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Symmetric algebra S(g)

Let g be a Lie algebra and let {Xi} be a basis of g.

The symmetric algebra S(g) is the algebra of polynomials in the

variables Xi. The Lie algebra g acts on S(g) by

Y · X1 . . .Xk =
k∑

i=1

X1 . . . [Y,Xi] . . .Xk, Y,Xi ∈ g.

The subspace of g-invariants

S(g)g = {P ∈ S(g) | Y · P = 0 for all Y ∈ g}

is a subalgebra of S(g).
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Let g be a simple Lie algebra and let n = rank g.

Then

S(g)g = C [P1, . . . ,Pn]

for certain algebraically independent invariants P1, . . . ,Pn.

Their respective degrees are d1, . . . , dn,

the exponents of g increased by 1.
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Invariants in type A

The commutation relations for glN :

[Eij,Ekl] = δkj Eil − δil Ekl, i, j, k, l ∈ {1, . . . ,N}.

Then S(glN) is the algebra of polynomials in variables Eij.

Set

E =


E11 . . . E1N

...
...

EN1 . . . ENN

 .
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Write

det(u1 + E) = uN + ∆1 uN−1 + · · ·+ ∆N ,

and

det(1− qE)−1 = 1 +
∞∑

k=1

Φk qk.

We have

S(glN)glN = C [∆1, . . . ,∆N ],

S(glN)glN = C [Φ1, . . . ,ΦN ],

S(glN)glN = C [Θ1, . . . ,ΘN ],

where

Θm = tr E m.



6

Write

det(u1 + E) = uN + ∆1 uN−1 + · · ·+ ∆N ,

and

det(1− qE)−1 = 1 +

∞∑
k=1

Φk qk.

We have

S(glN)glN = C [∆1, . . . ,∆N ],

S(glN)glN = C [Φ1, . . . ,ΦN ],

S(glN)glN = C [Θ1, . . . ,ΘN ],

where

Θm = tr E m.



6

Write

det(u1 + E) = uN + ∆1 uN−1 + · · ·+ ∆N ,

and

det(1− qE)−1 = 1 +

∞∑
k=1

Φk qk.

We have

S(glN)glN = C [∆1, . . . ,∆N ],

S(glN)glN = C [Φ1, . . . ,ΦN ],

S(glN)glN = C [Θ1, . . . ,ΘN ],

where

Θm = tr E m.



6

Write

det(u1 + E) = uN + ∆1 uN−1 + · · ·+ ∆N ,

and

det(1− qE)−1 = 1 +

∞∑
k=1

Φk qk.

We have

S(glN)glN = C [∆1, . . . ,∆N ],

S(glN)glN = C [Φ1, . . . ,ΦN ],

S(glN)glN = C [Θ1, . . . ,ΘN ],

where

Θm = tr E m.



7

Invariants in types B,C,D

Define the orthogonal Lie algebra oN with N = 2n and

N = 2n + 1 and symplectic Lie algebra spN with N = 2n as

subalgebras of glN spanned by the elements Fi j,

Fi j = Ei j − Ej ′i ′ or Fi j = Ei j − εi εj Ej ′i ′ .

We use the involution i 7→ i ′ = N − i + 1 on the set {1, . . . ,N},

and in the symplectic case we set

εi =


1 for i = 1, . . . , n

−1 for i = n + 1, . . . , 2n.
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Consider the matrix

F =


F11 . . . F1N

... . . .
...

FN1 . . . FNN


with entries in S(g) for g = oN or g = spN .

Write

det(u1 + F) = u2n + ∆2 u2n−2 + · · ·+ ∆2n for g = sp2n,

and

det(1− qF)−1 = 1 +

∞∑
k=1

Φ2k q2k for g = oN .
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In the case g = o2n, the Pfaffian is defined by

Pf F =
1

2nn!

∑
σ∈S2n

sgnσ · Fσ(1)σ(2)′ . . .Fσ(2n−1)σ(2n)′ .

We have

S(o2n+1)o2n+1 = C [Φ2,Φ4, . . . ,Φ2n],

S(o2n)o2n = C [Φ2,Φ4, . . . ,Φ2n−2,Pf F],

and

S(sp2n)sp2n = C [∆2,∆4, . . . ,∆2n].



