁ W|th ki = titi+17

leief] = [fifi] =0 if [i—j[>1,

61'26’]‘ - (¢1+q_1)eiejei + ejez‘z =0,

afnfl

Ffi=(a+a Viffi+ff7f=0 if li—j=1
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Reshetikhin—Takhtajan—Faddeev presentation

The algebra U,(gl,) is generated by entries of the matrices

11 0]

L 0 Ly ... L

(0 0 ... If]

and ) .
I; 0 0

L Ly Ly 0

[ EURO
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The algebra U, (gl,,) is generated by elements lijf and /; with

1 <i,j < n subject to the relations
Iy =1 =0, 1<i<j<n,
i L =1 =1, I<i<n,

+r+ _ gErE R —
RLFLF = LFLFR,  RLIL; =L, L{R,

where

R=gq Zeii®€ii+zeii®e]j+(q—q’l)Ze,-j@)eﬁ
i

i#j i<j

with subscripts of L* indicating the copies of End C" as in

Lf =) e;®1 @17 € EndC"@EndC" @ U,(gl,).
ij



Explicitly,

g1

ili_
ia “jb

qéah

+,+
ljb lia

=(q—q ") (Opey —

dij)

+ 7+
lja lib



Explicitly,

Bl

dij
q”’ lla jb

and

S+ 71— _
4" lig Ly — 4"

54 _ -
4q blj:btlifzt_(q_q Y (Gpeu —

lj; li;; =

(@ a7") Opealia 1

dic

-9

+ 4+
) lja lib

i<j

ja

l+

iy )-



Explicitly,

EIE el lE = s

dij -1
q" lla 'jb jb tia T (q -9 ) (6b<a - 5i<j) ja “ib

and

q" Ly Ly, — g Ly, i =(a—q") (6p<q L Ly = dicj lj—a‘r L )-

Isomorphism between presentations:
- + -1
li —ti, Li =1,

li—;+1 = —(q— qil)eiti_lv 1,11,,' = (g — qil)tifi‘
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The universal enveloping algebra U(gl,) is recovered from

U,(gl,) in the limit ¢ — 1 by the formulas

— _E/i for i > J,
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Set M =L~ (L")~ with

[+ 7+ +]
R A

0 Ly ... I and L

0 0 ... L]




Quantum Gelfand invariants

Set M =L~ (L")~ with

A U A

+

L 0 Ly ... I
0 0 ... L

and L™ =

The quantum traces are defined by

tryM"™ = tr DM"",

with

D =diag[¢"".¢" ... .q

n—3

I

Ly

-

—n—H] .

I

-

nn |




Theorem [RTF 1989].

14



Theorem [RTF 1989].

» All elements tr,M" belong to the center Z,(gl,) of U,(gl,).



Theorem [RTF 1989].

» All elements tr,M" belong to the center Z,(gl,) of U,(gl,).

» The elements tr,M™ withm = 1, ... n together with

Ii7 ... 1} generate the center.



Theorem [RTF 1989].

» All elements tr,M" belong to the center Z,(gl,) of U,(gl,).

» The elements tr,M™ withm = 1, ... n together with

Ii7 ... 1} generate the center.

» The center is also generated by the coefficients

do, - .., d, of the quantum determinant

26: (—q)~ (1;(1)1 - lz;(l)luqzn_z) o (l;(n)n - l;(n)n”)
oc6,

=dy+diu+---+du.
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Harish-Chandra isomorphism

The representation L, () of Uy(gl,) with A = (Ar,...,\,) is

generated by a nonzero vector ¢ such that

1;5:0 for 1<i<j<n,

liffquif for 1<i<n

Any element z € Z,(gl,,) acts in L,(\) by multiplying each vector

by a scalar x(z). Recall that /; = \; +n —i.
We have the Harish-Chandra isomorphism

X : Zg(gl,) — <C[q2€1, o ’qzen]Gn’ qi(el+...+gn)>‘



Theorem [N. Jing, M. Liu, A. M. 2023].
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Theorem [N. Jing, M. Liu, A. M. 2023].

We have

l_gk"‘l]q-'-[gn_gk‘i‘l]q
[el_gk]q-u/\”-[zn_gk]q ’

n

14

Xty M™ = Z qzek’" [
k=1
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Theorem [N. Jing, M. Liu, A. M. 2023].

We have

[£1—€k+1]q...[€n—5k—|—l]q
[ﬁ] —Ek]q.../\...[gn—fk]q ’

n
Xty M™ = Z qzek’”
k=1

where



Theorem [N. Jing, M. Liu, A. M. 2023].

