Representations of the orthosymplectic Yangian

Alexander Molev

University of Sydney

Plan

• Yangian for \mathfrak{gl}_N and its representations

• Yangian for $\mathfrak{osp}_{N|2m}$ in the *RTT* presentation

- Yangian for \mathfrak{gl}_N and its representations
- Yangian for $\mathfrak{osp}_{N|2m}$ in the *RTT* presentation
- Explicit construction of representations of Y(osp_{1|2})

- Yangian for \mathfrak{gl}_N and its representations
- Yangian for $\mathfrak{osp}_{N|2m}$ in the *RTT* presentation
- Explicit construction of representations of Y(osp_{1|2})
- Classification theorems for osp_{1|2m} and osp_{2|2m}

Yangian for \mathfrak{gl}_N

Yangian for \mathfrak{gl}_N

The Yangian for \mathfrak{gl}_N is the associative algebra over \mathbb{C} with countably many generators $t_{ij}^{(1)}, t_{ij}^{(2)}, \ldots$ where $i, j = 1, \ldots, N$, and the defining relations

$$\left[t_{ij}^{(r+1)}, t_{kl}^{(s)}\right] - \left[t_{ij}^{(r)}, t_{kl}^{(s+1)}\right] = t_{kj}^{(r)} t_{il}^{(s)} - t_{kj}^{(s)} t_{il}^{(r)},$$

where r, s = 0, 1, ... and $t_{ij}^{(0)} = \delta_{ij}$.

Yangian for \mathfrak{gl}_N

The Yangian for \mathfrak{gl}_N is the associative algebra over \mathbb{C} with countably many generators $t_{ij}^{(1)}, t_{ij}^{(2)}, \ldots$ where $i, j = 1, \ldots, N$, and the defining relations

$$\left[t_{ij}^{(r+1)}, t_{kl}^{(s)}\right] - \left[t_{ij}^{(r)}, t_{kl}^{(s+1)}\right] = t_{kj}^{(r)} t_{il}^{(s)} - t_{kj}^{(s)} t_{il}^{(r)},$$

where r, s = 0, 1, ... and $t_{ij}^{(0)} = \delta_{ij}$.

This algebra is denoted by $Y(\mathfrak{gl}_N)$.

Introduce the formal generating series

$$t_{ij}(u) = \delta_{ij} + t_{ij}^{(1)}u^{-1} + t_{ij}^{(2)}u^{-2} + \dots \in \mathbf{Y}(\mathfrak{gl}_N)[[u^{-1}]].$$

Introduce the formal generating series

$$t_{ij}(u) = \delta_{ij} + t_{ij}^{(1)}u^{-1} + t_{ij}^{(2)}u^{-2} + \dots \in \mathbf{Y}(\mathfrak{gl}_N)[[u^{-1}]].$$

The defining relations take the form

$$(u - v) [t_{ij}(u), t_{kl}(v)] = t_{kj}(u) t_{il}(v) - t_{kj}(v) t_{il}(u) :$$

equate the coefficients of $u^{-r}v^{-s}$.

Introduce the permutation operator

$$P = \sum_{i,j=1}^{N} e_{ij} \otimes e_{ji} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N},$$

where $e_{ij} \in \text{End} \mathbb{C}^N$ are the standard matrix units.

Introduce the permutation operator

$$P = \sum_{i,j=1}^{N} e_{ij} \otimes e_{ji} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N},$$

where $e_{ij} \in \text{End} \mathbb{C}^N$ are the standard matrix units.

The rational function

 $R(u) = 1 - P u^{-1}$

with values in End $\mathbb{C}^N \otimes \text{End} \mathbb{C}^N$ is called the Yang *R*-matrix.

Introduce the permutation operator

$$P = \sum_{i,j=1}^{N} e_{ij} \otimes e_{ji} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N},$$

where $e_{ij} \in \text{End} \mathbb{C}^N$ are the standard matrix units.

The rational function

 $R(u) = 1 - P u^{-1}$

with values in End $\mathbb{C}^N \otimes \text{End} \mathbb{C}^N$ is called the Yang *R*-matrix.

It satisfies the Yang–Baxter equation.

