# Quantum argument shift method for classical Lie algebras 

Alexander Molev

University of Sydney

Plan

## Plan

- Classical argument shift subalgebras


## Plan

- Classical argument shift subalgebras
- Vinberg's quantization problem


## Plan

- Classical argument shift subalgebras
- Vinberg's quantization problem
- Quantum Mishchenko-Fomenko subalgebras


## Plan

- Classical argument shift subalgebras
- Vinberg's quantization problem
- Quantum Mishchenko-Fomenko subalgebras
- Quasi-derivations


## Symmetric algebra $\mathrm{S}(\mathfrak{g})$

## Symmetric algebra $S(\mathfrak{g})$

Let $\mathfrak{g}$ be a Lie algebra and let $\left\{X_{i}\right\}$ be a basis of $\mathfrak{g}$.

## Symmetric algebra $S(\mathfrak{g})$

Let $\mathfrak{g}$ be a Lie algebra and let $\left\{X_{i}\right\}$ be a basis of $\mathfrak{g}$.
The symmetric algebra $S(\mathfrak{g})$ is the algebra of polynomials in the variables $X_{i}$.

## Symmetric algebra $\mathrm{S}(\mathfrak{g})$

Let $\mathfrak{g}$ be a Lie algebra and let $\left\{X_{i}\right\}$ be a basis of $\mathfrak{g}$.
The symmetric algebra $S(\mathfrak{g})$ is the algebra of polynomials in the variables $X_{i}$. The Lie algebra $\mathfrak{g}$ acts on $\mathrm{S}(\mathfrak{g})$ by

$$
Y \cdot X_{1} \ldots X_{k}=\sum_{i=1}^{k} X_{1} \ldots\left[Y, X_{i}\right] \ldots X_{k}, \quad Y, X_{i} \in \mathfrak{g} .
$$

## Symmetric algebra $\mathrm{S}(\mathfrak{g})$

Let $\mathfrak{g}$ be a Lie algebra and let $\left\{X_{i}\right\}$ be a basis of $\mathfrak{g}$.
The symmetric algebra $S(\mathfrak{g})$ is the algebra of polynomials in the variables $X_{i}$. The Lie algebra $\mathfrak{g}$ acts on $\mathrm{S}(\mathfrak{g})$ by

$$
Y \cdot X_{1} \ldots X_{k}=\sum_{i=1}^{k} X_{1} \ldots\left[Y, X_{i}\right] \ldots X_{k}, \quad Y, X_{i} \in \mathfrak{g} .
$$

The subspace of $\mathfrak{g}$-invariants

$$
\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}=\{P \in \mathrm{~S}(\mathfrak{g}) \mid Y \cdot P=0 \quad \text { for all } \quad Y \in \mathfrak{g}\}
$$

is a subalgebra of $S(\mathfrak{g})$.

Let $\mathfrak{g}$ be a simple Lie algebra and let $n=$ rank $\mathfrak{g}$.

Let $\mathfrak{g}$ be a simple Lie algebra and let $n=\operatorname{rank} \mathfrak{g}$. Then

$$
\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}=\mathbb{C}\left[P_{1}, \ldots, P_{n}\right]
$$

for certain algebraically independent invariants $P_{1}, \ldots, P_{n}$.

Let $\mathfrak{g}$ be a simple Lie algebra and let $n=$ rank $\mathfrak{g}$. Then

$$
\mathrm{S}(\mathfrak{g})^{\mathfrak{g}}=\mathbb{C}\left[P_{1}, \ldots, P_{n}\right]
$$

for certain algebraically independent invariants $P_{1}, \ldots, P_{n}$.

Their respective degrees are $d_{1}, \ldots, d_{n}$, the exponents of $\mathfrak{g}$ increased by 1 .

Invariants in type $A$

## Invariants in type $A$

The commutation relations for $\mathfrak{g l}_{N}$ :

$$
\left[E_{i j}, E_{k l}\right]=\delta_{k j} E_{i l}-\delta_{i l} E_{k l}, \quad i, j, k, l \in\{1, \ldots, N\} .
$$

## Invariants in type $A$

The commutation relations for $\mathfrak{g l}_{N}$ :

$$
\left[E_{i j}, E_{k l}\right]=\delta_{k j} E_{i l}-\delta_{i l} E_{k l}, \quad i, j, k, l \in\{1, \ldots, N\} .
$$

Then $\mathrm{S}\left(\mathfrak{g l}_{N}\right)$ is the algebra of polynomials in variables $E_{i j}$.

## Invariants in type $A$

The commutation relations for $\mathfrak{g l}_{N}$ :

$$
\left[E_{i j}, E_{k l}\right]=\delta_{k j} E_{i l}-\delta_{i l} E_{k l}, \quad i, j, k, l \in\{1, \ldots, N\}
$$

Then $\mathrm{S}\left(\mathfrak{g l}_{N}\right)$ is the algebra of polynomials in variables $E_{i j}$.
Set

$$
E=\left[\begin{array}{ccc}
E_{11} & \ldots & E_{1 N} \\
\vdots & & \vdots \\
E_{N 1} & \ldots & E_{N N}
\end{array}\right]
$$

Write

$$
\operatorname{det}(u 1+E)=u^{N}+\Delta_{1} u^{N-1}+\cdots+\Delta_{N},
$$

Write

$$
\operatorname{det}(u 1+E)=u^{N}+\Delta_{1} u^{N-1}+\cdots+\Delta_{N},
$$

and

$$
\operatorname{det}(1-q E)^{-1}=1+\sum_{k=1}^{\infty} \Phi_{k} q^{k}
$$

Write

$$
\operatorname{det}(u 1+E)=u^{N}+\Delta_{1} u^{N-1}+\cdots+\Delta_{N},
$$

and

$$
\operatorname{det}(1-q E)^{-1}=1+\sum_{k=1}^{\infty} \Phi_{k} q^{k}
$$

We have

$$
\begin{aligned}
& \mathrm{S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}=\mathbb{C}\left[\Delta_{1}, \ldots, \Delta_{N}\right], \\
& \mathrm{S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}=\mathbb{C}\left[\Phi_{1}, \ldots, \Phi_{N}\right], \\
& \mathrm{S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}=\mathbb{C}\left[\Theta_{1}, \ldots, \Theta_{N}\right],
\end{aligned}
$$