9

In the case g = o2n, the Pfaffian is defined by

Pf F =
1

2nn!

∑
σ∈S2n

sgnσ · Fσ(1)σ(2)′ . . .Fσ(2n−1)σ(2n)′ .

We have

S(o2n+1)o2n+1 = C [Φ2,Φ4, . . . ,Φ2n],

S(o2n)o2n = C [Φ2,Φ4, . . . ,Φ2n−2,Pf F],

and

S(sp2n)sp2n = C [∆2,∆4, . . . ,∆2n].



9

In the case g = o2n, the Pfaffian is defined by

Pf F =
1

2nn!

∑
σ∈S2n

sgnσ · Fσ(1)σ(2)′ . . .Fσ(2n−1)σ(2n)′ .

We have

S(o2n+1)o2n+1 = C [Φ2,Φ4, . . . ,Φ2n],

S(o2n)o2n = C [Φ2,Φ4, . . . ,Φ2n−2,Pf F],

and

S(sp2n)sp2n = C [∆2,∆4, . . . ,∆2n].



9

In the case g = o2n, the Pfaffian is defined by

Pf F =
1

2nn!

∑
σ∈S2n

sgnσ · Fσ(1)σ(2)′ . . .Fσ(2n−1)σ(2n)′ .

We have

S(o2n+1)o2n+1 = C [Φ2,Φ4, . . . ,Φ2n],

S(o2n)o2n = C [Φ2,Φ4, . . . ,Φ2n−2,Pf F],

and

S(sp2n)sp2n = C [∆2,∆4, . . . ,∆2n].



10

Poisson algebras

A Poisson algebra A is a commutative associative algebra

equipped with a Poisson bracket which is a bilinear map

{ , } : A× A→ A

satisfying the properties: A is a Lie algebra with respect to this

bracket, and the Leibniz rule

{x, yz} = {x, y}z + y{x, z}

holds for any three elements x, y, z ∈ A.
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In particular,

{x, y} = −{y, x},

and the Jacobi identity holds

{x, {y, z}}+ {y, {z, x}}+ {z, {x, y}} = 0

for all x, y, z ∈ A.

The Poisson center of A is defined by

Z(A) = {P ∈ A | {x,P} = 0 for all x ∈ A}.

Clearly, Z(A) is a subalgebra of A.
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Poisson commutative subalgebras

The symmetric algebra S(g) admits the Lie–Poisson bracket

{Xi,Xj} =
l∑

k=1

ck
ij Xk, Xi ∈ g basis elements.

The subalgebra S(g)g ⊂ S(g) coincides with the Poisson center

of S(g), hence it is Poisson commutative:

{A,B} = 0 for all A,B ∈ S(g)g.

Integrability problem: Extend S(g)g to a large Poisson

commutative subalgebra of S(g).
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Mishchenko–Fomenko subalgebras

Let P = P(X1, . . . ,Xl) be an element of S(g) of degree d.

Fix any µ ∈ g∗ and shift the arguments Xi 7→ Xi + t µ(Xi),

where t is a variable:

P
(
X1 + t µ(X1), . . . ,Xl + t µ(Xl)

)
= P(0) + P(1) t + · · ·+ P(d) t d.

Denote by Aµ the subalgebra of S(g) generated by all the

µ-shifts P(i) associated with all invariants P ∈ S(g)g.
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Properties:

I The subalgebra Aµ is Poisson commutative for any µ ∈ g∗

[A. Mishchenko and A. Fomenko 1978].

I If µ ∈ g∗ ∼= g is regular, then Aµ is a free polynomial

algebra [A. Bolsinov 1991;

B. Feigin, E. Frenkel and V. Toledano Laredo 2010].

I Moreover, Aµ is a maximal Poisson commutative

subalgebra of S(g) [D. Panyushev and O. Yakimova 2008].
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Example. For µ ∈ gl∗N set µij = µ(Eij) and consider µ as

the N × N matrix

µ =
[
µij
]N

i,j=1.