Consider the algebra

$\operatorname{End} \mathbb{C}^N \otimes \operatorname{End} \mathbb{C}^N \otimes \operatorname{Y}(\mathfrak{gl}_N)[[u^{-1}]]$

Consider the algebra

End
$$\mathbb{C}^N \otimes$$
 End $\mathbb{C}^N \otimes$ Y $(\mathfrak{gl}_N)[[u^{-1}]]$

and introduce its elements by

$$T_1(u) = \sum_{i,j=1}^N e_{ij} \otimes 1 \otimes t_{ij}(u)$$
 and $T_2(u) = \sum_{i,j=1}^N 1 \otimes e_{ij} \otimes t_{ij}(u).$

Consider the algebra

End
$$\mathbb{C}^N \otimes$$
 End $\mathbb{C}^N \otimes$ Y($\mathfrak{gl}_N)[[u^{-1}]]$

and introduce its elements by

$$T_1(u) = \sum_{i,j=1}^N e_{ij} \otimes 1 \otimes t_{ij}(u)$$
 and $T_2(u) = \sum_{i,j=1}^N 1 \otimes e_{ij} \otimes t_{ij}(u).$

The defining relations of the Yangian $Y(\mathfrak{gl}_N)$ can be written in the form of *RTT*-relation [Faddeev's school, 1980s]

$$R(u - v) T_1(u) T_2(v) = T_2(v) T_1(u) R(u - v).$$

A representation *L* of the Yangian $Y(\mathfrak{gl}_N)$ is called a highest weight representation if there exists a nonzero vector $\xi \in L$ such that *L* is generated by ξ

A representation *L* of the Yangian $Y(\mathfrak{gl}_N)$ is called a highest weight representation if there exists a nonzero vector $\xi \in L$ such that *L* is generated by ξ and

> $t_{ij}(u) \xi = 0$ for $1 \le i < j \le N$, $t_{ii}(u) \xi = \lambda_i(u) \xi$ for $1 \le i \le N$,

A representation *L* of the Yangian $Y(\mathfrak{gl}_N)$ is called a highest weight representation if there exists a nonzero vector $\xi \in L$ such that *L* is generated by ξ and

$$t_{ij}(u) \xi = 0$$
 for $1 \le i < j \le N$,
 $t_{ii}(u) \xi = \lambda_i(u) \xi$ for $1 \le i \le N$,

for some formal series

$$\lambda_i(u) = 1 + \lambda_i^{(1)} u^{-1} + \lambda_i^{(2)} u^{-2} + \dots, \qquad \lambda_i^{(r)} \in \mathbb{C}.$$

Let $\lambda(u) = (\lambda_1(u), \dots, \lambda_N(u))$ be an arbitrary tuple of formal series.

Let $\lambda(u) = (\lambda_1(u), \dots, \lambda_N(u))$ be an arbitrary tuple of formal series.

The Verma module $M(\lambda(u))$ is the quotient of $Y(\mathfrak{gl}_N)$ by the left ideal generated by all the coefficients of the series $t_{ij}(u)$ for $1 \leq i < j \leq N$ and $t_{ii}(u) - \lambda_i(u)$ for $1 \leq i \leq N$.

Let $\lambda(u) = (\lambda_1(u), \dots, \lambda_N(u))$ be an arbitrary tuple of formal series.

The Verma module $M(\lambda(u))$ is the quotient of $Y(\mathfrak{gl}_N)$ by the left ideal generated by all the coefficients of the series $t_{ij}(u)$ for $1 \leq i < j \leq N$ and $t_{ii}(u) - \lambda_i(u)$ for $1 \leq i \leq N$.

The irreducible highest weight representation $L(\lambda(u))$ of $Y(\mathfrak{gl}_N)$ with the highest weight $\lambda(u)$ is the quotient of the Verma module $M(\lambda(u))$ by the unique maximal proper submodule.

Theorem. Every finite-dimensional irreducible representation of the Yangian $Y(\mathfrak{gl}_N)$ is isomorphic to a unique irreducible highest weight representation $L(\lambda(u))$.

Theorem. Every finite-dimensional irreducible representation of the Yangian $Y(\mathfrak{gl}_N)$ is isomorphic to a unique irreducible highest weight representation $L(\lambda(u))$.

The irreducible highest weight representation $L(\lambda(u))$ of the Yangian $Y(\mathfrak{gl}_N)$ is finite-dimensional if and only if

$$\frac{\lambda_i(u)}{\lambda_{i+1}(u)} = \frac{P_i(u+1)}{P_i(u)}, \qquad i=1,\ldots,N-1,$$

Theorem. Every finite-dimensional irreducible representation of the Yangian $\Upsilon(\mathfrak{gl}_N)$ is isomorphic to a unique irreducible highest weight representation $L(\lambda(u))$.