Write

$$
\operatorname{det}(u 1+E)=u^{N}+\Delta_{1} u^{N-1}+\cdots+\Delta_{N},
$$

and

$$
\operatorname{det}(1-q E)^{-1}=1+\sum_{k=1}^{\infty} \Phi_{k} q^{k}
$$

We have

$$
\begin{aligned}
& \mathrm{S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}=\mathbb{C}\left[\Delta_{1}, \ldots, \Delta_{N}\right], \\
& \mathrm{S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}=\mathbb{C}\left[\Phi_{1}, \ldots, \Phi_{N}\right], \\
& \mathrm{S}\left(\mathfrak{g l}_{N}\right)^{\mathfrak{g l}_{N}}=\mathbb{C}\left[\Theta_{1}, \ldots, \Theta_{N}\right],
\end{aligned}
$$

where

$$
\Theta_{m}=\operatorname{tr} E^{m}
$$

Invariants in types $B, C, D$

## Invariants in types $B, C, D$

Define the orthogonal Lie algebra $\mathfrak{o}_{N}$ with $N=2 n$ and

$$
N=2 n+1
$$

## Invariants in types $B, C, D$

Define the orthogonal Lie algebra $\mathfrak{o}_{N}$ with $N=2 n$ and $N=2 n+1$ and symplectic Lie algebra $\mathfrak{s p}_{N}$ with $N=2 n$

## Invariants in types $B, C, D$

Define the orthogonal Lie algebra $\mathfrak{o}_{N}$ with $N=2 n$ and
$N=2 n+1$ and symplectic Lie algebra $\mathfrak{s p}_{N}$ with $N=2 n$ as
subalgebras of $\mathfrak{g l}_{N}$ spanned by the elements $F_{i j}$,

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}} \quad \text { or } \quad F_{i j}=E_{i j}-\varepsilon_{i} \varepsilon_{j} E_{j^{\prime} i^{\prime}}
$$

## Invariants in types $B, C, D$

Define the orthogonal Lie algebra $\mathfrak{o}_{N}$ with $N=2 n$ and
$N=2 n+1$ and symplectic Lie algebra $\mathfrak{s p}_{N}$ with $N=2 n$ as
subalgebras of $\mathfrak{g l}_{N}$ spanned by the elements $F_{i j}$,

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}} \quad \text { or } \quad F_{i j}=E_{i j}-\varepsilon_{i} \varepsilon_{j} E_{j^{\prime} i^{\prime}}
$$

We use the involution $i \mapsto i^{\prime}=N-i+1$ on the set $\{1, \ldots, N\}$, and in the symplectic case we set

$$
\varepsilon_{i}=\left\{\begin{aligned}
1 & \text { for } \quad i=1, \ldots, n \\
-1 & \text { for } \quad i=n+1, \ldots, 2 n
\end{aligned}\right.
$$

Consider the matrix

$$
F=\left[\begin{array}{ccc}
F_{11} & \ldots & F_{1 N} \\
\vdots & \ldots & \vdots \\
F_{N 1} & \ldots & F_{N N}
\end{array}\right]
$$

with entries in $\mathrm{S}(\mathfrak{g})$ for $\mathfrak{g}=\mathfrak{o}_{N}$ or $\mathfrak{g}=\mathfrak{s p}_{N}$.

Consider the matrix

$$
F=\left[\begin{array}{ccc}
F_{11} & \ldots & F_{1 N} \\
\vdots & \ldots & \vdots \\
F_{N 1} & \ldots & F_{N N}
\end{array}\right]
$$

with entries in $\mathrm{S}(\mathfrak{g})$ for $\mathfrak{g}=\mathfrak{o}_{N}$ or $\mathfrak{g}=\mathfrak{s p}_{N}$. Write

$$
\operatorname{det}(u 1+F)=u^{2 n}+\Delta_{2} u^{2 n-2}+\cdots+\Delta_{2 n} \quad \text { for } \quad \mathfrak{g}=\mathfrak{s p}_{2 n},
$$

Consider the matrix

$$
F=\left[\begin{array}{ccc}
F_{11} & \ldots & F_{1 N} \\
\vdots & \ldots & \vdots \\
F_{N 1} & \ldots & F_{N N}
\end{array}\right]
$$

with entries in $\mathrm{S}(\mathfrak{g})$ for $\mathfrak{g}=\mathfrak{o}_{N}$ or $\mathfrak{g}=\mathfrak{s p}_{N}$. Write

$$
\operatorname{det}(u 1+F)=u^{2 n}+\Delta_{2} u^{2 n-2}+\cdots+\Delta_{2 n} \quad \text { for } \quad \mathfrak{g}=\mathfrak{s p}_{2 n},
$$

and

$$
\operatorname{det}(1-q F)^{-1}=1+\sum_{k=1}^{\infty} \Phi_{2 k} q^{2 k} \quad \text { for } \quad \mathfrak{g}=\mathfrak{o}_{N}
$$

In the case $\mathfrak{g}=\mathfrak{o}_{2 n}$, the Pfaffian is defined by

$$
\operatorname{Pf} F=\frac{1}{2^{n} n!} \sum_{\sigma \in \mathfrak{S}_{2 n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)^{\prime}} \ldots F_{\sigma(2 n-1) \sigma(2 n)^{\prime}}
$$

In the case $\mathfrak{g}=\mathfrak{o}_{2 n}$, the Pfaffian is defined by

$$
\operatorname{Pf} F=\frac{1}{2^{n} n!} \sum_{\sigma \in \mathfrak{S}_{2 n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)^{\prime}} \ldots F_{\sigma(2 n-1) \sigma(2 n)^{\prime}}
$$

We have

$$
\mathrm{S}\left(\mathfrak{o}_{2 n+1}\right)^{\mathfrak{o}_{2 n+1}}=\mathbb{C}\left[\Phi_{2}, \Phi_{4}, \ldots, \Phi_{2 n}\right]
$$

In the case $\mathfrak{g}=\mathfrak{o}_{2 n}$, the Pfaffian is defined by

$$
\operatorname{Pf} F=\frac{1}{2^{n} n!} \sum_{\sigma \in \mathfrak{S}_{2 n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)^{\prime}} \ldots F_{\sigma(2 n-1) \sigma(2 n)^{\prime}}
$$

