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The Yangian for gly is the associative algebra over C with
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and the defining relations
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Yangian for gl

The Yangian for gly is the associative algebra over C with
(1) 42

countably many generators 1 *, ;. ...

wherei,j=1,...,N,

and the defining relations
r+1 s+1 K
0 = ) = ) =
where r,s =0,1,... and ti(jo) = 0jj.

This algebra is denoted by Y(gly).
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Introduce the formal generating series

tl/(u) = 61] + t(l)u_l + l(z)u_2 + ... € Y(g[N)Hu—l]]

i i

The defining relations take the form

(u — V) [tij(u), l‘kl(\/)} = tkj(u) l,‘[(V) — tkj(v) l,‘[(u) :

equate the coefficients of u="v*.
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Introduce the permutation operator

N
P=Y ¢;®e; € EndC" ® EndC",
ij=1

where ¢; € End C" are the standard matrix units.

The rational function
Ru)=1—Pu""
with values in End C" @ End C" is called the Yang R-matrix.

It satisfies the Yang—Baxter equation.
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Consider the algebra
EndC" ® End CY @ Y(gly)[[u™"]]

and introduce its elements by

N N
Ti(u) = Z ;i @1 @t;(u) and Tr(u) = Z 1 ® e ® t(u).
Lj=1 ij=1

The defining relations of the Yangian Y(gly) can be written in

the form of RTT-relation [Faddeev’s school, 1980s]

R(u—v)Ti(u) To(v) = To(v) Ty (1) R(u — v).
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Classification theorem

A representation L of the Yangian Y(gly) is called a highest
weight representation if there exists a nonzero vector £ € L

such that L is generated by ¢ and

tij(u) £ =0 for 1<i

<
t,-,'(u)g = A,(u)g for 1<i< N,

for some formal series



Let A(u) = (A1 (u),...,\v(u)) be an arbitrary tuple of formal

series.



Let A(u) = (A1 (u),...,\v(u)) be an arbitrary tuple of formal

series.

The Verma module M(A(u)) is the quotient of Y(gly) by the left
ideal generated by all the coefficients of the series #;(u) for

1 <i<j<Nandt(u)— \(u)for1 <i<N.



Let A(u) = (A1 (u),...,\v(u)) be an arbitrary tuple of formal

series.

The Verma module M(A(u)) is the quotient of Y(gly) by the left
ideal generated by all the coefficients of the series #;(u) for

1 <i<j<Nandt(u)— \(u)for1 <i<N.

The irreducible highest weight representation L(A(«)) of Y(gly)
with the highest weight A(u) is the quotient of the Verma

module M(\(u)) by the unique maximal proper submodule.
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Theorem. Every finite-dimensional irreducible representation of
the Yangian Y(gly) is isomorphic to a unique irreducible highest

weight representation L(A(u)).

The irreducible highest weight representation L(A(u)) of the

Yangian Y(gly) is finite-dimensional if and only if

M) Plutd) oy
Ait1(u) Pi(u)

for certain monic polynomials P;(u), ..., Py—i(u) in u.

Every tuple (P (u),...,Py—i(u)) arises in this way.

[V. Tarasov 1985, V. Drinfeld 1988].
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Super Yangians

Consider the Z,-graded vector space CV?" with the canonical

basis ey, es,...,eniom. S€ti’ =N +2m —i+ 1.

The vector e; has the parity = mod 2 and

0 for i=m+1,...,(m+1),

The endomorphism algebra End CV? is equipped with

Z,-gradation, the parity of the matrix unit e;; is 7+ 7 mod 2.
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A standard basis of the Lie superalgebra gly,,, is formed by
elements Ej; of parity 7+ 7 mod 2 with the commutation
relations

[Ej, E] = 8y Ext — 8 Eg(=1) TG,

The orthosymplectic Lie superalgebra ospy,,,, is the subalgebra

of glyp,,, spanned by the elements
F;j = Ej — Epy(—1)77 0,0;,
where

1 for i=1,...,N+m,

—1  for i=N+m+1,...,N+2m.



