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Symmetric algebra S(g)

Let g be a Lie algebra and let {X;} be a basis of g.
The symmetric algebra S(g) is the algebra of polynomials in the

variables X;. The Lie algebra g acts on S(g) by
k
Y-X1...szle...[Y,Xi]...Xk, Y,X; € g.
i=1
The subspace of g-invariants
S(g)! ={PeS(g)|Y-P=0 forall Yeg}

is a subalgebra of S(g).
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Let g be a simple Lie algebra and let n = rank g. Then
S(g)g = (C[P], e ,Pn]
for certain algebraically independent invariants Py, ..., P,.

Their respective degrees are di, . . ., d,,

the exponents of g increased by 1.
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The commutation relations for gl :
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Write

det(ul + E) =N+ AN+ 4 Ay,

and
det(1 —gE) ' =1 +Zq>kq
We have
S(gly)®™ = CIA,, ..., Ay],
S(gly)® = C[®y, ..., ®y],
S(gly)®™ = C[Oy,...,0n],
where

0, =trE™.
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Invariants in types B, C,D

Define the orthogonal Lie algebra oy with N = 2n and
N = 2n+ 1 and symplectic Lie algebra spy with N = 2n as

subalgebras of gly spanned by the elements F;;,
Fij:Eij_Ej’i’ or Fij:Eij_EiEjEj’i’-

We use the involution i — i’ =N — i+ 1 onthe set {1,...,N},

and in the symplectic case we set

& =
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Consider the matrix

Fi ... Fin

with entries in S(g) for g = oy or g = spy. Write
det(ul + F) =+ Ao 4 Ay, for g=sp,,,
and

det(l —gF)~ —1+Z<I>2kq for g=on.
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In the case g = 0y,, the Pfaffian is defined by

1
PfF = ﬁ Z sgno - FU(I)U(Z)’ N 'FU(anl)o'(Zn)"

ey,
We have
S(02n+1)02n+| =C [(1)27 qj)47 ceey (:DZI’J?
S(UQH)OZ" = (C[(I)Q, (134, cey (I)Qn_z, PfF],
and

S(ﬁpzn)sm" =C [Az, A4, RN Azn]
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Poisson algebras

A Poisson algebra A is a commutative associative algebra

equipped with a Poisson bracket which is a bilinear map
{,}:AxA—>A

satisfying the properties: A is a Lie algebra with respect to this

bracket, and the Leibniz rule

{x.yzh = {x, vtz +y{x 2}

holds for any three elements x,y, z € A.



In particular,
{xvy} = _{yvx}a
and the Jacobi identity holds

xx, ,+ O {o 0 + {2, {x,y}} =0

for all x,y,z € A.



In particular,

{X,y} = —{y,X},

and the Jacobi identity holds
{x, v 2t + Azt + {z. {x,y}} =0

for all x,y,z € A.

The Poisson center of A is defined by
ZA)={PcA|{x,P} =0  forall xeA}.

Clearly, Z(A) is a subalgebra of A.
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Poisson commutative subalgebras

The symmetric algebra S(g) admits the Lie—Poisson bracket
I
{Xi,X;} => ciX, X, €g basiselements.
k=1

The subalgebra S(g)? C S(g) coincides with the Poisson center

of S(g), hence it is Poisson commutative:
{A,B} =0 forall A,B e S(g)°.

Integrability problem: Extend S(g)? to a large Poisson

commutative subalgebra of S(g).
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Mishchenko—Fomenko subalgebras

Let P = P(Xi,...,X;) be an element of S(g) of degree 4.
Fix any o € g* and shift the arguments X; — X; + 1 u(X;),
where ¢ is a variable:

P(Xl +Z,UJ<X1)7 X+ IM(XI))

:P(O) -I-P(l)l‘-f-"'—l-P(d)l‘d.

Denote by A, the subalgebra of S(g) generated by all the

p-shifts P(; associated with all invariants P € S(g)?.
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Properties:

» The subalgebra Zu is Poisson commutative for any p € g*

[A. Mishchenko and A. Fomenko 1978].

> If 4 € g* = gis regular, then A, is a free polynomial
algebra [A. Bolsinov 1991;
B. Feigin, E. Frenkel and V. Toledano Laredo 2010].