Expand

det(u1 + E + tµ) = uN + ∆1(t)uN−1 + · · ·+ ∆N(t)

with

∆m(t) = ∆m (0) + ∆m (1) t + · · ·+ ∆m (m) tm.

If µ is regular, then the elements ∆m (i) with m = 1, . . . ,N and

i = 0, 1, . . . ,m− 1 are free generators of Aµ.
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∆m(t) = ∆m (0) + ∆m (1) t + · · ·+ ∆m (m) tm.

If µ is regular, then the elements ∆m (i) with m = 1, . . . ,N and

i = 0, 1, . . . ,m− 1 are free generators of Aµ.
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Vinberg’s problem

The universal enveloping algebra U(g) possesses a canonical

filtration such that the associated graded algebra is isomorphic

to the symmetric algebra, gr U(g) = S(g).

E. B. Vinberg 1990:

Is it possible to quantize the subalgebra Aµ of S(g)?

We would like to find a commutative subalgebra Aµ of U(g)

(together with its free generators) such that grAµ = Aµ.
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A solution via Yangian approach: classical types with regular

semisimple µ [M. Nazarov and G. Olshanski 1996].

A solution in type A with regular semisimple µ via the

symmetrization map [A. Tarasov 2000].

A solution for all types based on the vertex algebra theory

[L. Rybnikov 2006, FFTL 2010].
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The Feigin–Frenkel center z(ĝ) can be defined as the

subalgebra of U
(
t−1g[t−1]

)

which consists of all elements

commuting with the canonical Segal–Sugawara vector

S =
l∑

i=1

Xi[−1]2,

where X1, . . . ,Xl is an orthonormal basis of g and Xi[r] = Xi tr.

Key property.

The subalgebra z(ĝ) ⊂ U
(
t−1g[t−1]

)
is commutative.
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Quantum Mishchenko–Fomenko subalgebras

Given µ ∈ g∗ and nonzero z ∈ C , consider the homomorphism

%µ,z : U
(
t−1g[t−1]

)
→ U(g), X[r] 7→ X zr + δr,−1 µ(X).

The quantum Mishchenko–Fomenko subalgebra Aµ ⊂ U(g) is

defined as the image of the Feigin–Frenkel center

z(ĝ) ⊂ U
(
t−1g[t−1]

)
under the homomorphism %µ,z.

If µ is regular, then gr Aµ = Aµ [FFTL 2010].

Conjecture [FFTL 2010]. gr Aµ = Aµ for all µ ∈ g∗.
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Symmetrized minors and permanents

For an N × N matrix M over an algebra,

the symmetrized minor of M is

Detm(M) =
1

m !

N∑
i1,..., im=1

∑
σ∈Sm

sgnσ ·Miσ(1) i1 . . .Miσ(m) im .

The symmetrized permanent of M is

Perm(M) =
1

m !

N∑
i1,..., im=1

∑
σ∈Sm

Miσ(1) i1 . . .Miσ(m) im .
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Type A

For µ ∈ gl∗N we set µij = µ(Eij) and recall the matrix

µ =


µ11 . . . µ1N
...

...

µN1 . . . µNN

 .

Theorem [V. Futorny and M. 2015]. The subalgebra

Aµ ⊂ U(glN) is generated by the coefficients of each family of

polynomials

Detm(E + t µ) and Perm(E + t µ), m > 1.
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If µ is regular, then the coefficients of each family of polynomials

Detm(E + t µ) and Perm(E + t µ), m = 1, . . . ,N,

are free generators of the algebra Aµ.

Moreover, the FFTL-conjecture holds in type A:

grAµ = Aµ for all µ ∈ gl∗N .
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Types B,C,D

Now let g = o2n+1, sp2n or o2n.

For µ ∈ g∗ set µij = µ(Fij) and consider the matrix

µ =


µ11 . . . µ1N
...

...

µN1 . . . µNN

 .



23

Types B,C,D

Now let g = o2n+1, sp2n or o2n.

For µ ∈ g∗ set µij = µ(Fij) and consider the matrix

µ =


µ11 . . . µ1N
...

...

µN1 . . . µNN

 .



23

Types B,C,D

Now let g = o2n+1, sp2n or o2n.