We have

$$
\mathrm{S}\left(\mathfrak{o}_{2 n+1}\right)^{\mathfrak{o}_{2 n+1}}=\mathbb{C}\left[\Phi_{2}, \Phi_{4}, \ldots, \Phi_{2 n}\right]
$$

$$
\mathrm{S}\left(\mathfrak{o}_{2 n}\right)^{\mathfrak{o}_{2 n}}=\mathbb{C}\left[\Phi_{2}, \Phi_{4}, \ldots, \Phi_{2 n-2}, \operatorname{Pf} F\right]
$$

In the case $\mathfrak{g}=\mathfrak{o}_{2 n}$, the Pfaffian is defined by

$$
\operatorname{Pf} F=\frac{1}{2^{n} n!} \sum_{\sigma \in \mathfrak{S}_{2 n}} \operatorname{sgn} \sigma \cdot F_{\sigma(1) \sigma(2)^{\prime}} \ldots F_{\sigma(2 n-1) \sigma(2 n)^{\prime}}
$$

We have

$$
\mathrm{S}\left(\mathfrak{o}_{2 n+1}\right)^{\mathfrak{o}_{2 n+1}}=\mathbb{C}\left[\Phi_{2}, \Phi_{4}, \ldots, \Phi_{2 n}\right]
$$

$$
\mathbf{S}\left(\mathfrak{o}_{2 n}\right)^{\mathfrak{o}_{2 n}}=\mathbb{C}\left[\Phi_{2}, \Phi_{4}, \ldots, \Phi_{2 n-2}, \operatorname{Pf} F\right]
$$

and

$$
\mathrm{S}\left(\mathfrak{s p}_{2 n}\right)^{\mathfrak{s p}_{2 n}}=\mathbb{C}\left[\Delta_{2}, \Delta_{4}, \ldots, \Delta_{2 n}\right]
$$

## Poisson algebras

## Poisson algebras

A Poisson algebra $A$ is a commutative associative algebra equipped with a Poisson bracket which is a bilinear map

$$
\{,\}: A \times A \rightarrow A
$$

satisfying the properties:

## Poisson algebras

A Poisson algebra $A$ is a commutative associative algebra equipped with a Poisson bracket which is a bilinear map

$$
\{,\}: A \times A \rightarrow A
$$

satisfying the properties: $A$ is a Lie algebra with respect to this bracket,

## Poisson algebras

A Poisson algebra $A$ is a commutative associative algebra equipped with a Poisson bracket which is a bilinear map

$$
\{,\}: A \times A \rightarrow A
$$

satisfying the properties: $A$ is a Lie algebra with respect to this bracket, and the Leibniz rule

$$
\{x, y z\}=\{x, y\} z+y\{x, z\}
$$

holds for any three elements $x, y, z \in A$.

In particular,

$$
\{x, y\}=-\{y, x\}
$$

and the Jacobi identity holds

$$
\{x,\{y, z\}\}+\{y,\{z, x\}\}+\{z,\{x, y\}\}=0
$$

for all $x, y, z \in A$.

In particular,

$$
\{x, y\}=-\{y, x\}
$$

and the Jacobi identity holds

$$
\{x,\{y, z\}\}+\{y,\{z, x\}\}+\{z,\{x, y\}\}=0
$$

for all $x, y, z \in A$.
The Poisson center of $A$ is defined by

$$
\mathrm{Z}(A)=\{P \in A \mid\{x, P\}=0 \quad \text { for all } \quad x \in A\}
$$

Clearly, $\mathrm{Z}(A)$ is a subalgebra of $A$.

## Poisson commutative subalgebras

## Poisson commutative subalgebras

The symmetric algebra $\mathrm{S}(\mathfrak{g})$ admits the Lie-Poisson bracket

$$
\left\{X_{i}, X_{j}\right\}=\sum_{k=1}^{l} c_{i j}^{k} X_{k}, \quad X_{i} \in \mathfrak{g} \quad \text { basis elements. }
$$

## Poisson commutative subalgebras

The symmetric algebra $\mathrm{S}(\mathfrak{g})$ admits the Lie-Poisson bracket

$$
\left\{X_{i}, X_{j}\right\}=\sum_{k=1}^{l} c_{i j}^{k} X_{k}, \quad X_{i} \in \mathfrak{g} \quad \text { basis elements. }
$$

The subalgebra $S(\mathfrak{g})^{\mathfrak{g}} \subset S(\mathfrak{g})$ coincides with the Poisson center of $S(\mathfrak{g})$, hence it is Poisson commutative:

## Poisson commutative subalgebras

The symmetric algebra $\mathrm{S}(\mathfrak{g})$ admits the Lie-Poisson bracket

$$
\left\{X_{i}, X_{j}\right\}=\sum_{k=1}^{l} c_{i j}^{k} X_{k}, \quad X_{i} \in \mathfrak{g} \quad \text { basis elements. }
$$

The subalgebra $S(\mathfrak{g})^{\mathfrak{g}} \subset S(\mathfrak{g})$ coincides with the Poisson center of $S(\mathfrak{g})$, hence it is Poisson commutative:

$$
\{A, B\}=0 \quad \text { for all } \quad A, B \in \mathrm{~S}(\mathfrak{g})^{\mathfrak{g}}
$$

## Poisson commutative subalgebras

The symmetric algebra $\mathrm{S}(\mathfrak{g})$ admits the Lie-Poisson bracket

$$
\left\{X_{i}, X_{j}\right\}=\sum_{k=1}^{l} c_{i j}^{k} X_{k}, \quad X_{i} \in \mathfrak{g} \quad \text { basis elements. }
$$

The subalgebra $S(\mathfrak{g})^{\mathfrak{g}} \subset S(\mathfrak{g})$ coincides with the Poisson center of $S(\mathfrak{g})$, hence it is Poisson commutative:

$$
\{A, B\}=0 \quad \text { for all } \quad A, B \in \mathrm{~S}(\mathfrak{g})^{\mathfrak{g}}
$$

Integrability problem: Extend $S(\mathfrak{g})^{\mathfrak{g}}$ to a large Poisson commutative subalgebra of $S(\mathfrak{g})$.