> Moreover, A, is a maximal Poisson commutative

subalgebra of S(g) [D. Panyushev and O. Yakimova 2008].



Example. For u € gly set pw; = pu(E;) and consider u as

the N x N matrix



Example. For u € gly set pw; = pu(E;) and consider u as

the N x N matrix

K= [luij} ;\jj:l'



Example. For u € gly set pw; = pu(E;) and consider u as
the N x N matrix
N
=[] ij=1"

Expand
det(ul + E+tp) = u™ + Ay(0)u " + -+ An(1)

with

Am(t) = Am(O) +Am(l)t+"'+Am(m) .



Example. For u € gly set pw; = pu(E;) and consider u as
the N x N matrix
N
= [uy] ij=1"

Expand
det(ul + E+tp) = u™ + Ay(0)u " + -+ An(1)

with
Ap(t) = Dpo) F Ayt + -+ Dy 1
If 1 is regular, then the elements A, ;) withm = 1,..., N and

i=0,1,...,m— 1 are free generators of A,,.
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Vinberg'’s problem

The universal enveloping algebra U(g) possesses a canonical
filtration such that the associated graded algebra is isomorphic

to the symmetric algebra, grU(g) = S(g).

E. B. Vinberg 1990:

Is it possible to quantize the subalgebra A, of S(g)?

We would like to find a commutative subalgebra A,, of U(g)

(together with its free generators) such that gr. 4, = A,,.
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A solution via Yangian approach: classical types with regular

semisimple o [M. Nazarov and G. Olshanski 1996].

A solution in type A with regular semisimple p via the

symmetrization map [A. Tarasov 2000].

A solution for all types based on the vertex algebra theory

[L. Rybnikov 2006, FFTL 2010].
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The Feigin—Frenkel center 3(g) can be defined as the
subalgebra of U(r~'g[r~']) which consists of all elements

commuting with the canonical Segal-Sugawara vector

where Xi,...,X; is an orthonormal basis of g and X;[r] = X;1".

Key property.

The subalgebra 3(g) c U(+'g[r']) is commutative.



Quantum Mishchenko—Fomenko subalgebras

19



Quantum Mishchenko—Fomenko subalgebras
Given p € g* and nonzero z € C, consider the homomorphism

0. U 'glr") = Ulg), X[ = X2 +6, _; u(X).



Quantum Mishchenko—Fomenko subalgebras
Given p € g* and nonzero z € C, consider the homomorphism
Oz U(t_lg[t_l]) — U(g), X[r] — XZ"+ 01 w(X).

The quantum Mishchenko—Fomenko subalgebra A,, C U(g) is
defined as the image of the Feigin—Frenkel center

3(8) € U(¢r 'g[r']) under the homomorphism o, ..



Quantum Mishchenko—Fomenko subalgebras
Given p € g* and nonzero z € C, consider the homomorphism
Oz U(t_lg[t_l]) — U(g), X[r] — XZ"+ 01 w(X).

The quantum Mishchenko—Fomenko subalgebra A,, C U(g) is
defined as the image of the Feigin—Frenkel center

3(8) € U(¢r 'g[r']) under the homomorphism o, ..

If 1 is regular, then gr A, = A,  [FFTL 2010].



Quantum Mishchenko—Fomenko subalgebras
Given p € g* and nonzero z € C, consider the homomorphism
Oz U(t_lg[t_l]) — U(g), X[r] — XZ"+ 01 w(X).

The quantum Mishchenko—Fomenko subalgebra A,, C U(g) is
defined as the image of the Feigin—Frenkel center

3(8) € U(¢r 'g[r']) under the homomorphism o, ..
If 1 is regular, then gr A, = A,  [FFTL 2010].

Conjecture [FFTL 2010]. gr A, = A, for all u € g*.
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Symmetrized minors and permanents

For an N x N matrix M over an algebra,

the symmetrized minor of M is

Detm(M) = — Z Z sgno 'Mig(l)il .. .Mi(r(m) i -
Ty in=1 0€G,

The symmetrized permanent of M is

N
Perm(M) = ] Z Z M,-U(l),-1 .. .M,'G(m) im*

i],..., lm=1 O'EGm

20
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Type A
For p € gly we set p; = p(E;) and recall the matrix

Fipoo-oo Hin

Hyp o --- HNN

Theorem [V. Futorny and M. 2015]. The subalgebra
A, € U(gly) is generated by the coefficients of each family of

polynomials

Det,,(E + t ) and  Per,(E+1tu), m > 1.