The irreducible highest weight representation $L(\lambda(u))$ of the Yangian $Y(\mathfrak{gl}_N)$ is finite-dimensional if and only if

$$\frac{\lambda_i(u)}{\lambda_{i+1}(u)} = \frac{P_i(u+1)}{P_i(u)}, \qquad i=1,\ldots,N-1,$$

for certain monic polynomials $P_1(u), \ldots, P_{N-1}(u)$ in *u*.

Theorem. Every finite-dimensional irreducible representation of the Yangian $\Upsilon(\mathfrak{gl}_N)$ is isomorphic to a unique irreducible highest weight representation $L(\lambda(u))$.

The irreducible highest weight representation $L(\lambda(u))$ of the Yangian $Y(\mathfrak{gl}_N)$ is finite-dimensional if and only if

$$\frac{\lambda_i(u)}{\lambda_{i+1}(u)} = \frac{P_i(u+1)}{P_i(u)}, \qquad i=1,\ldots,N-1,$$

for certain monic polynomials $P_1(u), \ldots, P_{N-1}(u)$ in *u*.

Every tuple $(P_1(u), \ldots, P_{N-1}(u))$ arises in this way.

Theorem. Every finite-dimensional irreducible representation of the Yangian $\Upsilon(\mathfrak{gl}_N)$ is isomorphic to a unique irreducible highest weight representation $L(\lambda(u))$.

The irreducible highest weight representation $L(\lambda(u))$ of the Yangian $Y(\mathfrak{gl}_N)$ is finite-dimensional if and only if

$$\frac{\lambda_i(u)}{\lambda_{i+1}(u)} = \frac{P_i(u+1)}{P_i(u)}, \qquad i=1,\ldots,N-1,$$

for certain monic polynomials $P_1(u), \ldots, P_{N-1}(u)$ in *u*.

Every tuple $(P_1(u), \ldots, P_{N-1}(u))$ arises in this way.

[V. Tarasov 1985, V. Drinfeld 1988].

Consider the \mathbb{Z}_2 -graded vector space $\mathbb{C}^{N|2m}$ with the canonical basis $e_1, e_2, \ldots, e_{N+2m}$.

Consider the \mathbb{Z}_2 -graded vector space $\mathbb{C}^{N|2m}$ with the canonical basis $e_1, e_2, \ldots, e_{N+2m}$. Set i' = N + 2m - i + 1.

Consider the \mathbb{Z}_2 -graded vector space $\mathbb{C}^{N|2m}$ with the canonical basis $e_1, e_2, \ldots, e_{N+2m}$. Set i' = N + 2m - i + 1.

The vector e_i has the parity $\overline{i} \mod 2$ and

$$\bar{\imath} = \begin{cases} 1 & \text{for } i = 1, \dots, m, m', \dots, 1', \\ 0 & \text{for } i = m + 1, \dots, (m + 1)', \end{cases}$$

Consider the \mathbb{Z}_2 -graded vector space $\mathbb{C}^{N|2m}$ with the canonical basis $e_1, e_2, \ldots, e_{N+2m}$. Set i' = N + 2m - i + 1.

The vector e_i has the parity $\overline{i} \mod 2$ and

$$\bar{\imath} = \begin{cases} 1 & \text{for } i = 1, \dots, m, m', \dots, 1', \\ 0 & \text{for } i = m + 1, \dots, (m + 1)', \end{cases}$$

The endomorphism algebra $\operatorname{End} \mathbb{C}^{N|2m}$ is equipped with \mathbb{Z}_2 -gradation, the parity of the matrix unit e_{ij} is $\overline{i} + \overline{j} \mod 2$.