## Mishchenko-Fomenko subalgebras

## Mishchenko-Fomenko subalgebras

Let $P=P\left(X_{1}, \ldots, X_{l}\right)$ be an element of $\mathrm{S}(\mathfrak{g})$ of degree $d$.

## Mishchenko-Fomenko subalgebras

Let $P=P\left(X_{1}, \ldots, X_{l}\right)$ be an element of $S(\mathfrak{g})$ of degree $d$.
Fix any $\mu \in \mathfrak{g}^{*}$ and shift the arguments $X_{i} \mapsto X_{i}+t \mu\left(X_{i}\right)$, where $t$ is a variable:

## Mishchenko-Fomenko subalgebras

Let $P=P\left(X_{1}, \ldots, X_{l}\right)$ be an element of $\mathrm{S}(\mathfrak{g})$ of degree $d$.
Fix any $\mu \in \mathfrak{g}^{*}$ and shift the arguments $X_{i} \mapsto X_{i}+t \mu\left(X_{i}\right)$,
where $t$ is a variable:

$$
\begin{aligned}
P\left(X_{1}+t \mu\left(X_{1}\right), \ldots, X_{l}\right. & \left.+t \mu\left(X_{l}\right)\right) \\
& =P_{(0)}+P_{(1)} t+\cdots+P_{(d)} t^{d}
\end{aligned}
$$

## Mishchenko-Fomenko subalgebras

Let $P=P\left(X_{1}, \ldots, X_{l}\right)$ be an element of $\mathrm{S}(\mathfrak{g})$ of degree $d$.
Fix any $\mu \in \mathfrak{g}^{*}$ and shift the arguments $X_{i} \mapsto X_{i}+t \mu\left(X_{i}\right)$,
where $t$ is a variable:

$$
\begin{aligned}
P\left(X_{1}+t \mu\left(X_{1}\right), \ldots, X_{l}\right. & \left.+t \mu\left(X_{l}\right)\right) \\
& =P_{(0)}+P_{(1)} t+\cdots+P_{(d)} t^{d}
\end{aligned}
$$

Denote by $\overline{\mathcal{A}}_{\mu}$ the subalgebra of $S(\mathfrak{g})$ generated by all the $\mu$-shifts $P_{(i)}$ associated with all invariants $P \in \mathrm{~S}(\mathfrak{g})^{\mathfrak{g}}$.

Properties:

## Properties:

- The subalgebra $\overline{\mathcal{A}}_{\mu}$ is Poisson commutative for any $\mu \in \mathfrak{g}^{*}$
[A. Mishchenko and A. Fomenko 1978].

Properties:

- The subalgebra $\overline{\mathcal{A}}_{\mu}$ is Poisson commutative for any $\mu \in \mathfrak{g}^{*}$
[A. Mishchenko and A. Fomenko 1978].
- If $\mu \in \mathfrak{g}^{*} \cong \mathfrak{g}$ is regular, then $\overline{\mathcal{A}}_{\mu}$ is a free polynomial algebra [A. Bolsinov 1991;
B. Feigin, E. Frenkel and V. Toledano Laredo 2010].


## Properties:

- The subalgebra $\overline{\mathcal{A}}_{\mu}$ is Poisson commutative for any $\mu \in \mathfrak{g}^{*}$
[A. Mishchenko and A. Fomenko 1978].
- If $\mu \in \mathfrak{g}^{*} \cong \mathfrak{g}$ is regular, then $\overline{\mathcal{A}}_{\mu}$ is a free polynomial algebra [A. Bolsinov 1991;
B. Feigin, E. Frenkel and V. Toledano Laredo 2010].
- Moreover, $\overline{\mathcal{A}}_{\mu}$ is a maximal Poisson commutative subalgebra of $S(\mathfrak{g})$ [D. Panyushev and O. Yakimova 2008].

Example. For $\mu \in \mathfrak{g l}_{N}^{*}$ set $\mu_{i j}=\mu\left(E_{i j}\right)$ and consider $\mu$ as the $N \times N$ matrix

Example. For $\mu \in \mathfrak{g l}_{N}^{*}$ set $\mu_{i j}=\mu\left(E_{i j}\right)$ and consider $\mu$ as the $N \times N$ matrix

$$
\mu=\left[\mu_{i j}\right]_{i, j=1}^{N}
$$

Example. For $\mu \in \mathfrak{g l}_{N}^{*}$ set $\mu_{i j}=\mu\left(E_{i j}\right)$ and consider $\mu$ as the $N \times N$ matrix

$$
\mu=\left[\mu_{i j}\right]_{i, j=1}^{N} .
$$

## Expand

$$
\operatorname{det}(u 1+E+t \mu)=u^{N}+\Delta_{1}(t) u^{N-1}+\cdots+\Delta_{N}(t)
$$

with

$$
\Delta_{m}(t)=\Delta_{m(0)}+\Delta_{m(1)} t+\cdots+\Delta_{m(m)} t^{m}
$$

Example. For $\mu \in \mathfrak{g l}_{N}^{*}$ set $\mu_{i j}=\mu\left(E_{i j}\right)$ and consider $\mu$ as the $N \times N$ matrix

$$
\mu=\left[\mu_{i j}\right]_{i, j=1}^{N} .
$$

Expand

$$
\operatorname{det}(u 1+E+t \mu)=u^{N}+\Delta_{1}(t) u^{N-1}+\cdots+\Delta_{N}(t)
$$

with

$$
\Delta_{m}(t)=\Delta_{m(0)}+\Delta_{m(1)} t+\cdots+\Delta_{m(m)} t^{m}
$$

If $\mu$ is regular, then the elements $\Delta_{m(i)}$ with $m=1, \ldots, N$ and $i=0,1, \ldots, m-1$ are free generators of $\overline{\mathcal{A}}_{\mu}$.

Vinberg's problem

## Vinberg's problem

The universal enveloping algebra $\mathrm{U}(\mathfrak{g})$ possesses a canonical filtration such that the associated graded algebra is isomorphic to the symmetric algebra, $\operatorname{gr} \mathrm{U}(\mathfrak{g})=\mathrm{S}(\mathfrak{g})$.