We have

[fl—fk—l-l]q...wn—fk—l—l]q
[ﬁl—gk]q.../\...[gn—fk]q ’

n
Xty M™ = Z q%’f’”
k=1

where

Remark. A different family of quantum Gelfand invariants
together with their Harish-Chandra images was given by
[M. Gould, R. Zhang and A. Bracken 1991].
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In the limit ¢ — 1 we have

The element tr E” € U(gl,,) is obtained as the limit value as

g — 1 of the expression

(M1 S <m> (=)™ tr, M.

(q—q") (g—q )" = \r



In the limit ¢ — 1 we have

The element tr E” € U(gl,,) is obtained as the limit value as

g — 1 of the expression

m—; m — 1" T r r
mtrq(M—l) _(q—q—l)mz<r>( D" e, M

Hence, the Perelomov—Popov formulas follow from the theorem.
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Quantum loop algebra
Consider the R-matrix
R(x) =R — xR € EndC" @ EndC",
where

R=gq Zeu®€ii+zeii®€jj+(q*q_l)Ze,-j@eﬁ
i

i i<j



Quantum loop algebra
Consider the R-matrix
R(x) =R —xR € EndC" ® EndC",

where
_qzell®ell+zell®ejj )Zeij®eji
i# i<j

and

N_q lzell®ell+zell®e]j —q_l)zeg(@eﬁ.

i#] >



The quantum loop algebra Uq(gln) is generated by elements

l;}'[—r], li]_.[r] with 1 <i,j<n, r=0,1,...,



The quantum loop algebra Uq(gln) is generated by elements

L=, Ll with 1<ij<n, r=0,1,...,

subject to the defining relations

(0] = [;[0] = 0 for 1<i<j<n,

1E[0) 4 [0] = 1 0] 1 [0] = 1 for  i=1,...,n,



The quantum loop algebra Uq(gln) is generated by elements

L=, Ll with 1<ij<n, r=0,1,...,

subject to the defining relations

+ . _ . .
Li[0] =1;]0] =0 for 1<i<j<n,

LE0] ;0] = I [0] L [0] = 1 for i=1,....n,

and
R(u/v)LE (LY (v) = L (V)L ()R (u/v),

R(u/v)L{ (u)Ly (v) = Ly (V)L{ (0)R(u/v).



Here we consider the matrices L*(u) = [I; ()], whose entries

are formal power series in u and u™!,

) =2l ) =3
r=0 r=0

20



Here we consider the matrices L*(u) = [I; ()], whose entries

are formal power series in u and u™!,

=S A, L) =D e
r=0 r=0
We regard the matrices as elements

Ze,j®lu ) € EndC" @ U, (gl,)[[u™"]]
iy=1

and use subscripts to indicate copies of the matrix in the

multiple tensor product algebra.

20
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Quantum determinants

The quantum determinants qdet L™ (u) and qdet L™ () are series
in u and u~!, respectively, whose coefficients belong to the

center of the quantum loop algebra Uq(ﬂln):
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Quantum determinants

The quantum determinants qdet L™ (u) and qdet L™ () are series
in u and u~!, respectively, whose coefficients belong to the

center of the quantum loop algebra Uq(ﬂln):

qdetLi(u) _ Z (_q)—l(o) la:t(l)l (uq2n—2) e [Ui(n)n(u).

oeS,

21
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Theorem. All coefficient of the series z* (1) defined by
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Liouville formula

Theorem. All coefficient of the series z* (1) defined by

() = —— try L (g )% ()"
[”]q

belong to the center of U, (gl,).

Moreover, we have the relations

det L* (ug®
2 (u) = qeiiuq).
qdet L* (u)

Remark. The Yangian version is due to M. Nazarov, 1991,

g-version — S. Belliard and E. Ragoucy, 2009 (without proof).

22
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Classical limit

Rewrite the formula in the form

[nl]q try (L(ug?") — L(w)) L{u)

_1 _ qdetL(ug*) — qdet L(u)

qdet L(u)
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Classical limit
Rewrite the formula in the form

- try (L(ug™) — L(u))L(u)~" = qdet L(ug”) — qdet L(u)

[, qdet L(u)

Divide both sides by ug> —u andlet ¢ — 1 to get

tr(L—l(u)%L(@) _ detlL(u) - % det L(u).
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Classical limit
Rewrite the formula in the form

1 qdetL(ug®) — qdet L(u)

1 tr, (L(uqz”) — L(u))L(u)_

[l qdet L(u)

Divide both sides by ug> —u andlet ¢ — 1 to get

tr(L—l(u)%L(@) _ detlL(u) - % det L(u).

This is the Liouville formula for matrix-valued functions:

L'(u) = A(u)L(u) = (detL(u)) = trA(u) det L(u).