Presentation of ospy,,: even part oy & sp,,, is
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The permutation operator P takes the form

N-+2m B
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The permutation operator P takes the form

N-+2m B
P= Z ej @ ¢ji(—1)7 € EndCVP?*" @ End CVP".
ij=1
Set

N+2m
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The permutation operator P takes the form

N-+2m B
P= Z ej @ ¢ji(—1)7 € EndCVP?*" @ End CVP".
ij=1
Set

N+2m
Q=Y ej®esy(—1)7 60 € EndCV*" @ End CVP".
ij=1

The R-matrix associated with ospy s, is the rational function in u
given by

P
Ru)=1—— -~ —m— 1
(u) u+u—/<;’ K 5 m




The permutation operator P takes the form

N+2m B
P= Z €jj eji(_l)] € End (CN|2m ® End (CN|2m.
ij=1
Set

N+2m
Q=Y ej®esy(—1)7 60 € EndCV*" @ End CVP".
ij=1

The R-matrix associated with ospy s, is the rational function in u

given by
0 N

k=——m-—1.
u—rK 2

P
Ru)=1——
W=1-"+

[A. B. Zamolodchikov and Al. B. Zamolodchikov, 1979]
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The extended Yangian X(ospy)»,) @s a Z,-graded algebra with
generators t ) of parity 74+ 7 mod 2, where 1 <i,j <N +2m

andr=1,2,..., satisfying the following defining relations.
Introduce the formal series
tij(u) = 05 + Zty =€ X(ospyjom) [ 1]
and combine them into the matrix T'(u) = [1;j(u)].
The defining relations are given by the RTT-relation
R(u—v) T\ (u) Tr(v) = To(v) Ty (u) R(u — v).

[D. Arnaudon, J. Avan, N. Crampé, L. Frappat, E. Ragoucy, 03]
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Verma modules

Let A(u) = (Ai(u), ..., A (u)) be an arbitrary tuple of series.

The Verma module M(A(u)) is the quotient of X(ospy»,,) by the
left ideal generated by all the coefficients of the series 7;(u) for

1 <i<j<landi(u) —N(u) for1 <i< 1.

Theorem. The Verma module M(A(«)) is nonzero if and only if

forl <i<m+N/2.
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The irreducible highest weight representation L(A(u)) of
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Hence we can re-define the highest weight by

)‘(u) = ()‘l(u>a ceey )\m+n+1(u))
forN =2n-+1and N = 2n.

The irreducible highest weight representation L(A(u)) of
X(ospyom) is the quotient of the nonzero Verma module

M(X(u)) by the unique maximal proper submodule.

Theorem. Every finite-dimensional irreducible representation of
the Yangian X(ospy»,,) is isomorphic to a unique irreducible

highest weight representation L(A(«)).
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Open problem. Find necessary and sufficient conditions on

A(u) for the representation L(\(u)) to be finite-dimensional.

The same problem is open for

the queer and periplectic Yangians.

Work in progress and partial results:

N. Guay, B. Kettle, E. Poletaeva, V. Serganova, ...

Earlier results for the Yangian Y (gly):

M. Nazarov 1991, R. Zhang 1996, A. M. 2022.
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Solution for osp;,

Definition. For each a € C, the elementary module

L(a) = L(A(u)) over the Yangian X(osp,,)
is associated with the highest weight A(u) = (A1 (), A2 (u)),

M) =1+au", Ao (u) = 1.



Solution for osp;,
Definition. For each a € C, the elementary module
L(a) = L(A(u)) over the Yangian X(osp,,)
is associated with the highest weight A(u) = (A1 (), A2 (u)),

M) =1+au", Xo(u) = 1.

The solution relies on an explicit construction

of the modules L(«).
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Small Verma modules

Let K be the submodule of M(A(u)) generated by all vectors
A¢ for r>2 and (tgrl) + (o — 1/2)t§r1_1))£ for r>3,

where ¢ is the highest vector.

The small Verma module M(«) is the quotient M(\(u))/K.

Proposition.  The elementary module L(«) is a quotient of the

small Verma module M(«).