## Vinberg's problem

The universal enveloping algebra $\mathrm{U}(\mathfrak{g})$ possesses a canonical filtration such that the associated graded algebra is isomorphic to the symmetric algebra, $\operatorname{gr} \mathrm{U}(\mathfrak{g})=\mathrm{S}(\mathfrak{g})$.

## E. B. Vinberg 1990:

Is it possible to quantize the subalgebra $\overline{\mathcal{A}}_{\mu}$ of $S(\mathfrak{g})$ ?

## Vinberg's problem

The universal enveloping algebra $\mathrm{U}(\mathfrak{g})$ possesses a canonical filtration such that the associated graded algebra is isomorphic to the symmetric algebra, $\operatorname{gr} \mathrm{U}(\mathfrak{g})=\mathrm{S}(\mathfrak{g})$.
E. B. Vinberg 1990:

Is it possible to quantize the subalgebra $\overline{\mathcal{A}}_{\mu}$ of $S(\mathfrak{g )}$ ?

We would like to find a commutative subalgebra $\mathcal{A}_{\mu}$ of $\mathrm{U}(\mathfrak{g})$
(together with its free generators) such that $\operatorname{gr} \mathcal{A}_{\mu}=\overline{\mathcal{A}}_{\mu}$.

## A solution via Yangian approach: classical types with regular semisimple $\mu$ [M. Nazarov and G. Olshanski 1996].

A solution via Yangian approach: classical types with regular semisimple $\mu$ [M. Nazarov and G. Olshanski 1996].

A solution in type $A$ with regular semisimple $\mu$ via the symmetrization map [A. Tarasov 2000].

A solution via Yangian approach: classical types with regular semisimple $\mu$ [M. Nazarov and G. Olshanski 1996].

A solution in type $A$ with regular semisimple $\mu$ via the symmetrization map [A. Tarasov 2000].

A solution for all types based on the vertex algebra theory
[L. Rybnikov 2006, FFTL 2010].

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ can be defined as the subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ can be defined as the subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ which consists of all elements commuting with the canonical Segal-Sugawara vector

$$
S=\sum_{i=1}^{l} X_{i}[-1]^{2}
$$

where $X_{1}, \ldots, X_{l}$ is an orthonormal basis of $\mathfrak{g}$ and $X_{i}[r]=X_{i} t^{r}$.

The Feigin-Frenkel center $\mathfrak{z}(\widehat{\mathfrak{g}})$ can be defined as the subalgebra of $\mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ which consists of all elements commuting with the canonical Segal-Sugawara vector

$$
S=\sum_{i=1}^{l} X_{i}[-1]^{2}
$$

where $X_{1}, \ldots, X_{l}$ is an orthonormal basis of $\mathfrak{g}$ and $X_{i}[r]=X_{i} t^{r}$.

Key property.
The subalgebra $\mathfrak{z}(\widehat{\mathfrak{g}}) \subset \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ is commutative.

## Quantum Mishchenko-Fomenko subalgebras

## Quantum Mishchenko-Fomenko subalgebras

Given $\mu \in \mathfrak{g}^{*}$ and nonzero $z \in \mathbb{C}$, consider the homomorphism

$$
\varrho_{\mu, z}: \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{g}), \quad X[r] \mapsto X z^{r}+\delta_{r,-1} \mu(X) .
$$

## Quantum Mishchenko-Fomenko subalgebras

Given $\mu \in \mathfrak{g}^{*}$ and nonzero $z \in \mathbb{C}$, consider the homomorphism

$$
\varrho_{\mu, z}: \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{g}), \quad X[r] \mapsto X z^{r}+\delta_{r,-1} \mu(X) .
$$

The quantum Mishchenko-Fomenko subalgebra $\mathcal{A}_{\mu} \subset \mathrm{U}(\mathfrak{g})$ is defined as the image of the Feigin-Frenkel center
$\mathfrak{z}(\widehat{\mathfrak{g}}) \subset \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ under the homomorphism $\varrho_{\mu, z}$.

## Quantum Mishchenko-Fomenko subalgebras

Given $\mu \in \mathfrak{g}^{*}$ and nonzero $z \in \mathbb{C}$, consider the homomorphism

$$
\varrho_{\mu, z}: \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{g}), \quad X[r] \mapsto X z^{r}+\delta_{r,-1} \mu(X) .
$$

The quantum Mishchenko-Fomenko subalgebra $\mathcal{A}_{\mu} \subset \mathrm{U}(\mathfrak{g})$ is defined as the image of the Feigin-Frenkel center
$\mathfrak{z}(\widehat{\mathfrak{g}}) \subset \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ under the homomorphism $\varrho_{\mu, z}$.

If $\mu$ is regular, then $\operatorname{gr} \mathcal{A}_{\mu}=\overline{\mathcal{A}}_{\mu} \quad$ [FFTL 2010].

## Quantum Mishchenko-Fomenko subalgebras

Given $\mu \in \mathfrak{g}^{*}$ and nonzero $z \in \mathbb{C}$, consider the homomorphism

$$
\varrho_{\mu, z}: \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right) \rightarrow \mathrm{U}(\mathfrak{g}), \quad X[r] \mapsto X z^{r}+\delta_{r,-1} \mu(X) .
$$

The quantum Mishchenko-Fomenko subalgebra $\mathcal{A}_{\mu} \subset \mathrm{U}(\mathfrak{g})$ is defined as the image of the Feigin-Frenkel center
$\mathfrak{z}(\widehat{\mathfrak{g}}) \subset \mathrm{U}\left(t^{-1} \mathfrak{g}\left[t^{-1}\right]\right)$ under the homomorphism $\varrho_{\mu, z}$.

If $\mu$ is regular, then $\operatorname{gr} \mathcal{A}_{\mu}=\overline{\mathcal{A}}_{\mu} \quad$ [FFTL 2010].

Conjecture [FFTL 2010]. gr $\mathcal{A}_{\mu}=\overline{\mathcal{A}}_{\mu}$ for all $\mu \in \mathfrak{g}^{*}$.