23
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Proof of the quantum Liouville formula

Introduce the quantum comatrix L(x) by the relation
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Proof of the quantum Liouville formula

Introduce the quantum comatrix L(x) by the relation
L(ug®) L(u) = qdet L(u) 1.
Then we also have
DL(u)'D™'L(ug* )" = qdet L(u) 1.

Hence
_ det L(ug?)
L 2n lD L 1 [: q
(g™ D)™ ==
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Proof of the quantum Liouville formula

Introduce the quantum comatrix L(x) by the relation
L(ug®) L(u) = qdet L(u) 1.
Then we also have
DL(u)'D™'L(ug* )" = qdet L(u) 1.

Hence
2nnt 1 qdetL(ug?)
Lug™ D)) = ST

The formula follows by taking trace.

24
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Evaluation homomorphism
The mapping
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Evaluation homomorphism
The mapping
ev:LT(u)—~ LY —Lu, L (u)— L —LTu!
defines a homomorphism Uq(gln) — Ugy(gl,).

Apply it to both sides of the Liouville formula

Z+ (u) _ qdetL+<uq2) )
qdet Lt (u)

The image of the quantum determinant qdet L™ (u) is found by

26: (_q)_l(g) (l;r(l)] B l;(])luq2"—2) o (l:(n)n o l;(n)nu)'
oe6,

25



The eigenvalue on the highest vector £ of L,(\) is

(qfxl _ q)\1+2n72u> . (qfxn _ q)\,,u)

=" (g7h —ghu) L (g

—q"u).

26



The eigenvalue on the highest vector £ of L,(\) is

(qfxl _ q)\1+2n72u> . (qfxn _ q)\,,u)

= ¢V —q"u) . (T g,

Hence

det LT (ug? a a,
qdet Lt (u) 1 —q*u 1 — g*ru
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The eigenvalue on the highest vector £ of L,(\) is

(qfxl _ q)\1+2n72u> . (qfxn _ q)\,,u)

= ¢V —q"u) . (T g,

Hence

qdet L (ug?) a a
qdet Lt (u) L. q*u A q*'nu

to find that the constants «a; are given by

— n—1 _ n+1 [gl - gk + l]q e [Zn - Ek + l}q
=\ =) T =,

26



On the other hand, recalling that M = L~ (L*)~!,
for the image of z* (u) we get

€ tr D(LY — L™ ug®)(L™ — L™ u)™!

[

- b tr D(1 — Mug®)(1 — Mu)~!
[n]q

27



On the other hand, recalling that M = L~ (L*)~!,
for the image of z* (u) we get

€ tr D(LY — L™ ug®)(L™ — L™ u)™!

[

- b tr D(1 — Mug®)(1 — Mu)~!
[n]q

which equals
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On the other hand, recalling that M = L~ (L*)~!,

for the image of z* (u) we get

1
o tr D(LY — L™ ug®)(L™ — L™ u)™!
q

- b tr D(1 — Mug®)(1 — Mu)~!
[n]q

which equals

[e's)
L@ =) S M,
m=1

27



On the other hand, recalling that M = L~ (L*)~!,

for the image of z* (u) we get

1
— DL — L™ug™)(L™ — L™ u)™"

[n]q
- b tr D(1 — Mug®)(1 — Mu)~!
[n]q
which equals
L+ (@ =) S M,
m=1
Thus,

[fl—ﬁk—l-l]q...wn—fk—i—l]q

. m 20m
Xt M H;q =g ANl — ]y

27
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More central elements

We also have

1
7 (u) = m tr,—1 L*

()~ L* (ug™).
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More central elements
We also have

7 (u) = = tr,—1 LE(u) 'L (ug™).
[n]q
By applying the evaluation homomorphism, we get four families

of central elements in U,(gl,,).

28



More central elements
We also have

1
() = — tr L (u) 7 L* (ug™).
[n]q
By applying the evaluation homomorphism, we get four families
of central elements in U,(gl,,).

They are related by

tr—1 (L) 'L = trgM™
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More central elements

We also have

7 (u) = L tr,—1 LF () LF (ug™).
[n]q

By applying the evaluation homomorphism, we get four families

of central elements in U,(gl,,).

They are related by
tr—1 (L) 'L = trgM™

and

28
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The symmetries come from the isomorphism

UQ(g[n) — Uq—l(g[n)v L:t = (Li)_l'

This implies the formulas for the eigenvalues of the other

central elements of U,(gl,) in L,(\):
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The symmetries come from the isomorphism

UQ(g[n) — Uq—l(g[n>v L:t = (L:t)_l

This implies the formulas for the eigenvalues of the other

central elements of U,(gl,) in L,(\):

_ 51 Ek—l-]] ...wn—gk—i-l]
tr L+ LN 2&m q 51'
X g ( Z 0 — Oy A ln— Gy

29