Set Tjj(u) = u(u+ o —1/2) t;j(u).
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Set Tjj(u) = u(u + a —1/2) t;j(u). These operators on the small

Verma module M(«) are polynomials in u.

For any r,s € Z introduce vectors in M(«) by

§rs = Tzl(—a— r—|—3/2) . ..Tzl(—Oz — 1/2)T21(—O¢—|— 1/2)

XTh(—a—s+1)... T (—a—1)T(—a)&.

Proposition.  For any a € C the vectors &, with 0 < r < s form

a basis of M(«).

20



Basis diagram of M(«)

21



Basis diagram of M(«)

Horizontal levels are osp,-weight spaces:

21



Basis diagram of M(«)

Horizontal levels are osp,-weight spaces:

21



Basis diagram of M(«)

Horizontal levels are osp,-weight spaces:

€00
€o1
€02
€03
€oa
€os
€06
o7

0511
ASE

. 522
o &3

o &5
o &

21
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Submodules of M(«)

Theorem.

» The X(osp,;)-module M () is irreducible if and only if
—a¢Ziand —a+1/2¢ 7.

> The X(osp,;)-module L(«) is finite-dimensional if and only

if —a=k € Z,. Inthis case,

dim L(—k) = (k : 2) |

22



Suppose that —a = k € Z .. The vector &1 generates an

X(osp|,)-submodule of M(—k):

23



Suppose that —a = k € Z .. The vector &1 generates an

X(osp|,)-submodule of M(—k):

23



Suppose that —a = k € Z .. The vector &1 generates an

X(osp|,)-submodule of M(—k):

504

23
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504
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For any given p € C denote by V() the irreducible highest
weight module over osp;|, generated by a nonzero vector £

such that Fj;£ = p€ and Fip€ = 0.

The module V(u) is finite-dimensional if and only if € Z . In

that case, dim V(u) =2 + 1.

Forany k € Z ;. we have

In the example,
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Recall that A(u) = (A; (1), . . ., A1 ().

Theorem. The representation L(A(u)) is finite-dimensional if
and only if

Aipi(u)  Pi(ut1)
Ai(l/t) P,-(u) ’

i=1,...,m,

for some monic polynomials P;(u) in u.
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Representations of X(0sp; )

Recall that A(u) = (A; (1), . . ., A1 ().

Theorem. The representation L(A(u)) is finite-dimensional if

and only if

AH_l(I/t) N P,‘(M"f‘ 1)

= =1,...
Al(u) Pl(u) ) l ) 7m7

for some monic polynomials P;(u) in u.

Every tuple (Py(u),...,P,(u)) arises in this way.
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Representations of X(0sp; )

Recall that A(u) = (A; (1), . . ., A1 ().

Theorem. The representation L(A(u)) is finite-dimensional if

and only if

Aipi(u)  Pi(ut1)
Ai(l/t) P,-(u) ’

i=1,...,m,
for some monic polynomials P;(u) in u.
Every tuple (Py(u),...,P,(u)) arises in this way.

Commun. Math. Phys. 398 (2023), 541-571.
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Example: m = 1. For the elementary module L(—k) we have

Mu)=1—ku ', M) =1
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Example: m = 1. For the elementary module L(—k) we have
Mu)=1—ku ', M) =1

The Drinfeld polynomial P(u) is found from the relation

Ao(u)  Plu+ 1).

A1 (u) P(u)
Hence,
Plu+1) u
Plu)  u—k
and so

27



Representations of X(0sp, )

28



Representations of X(0sp, )

We now have A(u) = (A (u), ..., Auto2(u)).
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Representations of X(o0sp,,)
We now have A(u) = (A (u), ..., Auto2(u)).
Theorem. The representation L(A(u)) is finite-dimensional if

and only if there exist monic polynomials

O(u),Q(u), Py(u), ..., Ppy1(u) in u such that

A1 (u) _ O(u)

(u)  Ou)’
Air1(u)  Pi(u+1) . "
Nw) P for 2,...,m,

and

A2 (1) _ P (u + 2), Alg. Rep. Th., online.
)\erl(u) PmJFl (u)
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