## Symmetrized minors and permanents

## Symmetrized minors and permanents

For an $N \times N$ matrix $M$ over an algebra, the symmetrized minor of $M$ is

## Symmetrized minors and permanents

For an $N \times N$ matrix $M$ over an algebra, the symmetrized minor of $M$ is

$$
\operatorname{Det}_{m}(M)=\frac{1}{m!} \sum_{i_{1}, \ldots, i_{m}=1}^{N} \sum_{\sigma \in \mathfrak{S}_{m}} \operatorname{sgn} \sigma \cdot M_{i_{\sigma(1)} i_{1}} \ldots M_{i_{\sigma(m)}} i_{m} .
$$

## Symmetrized minors and permanents

For an $N \times N$ matrix $M$ over an algebra, the symmetrized minor of $M$ is

$$
\operatorname{Det}_{m}(M)=\frac{1}{m!} \sum_{i_{1}, \ldots, i_{m}=1}^{N} \sum_{\sigma \in \mathfrak{S}_{m}} \operatorname{sgn} \sigma \cdot M_{i_{\sigma(1)} i_{1}} \ldots M_{i_{\sigma(m)}} i_{m} .
$$

The symmetrized permanent of $M$ is

$$
\operatorname{Per}_{m}(M)=\frac{1}{m!} \sum_{i_{1}, \ldots, i_{m}=1}^{N} \sum_{\sigma \in \mathfrak{S}_{m}} M_{i_{\sigma(1)}} \ldots M_{i_{\sigma(m)} i_{m}} .
$$

Type A

## Type A

For $\mu \in \mathfrak{g l}_{N}^{*}$ we set $\mu_{i j}=\mu\left(E_{i j}\right)$ and recall the matrix

## Type A

For $\mu \in \mathfrak{g l}_{N}^{*}$ we set $\mu_{i j}=\mu\left(E_{i j}\right)$ and recall the matrix

$$
\mu=\left[\begin{array}{ccc}
\mu_{11} & \cdots & \mu_{1 N} \\
\vdots & & \vdots \\
\mu_{N 1} & \cdots & \mu_{N N}
\end{array}\right]
$$

## Type A

For $\mu \in \mathfrak{g l}_{N}^{*}$ we set $\mu_{i j}=\mu\left(E_{i j}\right)$ and recall the matrix

$$
\mu=\left[\begin{array}{ccc}
\mu_{11} & \cdots & \mu_{1 N} \\
\vdots & & \vdots \\
\mu_{N 1} & \cdots & \mu_{N N}
\end{array}\right]
$$

Theorem [V. Futorny and M. 2015]. The subalgebra
$\mathcal{A}_{\mu} \subset \mathrm{U}\left(\mathfrak{g l}_{N}\right)$ is generated by the coefficients of each family of polynomials

## Type A

For $\mu \in \mathfrak{g l}_{N}^{*}$ we set $\mu_{i j}=\mu\left(E_{i j}\right)$ and recall the matrix

$$
\mu=\left[\begin{array}{ccc}
\mu_{11} & \cdots & \mu_{1 N} \\
\vdots & & \vdots \\
\mu_{N 1} & \cdots & \mu_{N N}
\end{array}\right]
$$

Theorem [V. Futorny and M. 2015]. The subalgebra
$\mathcal{A}_{\mu} \subset \mathrm{U}\left(\mathfrak{g l}_{N}\right)$ is generated by the coefficients of each family of polynomials

$$
\operatorname{Det}_{m}(E+t \mu) \quad \text { and } \quad \operatorname{Per}_{m}(E+t \mu), \quad m \geqslant 1 .
$$

If $\mu$ is regular, then the coefficients of each family of polynomials

$$
\operatorname{Det}_{m}(E+t \mu) \quad \text { and } \quad \operatorname{Per}_{m}(E+t \mu), \quad m=1, \ldots, N,
$$

are free generators of the algebra $\mathcal{A}_{\mu}$.

If $\mu$ is regular, then the coefficients of each family of polynomials

$$
\operatorname{Det}_{m}(E+t \mu) \quad \text { and } \quad \operatorname{Per}_{m}(E+t \mu), \quad m=1, \ldots, N,
$$

are free generators of the algebra $\mathcal{A}_{\mu}$.

Moreover, the FFTL-conjecture holds in type $A$ :
$\operatorname{gr} \mathcal{A}_{\mu}=\overline{\mathcal{A}}_{\mu}$ for all $\mu \in \mathfrak{g l}_{N}^{*}$.

Types $B, C, D$

## Types $B, C, D$

Now let $\mathfrak{g}=\mathfrak{o}_{2 n+1}, \quad \mathfrak{s p}_{2 n}$ or $\mathfrak{o}_{2 n}$.

## Types $B, C, D$

Now let $\mathfrak{g}=\mathfrak{o}_{2 n+1}, \quad \mathfrak{s p}_{2 n}$ or $\mathfrak{o}_{2 n}$.

For $\mu \in \mathfrak{g}^{*}$ set $\mu_{i j}=\mu\left(F_{i j}\right)$ and consider the matrix

## Types $B, C, D$

Now let $\mathfrak{g}=\mathfrak{o}_{2 n+1}, \quad \mathfrak{s p}_{2 n}$ or $\mathfrak{o}_{2 n}$.

For $\mu \in \mathfrak{g}^{*}$ set $\mu_{i j}=\mu\left(F_{i j}\right)$ and consider the matrix

$$
\mu=\left[\begin{array}{ccc}
\mu_{11} & \cdots & \mu_{1 N} \\
\vdots & & \vdots \\
\mu_{N 1} & \cdots & \mu_{N N}
\end{array}\right]
$$

Theorem [O. Yakimova and M. 2017].
Suppose that $\mu \in \mathfrak{g}^{*}$ is regular.

## Theorem [O. Yakimova and M. 2017].

Suppose that $\mu \in \mathfrak{g}^{*}$ is regular.

- The coefficients of the polynomials $\operatorname{Det}_{m}(F+t \mu)$ with
$m=2,4, \ldots, 2 n$ are free generators of the algebra $\mathcal{A}_{\mu}$ for
$\mathfrak{g}=\mathfrak{s p}_{2 n}$.


## Theorem [O. Yakimova and M. 2017].

Suppose that $\mu \in \mathfrak{g}^{*}$ is regular.