A standard basis of the Lie superalgebra $\mathfrak{gl}_{N|2m}$ is formed by elements E_{ij} of parity $\overline{\imath} + \overline{\jmath} \mod 2$ with the commutation relations

$$[E_{ij}, E_{kl}] = \delta_{kj} E_{il} - \delta_{il} E_{kj} (-1)^{(\bar{\imath} + \bar{\jmath})(k+l)}.$$

A standard basis of the Lie superalgebra $\mathfrak{gl}_{N|2m}$ is formed by elements E_{ij} of parity $\overline{\imath} + \overline{\jmath} \mod 2$ with the commutation relations

$$[E_{ij}, E_{kl}] = \delta_{kj} E_{il} - \delta_{il} E_{kj} (-1)^{(\bar{\imath}+\bar{\jmath})(\bar{k}+\bar{l})}.$$

The orthosymplectic Lie superalgebra $\mathfrak{osp}_{N|2m}$ is the subalgebra of $\mathfrak{gl}_{N|2m}$ spanned by the elements

$$F_{ij} = E_{ij} - E_{j'i'} (-1)^{\bar{\imath}\bar{\jmath} + \bar{\imath}} \theta_i \theta_j,$$

A standard basis of the Lie superalgebra $\mathfrak{gl}_{N|2m}$ is formed by elements E_{ij} of parity $\overline{\imath} + \overline{\jmath} \mod 2$ with the commutation relations

$$[E_{ij}, E_{kl}] = \delta_{kj} E_{il} - \delta_{il} E_{kj} (-1)^{(\bar{\imath} + \bar{\jmath})(k+l)}.$$

The orthosymplectic Lie superalgebra $\mathfrak{osp}_{N|2m}$ is the subalgebra of $\mathfrak{gl}_{N|2m}$ spanned by the elements

$$F_{ij} = E_{ij} - E_{j'i'} (-1)^{\bar{\imath}\,\bar{\jmath}+\bar{\imath}}\,\theta_i\theta_j,$$

where

1

$$\theta_i = \begin{cases} 1 & \text{for } i = 1, \dots, N + m, \\ -1 & \text{for } i = N + m + 1, \dots, N + 2m. \end{cases}$$

Presentation of $\mathfrak{osp}_{N|2m}$: even part $\mathfrak{o}_N \oplus \mathfrak{sp}_{2m}$ is

Presentation of $\mathfrak{osp}_{N|2m}$: even part $\mathfrak{o}_N \oplus \mathfrak{sp}_{2m}$ is

$$P = \sum_{i,j=1}^{N+2m} e_{ij} \otimes e_{ji} (-1)^{\overline{j}} \in \operatorname{End} \mathbb{C}^{N|2m} \otimes \operatorname{End} \mathbb{C}^{N|2m}.$$

$$P = \sum_{i,j=1}^{N+2m} e_{ij} \otimes e_{ji} (-1)^{\overline{j}} \in \operatorname{End} \mathbb{C}^{N|2m} \otimes \operatorname{End} \mathbb{C}^{N|2m}.$$

Set

$$Q = \sum_{i,j=1}^{N+2m} e_{ij} \otimes e_{i'j'} (-1)^{\overline{\imath j}} \theta_i \theta_j \in \operatorname{End} \mathbb{C}^{N|2m} \otimes \operatorname{End} \mathbb{C}^{N|2m}.$$

$$P = \sum_{i,j=1}^{N+2m} e_{ij} \otimes e_{ji} (-1)^{\overline{j}} \in \operatorname{End} \mathbb{C}^{N|2m} \otimes \operatorname{End} \mathbb{C}^{N|2m}.$$

Set

$$Q = \sum_{i,j=1}^{N+2m} e_{ij} \otimes e_{i'j'} (-1)^{\overline{\imath j}} \theta_i \theta_j \in \operatorname{End} \mathbb{C}^{N|2m} \otimes \operatorname{End} \mathbb{C}^{N|2m}.$$

The *R*-matrix associated with $\mathfrak{osp}_{N|2m}$ is the rational function in *u* given by

$$R(u) = 1 - \frac{P}{u} + \frac{Q}{u - \kappa}, \qquad \kappa = \frac{N}{2} - m - 1.$$

$$P = \sum_{i,j=1}^{N+2m} e_{ij} \otimes e_{ji} (-1)^{\bar{j}} \in \operatorname{End} \mathbb{C}^{N|2m} \otimes \operatorname{End} \mathbb{C}^{N|2m}.$$

Set

$$Q = \sum_{i,j=1}^{N+2m} e_{ij} \otimes e_{i'j'} (-1)^{\overline{\imath j}} \theta_i \theta_j \in \operatorname{End} \mathbb{C}^{N|2m} \otimes \operatorname{End} \mathbb{C}^{N|2m}.$$