For µ ∈ g∗ set µij = µ(Fij) and consider the matrix

µ =


µ11 . . . µ1N
...

...

µN1 . . . µNN

 .



23

Types B,C,D

Now let g = o2n+1, sp2n or o2n.

For µ ∈ g∗ set µij = µ(Fij) and consider the matrix

µ =


µ11 . . . µ1N
...

...

µN1 . . . µNN

 .



24

Theorem [O. Yakimova and M. 2017].

Suppose that µ ∈ g∗ is regular.

I The coefficients of the polynomials Detm(F + t µ) with

m = 2, 4, . . . , 2n are free generators of the algebra Aµ for

g = sp2n.

I The coefficients of the polynomials Perm(F + t µ) with

m = 2, 4, . . . , 2n are free generators of the algebra Aµ for

g = o2n+1.
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I The coefficients of the polynomials Pf
(
F + t µ

)
and

Perm(F + t µ) with m = 2, 4, . . . , 2n− 2 are free generators of

the algebra Aµ for g = o2n.

I Moreover, the FFTL-conjecture holds in type C :

grAµ = Aµ for all µ ∈ g∗.
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Quasi-derivations

The Mishchenko–Fomenko subalgebra Aµ of S(g) is generated

by the µ-shifts P(i) associated with all invariants P ∈ S(g)g:

P
(
X1 + t µ(X1), . . . ,Xl + t µ(Xl)

)
= P(0) + P(1) t + · · ·+ P(d) t d.

The coefficients are the images of the directional derivatives

Dµ : S(g)→ S(g),

P(k) =
1
k!

Dk
µ P.
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Another version of Vinberg’s problem:

Can we quantize the directional derivatives Dµ to get certain

linear operators

Dµ : U(g)→ U(g)

such that iterative applications of Dµ to elements of the center

Z(g) of U(g) yield elements of the quantum

Mishchenko–Fomenko subalgebra Aµ?
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Type A

The quasi-derivations

∂ij : U(glN)→ U(glN)

quantize the partial derivations ∂/∂Eji on S(glN).

The action of ∂ij is determined by the properties

∂ij(1) = 0, ∂ij Ekl = δkjδil,

and the quantum Leibniz rule

∂ij (f g) = (∂ij f )g + f (∂ij g)−
N∑

k=1

(∂ik f )(∂kj g).
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Origins:

[S. Meljanac and Z. Škoda 2007,

D. Gurevich, P. Pyatov and P. Saponov 2012].

Set D = [∂ij] and Dµ = trµD.

Theorem [Y. Ikeda and G. Sharygin 2023].

For any element z ∈ Z(glN) and all natural powers p, the

elements D p
µ z belong to the subalgebra Aµ of U(glN).
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Types B,C,D

Define the quasi-derivations

∂ij : U(oN)→ U(oN) and ∂ij : U(sp2n)→ U(sp2n)

by restriction from glN . For µ ∈ g∗ and D = [∂ij] set

Dµ = trµD.

Theorem [Y. Ikeda, M. and G. Sharygin 2023].

The elements D p
µ Detm(F), p = 0, 1, . . . ,m− 1, with

m = 2, 4, . . . , 2n, generate the algebra Aµ in type C.
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Types B,C,D

Define the quasi-derivations

∂ij : U(oN)→ U(oN) and ∂ij : U(sp2n)→ U(sp2n)

by restriction from glN . For µ ∈ g∗ and D = [∂ij] set

Dµ = trµD.

Theorem [Y. Ikeda, M. and G. Sharygin 2023].

The elements D p
µ Detm(F), p = 0, 1, . . . ,m− 1, with

m = 2, 4, . . . , 2n, generate the algebra Aµ in type C.
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The elements D p
µ Perm(F), p = 0, 1, . . . ,m− 1, with

m = 2, 4, . . . , 2n generate the algebra Aµ in type B.

The elements D p
µ Perm(F), p = 0, 1, . . . ,m− 1, with

m = 2, 4, . . . , 2n− 2, together with D p
µ Pf F, p = 0, 1, . . . , n− 1,

generate the algebra Aµ in type D.

Moreover, in all cases, if µ ∈ g∗ is regular, then each family is

algebraically independent.
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