- The coefficients of the polynomials $\operatorname{Det}_{m}(F+t \mu)$ with $m=2,4, \ldots, 2 n$ are free generators of the algebra $\mathcal{A}_{\mu}$ for $\mathfrak{g}=\mathfrak{s p}_{2 n}$.
- The coefficients of the polynomials $\operatorname{Per}_{m}(F+t \mu)$ with
$m=2,4, \ldots, 2 n$ are free generators of the algebra $\mathcal{A}_{\mu}$ for $\mathfrak{g}=\mathfrak{o}_{2 n+1}$.
- The coefficients of the polynomials $\operatorname{Pf}(F+t \mu)$ and
$\operatorname{Per}_{m}(F+t \mu)$ with $m=2,4, \ldots, 2 n-2$ are free generators of the algebra $\mathcal{A}_{\mu}$ for $\mathfrak{g}=\mathfrak{o}_{2 n}$.
- The coefficients of the polynomials $\operatorname{Pf}(F+t \mu)$ and
$\operatorname{Per}_{m}(F+t \mu)$ with $m=2,4, \ldots, 2 n-2$ are free generators of the algebra $\mathcal{A}_{\mu}$ for $\mathfrak{g}=\mathfrak{o}_{2 n}$.
- Moreover, the FFTL-conjecture holds in type $C$ :
- The coefficients of the polynomials $\operatorname{Pf}(F+t \mu)$ and
$\operatorname{Per}_{m}(F+t \mu)$ with $m=2,4, \ldots, 2 n-2$ are free generators of the algebra $\mathcal{A}_{\mu}$ for $\mathfrak{g}=\mathfrak{o}_{2 n}$.
- Moreover, the FFTL-conjecture holds in type $C$ :

$$
\operatorname{gr} \mathcal{A}_{\mu}=\overline{\mathcal{A}}_{\mu} \text { for all } \mu \in \mathfrak{g}^{*} .
$$

## Quasi-derivations

## Quasi-derivations

The Mishchenko-Fomenko subalgebra $\overline{\mathcal{A}}_{\mu}$ of $\mathrm{S}(\mathfrak{g})$ is generated by the $\mu$-shifts $P_{(i)}$ associated with all invariants $P \in \mathrm{~S}(\mathfrak{g})^{\mathfrak{g}}$ :

## Quasi-derivations

The Mishchenko-Fomenko subalgebra $\overline{\mathcal{A}}_{\mu}$ of $\mathrm{S}(\mathfrak{g})$ is generated by the $\mu$-shifts $P_{(i)}$ associated with all invariants $P \in \mathrm{~S}(\mathfrak{g})^{9}$ :

$$
\begin{aligned}
P\left(X_{1}+t \mu\left(X_{1}\right), \ldots, X_{l}\right. & \left.+t \mu\left(X_{l}\right)\right) \\
& =P_{(0)}+P_{(1)} t+\cdots+P_{(d)} t^{d} .
\end{aligned}
$$

## Quasi-derivations

The Mishchenko-Fomenko subalgebra $\overline{\mathcal{A}}_{\mu}$ of $\mathrm{S}(\mathfrak{g})$ is generated by the $\mu$-shifts $P_{(i)}$ associated with all invariants $P \in \mathrm{~S}(\mathfrak{g})^{\mathfrak{g}}$ :

$$
\begin{aligned}
P\left(X_{1}+t \mu\left(X_{1}\right), \ldots, X_{l}\right. & \left.+t \mu\left(X_{l}\right)\right) \\
& =P_{(0)}+P_{(1)} t+\cdots+P_{(d)} t^{d} .
\end{aligned}
$$

The coefficients are the images of the directional derivatives

$$
\bar{D}_{\mu}: \mathrm{S}(\mathfrak{g}) \rightarrow \mathrm{S}(\mathfrak{g}),
$$

## Quasi-derivations

The Mishchenko-Fomenko subalgebra $\overline{\mathcal{A}}_{\mu}$ of $\mathrm{S}(\mathfrak{g})$ is generated by the $\mu$-shifts $P_{(i)}$ associated with all invariants $P \in \mathrm{~S}(\mathfrak{g})^{\mathfrak{g}}$ :

$$
\begin{aligned}
P\left(X_{1}+t \mu\left(X_{1}\right), \ldots, X_{l}\right. & \left.+t \mu\left(X_{l}\right)\right) \\
& =P_{(0)}+P_{(1)} t+\cdots+P_{(d)} t^{d} .
\end{aligned}
$$

The coefficients are the images of the directional derivatives

$$
\bar{D}_{\mu}: \mathrm{S}(\mathfrak{g}) \rightarrow \mathrm{S}(\mathfrak{g}),
$$

$$
P_{(k)}=\frac{1}{k!} \bar{D}_{\mu}^{k} P .
$$

## Another version of Vinberg's problem:

## Another version of Vinberg's problem:

Can we quantize the directional derivatives $\bar{D}_{\mu}$ to get certain
linear operators

## Another version of Vinberg's problem:

Can we quantize the directional derivatives $\bar{D}_{\mu}$ to get certain
linear operators

$$
D_{\mu}: \mathrm{U}(\mathfrak{g}) \rightarrow \mathrm{U}(\mathfrak{g})
$$

## Another version of Vinberg's problem:

Can we quantize the directional derivatives $\bar{D}_{\mu}$ to get certain
linear operators

$$
D_{\mu}: \mathrm{U}(\mathfrak{g}) \rightarrow \mathrm{U}(\mathfrak{g})
$$

such that iterative applications of $D_{\mu}$ to elements of the center
$\mathrm{Z}(\mathfrak{g})$ of $\mathrm{U}(\mathfrak{g})$ yield elements of the quantum
Mishchenko-Fomenko subalgebra $\mathcal{A}_{\mu}$ ?

Type A

## Type A

The quasi-derivations

$$
\partial_{i j}: \mathrm{U}\left(\mathfrak{g l}_{N}\right) \rightarrow \mathrm{U}\left(\mathfrak{g l}_{N}\right)
$$

quantize the partial derivations $\partial / \partial E_{j i}$ on $\mathrm{S}\left(\mathfrak{g l}_{N}\right)$.