21



If 11 is regular, then the coefficients of each family of polynomials
Det,,(E + t ) and Per,,(E + t ), m=1,...,N,

are free generators of the algebra A,,.
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If 11 is regular, then the coefficients of each family of polynomials

Det,,(E + t ) and Per,,(E + t ),

are free generators of the algebra A,,.

Moreover, the FFTL-conjecture holds in type A:

grA, = A, forall u € gly.

m=1,...

’N?

22
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Theorem [O. Yakimova and M. 2017].

Suppose that 1 € g* is regular.

» The coefficients of the polynomials Det,,(F + ¢ 1) with

m = 2,4,...,2n are free generators of the algebra A, for

g = 5py,-

» The coefficients of the polynomials Per,,(F + ¢ 1) with

m=2,4,...,2n are free generators of the algebra A, for

g = 02p+1-
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> The coefficients of the polynomials Pf (F + 7 ) and
Per,,(F +tp) withm =2,4,... 2n — 2 are free generators of

the algebra A, for g = 02,.

» Moreover, the FFTL-conjecture holds in type C:

grA, = A, forall u e g*.
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Another version of Vinberg’s problem:
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Another version of Vinberg’s problem:

Can we quantize the directional derivatives D,, to get certain
linear operators

D, : U(g) — U(g)

such that iterative applications of D, to elements of the center
Z(g) of U(g) yield elements of the quantum

Mishchenko—Fomenko subalgebra A,,?

27
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Type A

The quasi-derivations

0y - U(gly) — U(gly)

quantize the partial derivations 9/9E;; on S(gly).

The action of 9;; is determined by the properties
81](1) - 07 aijEk[ - (5@'6[1,

and the quantum Leibniz rule

N

05(f8) = (0if)g +£(958) = Y _(Owf)(Dyi8).

k=1

28
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Origins:
[S. Meljanac and Z. Skoda 2007,
D. Gurevich, P. Pyatov and P. Saponov 2012].

Set D =[0;] and D, = truD.

Theorem [Y. Ikeda and G. Sharygin 2023].
For any element z € Z(gly) and all natural powers p, the

elements D/, z belong to the subalgebra A, of U(gly).

29
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Types B,C,D

Define the quasi-derivations
8,'j : U(ON) — U(ON)

by restriction from gl .
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Types B,C,D

Define the quasi-derivations

8,']' : U(ON) — U(ON)

by restriction from gl .

D, = truD.

and 95+ U(spa,) — Ulspy,)

Foru e g* and D= [0;] set
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Types B,C,D

Define the quasi-derivations
8,']' : U(ON) — U(ON) and OU : U(5p2n) — U(spz,,)

by restriction from gly. For p e g* and D = [0;] set

D, = truD.

Theorem [Y. Ikeda, M. and G. Sharygin 2023].
The elements D}, Det,,(F), p=0,1,...,m— 1, with
m=2,4,...,2n, generate the algebra A, in type C.
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The elements D/, Per,,(F), p=0,1,...,m— 1, with

m

2,4,...,2n generate the algebra A, in type B.
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The elements D/, Per,,(F), p=0,1,...,m— 1, with

m = 2,4,...,2n generate the algebra A, in type B.

The elements D/, Per,,(F), p=0,1,...,m— 1, with

m=24,...,2n—2, together with D/ PfF, p=0,1,...

generate the algebra A,, in type D.

31



The elements D/, Per,,(F), p=0,1,...,m— 1, with

m = 2,4,...,2n generate the algebra A, in type B.

The elements D/, Per,,(F), p=0,1,...,m— 1, with
m=2,4,...,2n—2, together with D/ PfF, p=0,1,...,n—1,

generate the algebra A,, in type D.

Moreover, in all cases, if 1 € g* is regular, then each family is

algebraically independent.

31