## Type A

The quasi-derivations

$$
\partial_{i j}: \mathrm{U}\left(\mathfrak{g l}_{N}\right) \rightarrow \mathrm{U}\left(\mathfrak{g l}_{N}\right)
$$

quantize the partial derivations $\partial / \partial E_{j i}$ on $\mathrm{S}\left(\mathfrak{g l}_{N}\right)$.
The action of $\partial_{i j}$ is determined by the properties

$$
\partial_{i j}(1)=0, \quad \partial_{i j} E_{k l}=\delta_{k j} \delta_{i l},
$$

## Type A

The quasi-derivations

$$
\partial_{i j}: \mathrm{U}\left(\mathfrak{g l}_{N}\right) \rightarrow \mathrm{U}\left(\mathfrak{g l}_{N}\right)
$$

quantize the partial derivations $\partial / \partial E_{j i}$ on $\mathrm{S}\left(\mathfrak{g l}_{N}\right)$.
The action of $\partial_{i j}$ is determined by the properties

$$
\partial_{i j}(1)=0, \quad \partial_{i j} E_{k l}=\delta_{k j} \delta_{i l},
$$

and the quantum Leibniz rule

$$
\partial_{i j}(f g)=\left(\partial_{i j} f\right) g+f\left(\partial_{i j} g\right)-\sum_{k=1}^{N}\left(\partial_{i k} f\right)\left(\partial_{k j} g\right)
$$

Origins:
[S. Meljanac and Z. Škoda 2007,
D. Gurevich, P. Pyatov and P. Saponov 2012].

Origins:
[S. Meljanac and Z. Škoda 2007,
D. Gurevich, P. Pyatov and P. Saponov 2012].

Set $D=\left[\partial_{i j}\right]$ and $D_{\mu}=\operatorname{tr} \mu D$.

Origins:
[S. Meljanac and Z. Škoda 2007,
D. Gurevich, P. Pyatov and P. Saponov 2012].

Set $D=\left[\partial_{i j}\right]$ and $D_{\mu}=\operatorname{tr} \mu D$.

Theorem [Y. Ikeda and G. Sharygin 2023].

Origins:
[S. Meljanac and Z. Škoda 2007,
D. Gurevich, P. Pyatov and P. Saponov 2012].

Set $D=\left[\partial_{i j}\right]$ and $D_{\mu}=\operatorname{tr} \mu D$.

Theorem [Y. Ikeda and G. Sharygin 2023].
For any element $z \in \mathrm{Z}\left(\mathfrak{g l}_{N}\right)$ and all natural powers $p$, the elements $D_{\mu}^{p} z$ belong to the subalgebra $\mathcal{A}_{\mu}$ of $\mathrm{U}\left(\mathfrak{g l}_{N}\right)$.

Types $B, C, D$

## Types $B, C, D$

Define the quasi-derivations

$$
\partial_{i j}: \mathrm{U}\left(\mathfrak{o}_{N}\right) \rightarrow \mathrm{U}\left(\mathfrak{o}_{N}\right) \quad \text { and } \quad \partial_{i j}: \mathrm{U}\left(\mathfrak{s p}_{2 n}\right) \rightarrow \mathrm{U}\left(\mathfrak{s p}_{2 n}\right)
$$

by restriction from $\mathfrak{g l}_{N}$.

## Types $B, C, D$

Define the quasi-derivations

$$
\partial_{i j}: \mathrm{U}\left(\mathfrak{o}_{N}\right) \rightarrow \mathrm{U}\left(\mathfrak{o}_{N}\right) \quad \text { and } \quad \partial_{i j}: \mathrm{U}\left(\mathfrak{s p}_{2 n}\right) \rightarrow \mathrm{U}\left(\mathfrak{s p}_{2 n}\right)
$$

by restriction from $\mathfrak{g l}_{N}$. For $\mu \in \mathfrak{g}^{*}$ and $D=\left[\partial_{i j}\right]$ set
$D_{\mu}=\operatorname{tr} \mu D$.

## Types $B, C, D$

Define the quasi-derivations

$$
\partial_{i j}: \mathrm{U}\left(\mathfrak{o}_{N}\right) \rightarrow \mathrm{U}\left(\mathfrak{o}_{N}\right) \quad \text { and } \quad \partial_{i j}: \mathrm{U}\left(\mathfrak{s p}_{2 n}\right) \rightarrow \mathrm{U}\left(\mathfrak{s p}_{2 n}\right)
$$

by restriction from $\mathfrak{g l}_{N}$. For $\mu \in \mathfrak{g}^{*}$ and $D=\left[\partial_{i j}\right]$ set
$D_{\mu}=\operatorname{tr} \mu D$.

Theorem [Y. Ikeda, M. and G. Sharygin 2023].
The elements $D_{\mu}^{p} \operatorname{Det}_{m}(F), \quad p=0,1, \ldots, m-1$, with
$m=2,4, \ldots, 2 n$, generate the algebra $\mathcal{A}_{\mu}$ in type $C$.

The elements $D_{\mu}^{p} \operatorname{Per}_{m}(F), \quad p=0,1, \ldots, m-1$, with $m=2,4, \ldots, 2 n$ generate the algebra $\mathcal{A}_{\mu}$ in type $B$.

The elements $D_{\mu}^{p} \operatorname{Per}_{m}(F), \quad p=0,1, \ldots, m-1$, with $m=2,4, \ldots, 2 n$ generate the algebra $\mathcal{A}_{\mu}$ in type $B$.

The elements $D_{\mu}^{p} \operatorname{Per}_{m}(F), \quad p=0,1, \ldots, m-1$, with $m=2,4, \ldots, 2 n-2$, together with $D_{\mu}^{p} \operatorname{Pf} F, \quad p=0,1, \ldots, n-1$, generate the algebra $\mathcal{A}_{\mu}$ in type $D$.

The elements $D_{\mu}^{p} \operatorname{Per}_{m}(F), \quad p=0,1, \ldots, m-1$, with
$m=2,4, \ldots, 2 n$ generate the algebra $\mathcal{A}_{\mu}$ in type $B$.

The elements $D_{\mu}^{p} \operatorname{Per}_{m}(F), \quad p=0,1, \ldots, m-1$, with
$m=2,4, \ldots, 2 n-2$, together with $D_{\mu}^{p} \operatorname{Pf} F, \quad p=0,1, \ldots, n-1$, generate the algebra $\mathcal{A}_{\mu}$ in type $D$.

Moreover, in all cases, if $\mu \in \mathfrak{g}^{*}$ is regular, then each family is algebraically independent.