The *R*-matrix associated with $\mathfrak{osp}_{N|2m}$ is the rational function in *u* given by

$$R(u) = 1 - \frac{P}{u} + \frac{Q}{u - \kappa}, \qquad \kappa = \frac{N}{2} - m - 1.$$

[A. B. Zamolodchikov and Al. B. Zamolodchikov, 1979]

Introduce the formal series

$$t_{ij}(u) = \delta_{ij} + \sum_{r=1}^{\infty} t_{ij}^{(r)} u^{-r} \in \mathcal{X}(\mathfrak{osp}_{N|2m})[[u^{-1}]]$$

and combine them into the matrix $T(u) = [t_{ij}(u)]$.

Introduce the formal series

$$t_{ij}(u) = \delta_{ij} + \sum_{r=1}^{\infty} t_{ij}^{(r)} u^{-r} \in \mathcal{X}(\mathfrak{osp}_{N|2m})[[u^{-1}]]$$

and combine them into the matrix $T(u) = [t_{ij}(u)]$.

The defining relations are given by the *RTT*-relation

$$R(u - v) T_1(u) T_2(v) = T_2(v) T_1(u) R(u - v).$$

Introduce the formal series

$$t_{ij}(u) = \delta_{ij} + \sum_{r=1}^{\infty} t_{ij}^{(r)} u^{-r} \in \mathcal{X}(\mathfrak{osp}_{N|2m})[[u^{-1}]]$$

and combine them into the matrix $T(u) = [t_{ij}(u)]$.

The defining relations are given by the RTT-relation

$$R(u - v) T_1(u) T_2(v) = T_2(v) T_1(u) R(u - v).$$

[D. Arnaudon, J. Avan, N. Crampé, L. Frappat, E. Ragoucy, '03]

Let $\lambda(u) = (\lambda_1(u), \dots, \lambda_{1'}(u))$ be an arbitrary tuple of series.

Let $\lambda(u) = (\lambda_1(u), \dots, \lambda_{1'}(u))$ be an arbitrary tuple of series.

The Verma module $M(\lambda(u))$ is the quotient of $X(\mathfrak{osp}_{N|2m})$ by the left ideal generated by all the coefficients of the series $t_{ij}(u)$ for $1 \leq i < j \leq 1'$ and $t_{ii}(u) - \lambda_i(u)$ for $1 \leq i \leq 1'$.

Let $\lambda(u) = (\lambda_1(u), \dots, \lambda_{1'}(u))$ be an arbitrary tuple of series.

The Verma module $M(\lambda(u))$ is the quotient of $X(\mathfrak{osp}_{N|2m})$ by the left ideal generated by all the coefficients of the series $t_{ij}(u)$ for $1 \leq i < j \leq 1'$ and $t_{ii}(u) - \lambda_i(u)$ for $1 \leq i \leq 1'$.

Theorem. The Verma module $M(\lambda(u))$ is nonzero if and only if

$$\lambda_{i}(u) \lambda_{i'} \left(u - \frac{N}{2} - (-1)^{\overline{i}} (m-i) + 1 \right)$$

= $\lambda_{i+1}(u) \lambda_{(i+1)'} \left(u - \frac{N}{2} - (-1)^{\overline{i}} (m-i) + 1 \right)$

for $1 \leq i < m + N/2$.

Hence we can re-define the highest weight by

$$\lambda(u) = (\lambda_1(u), \ldots, \lambda_{m+n+1}(u))$$

for N = 2n + 1 and N = 2n.

Hence we can re-define the highest weight by

$$\lambda(u) = (\lambda_1(u), \ldots, \lambda_{m+n+1}(u))$$

for N = 2n + 1 and N = 2n.

The irreducible highest weight representation $L(\lambda(u))$ of $X(\mathfrak{osp}_{N|2m})$ is the quotient of the nonzero Verma module $M(\lambda(u))$ by the unique maximal proper submodule.

Hence we can re-define the highest weight by

$$\lambda(u) = (\lambda_1(u), \ldots, \lambda_{m+n+1}(u))$$

for N = 2n + 1 and N = 2n.

The irreducible highest weight representation $L(\lambda(u))$ of $X(\mathfrak{osp}_{N|2m})$ is the quotient of the nonzero Verma module $M(\lambda(u))$ by the unique maximal proper submodule.

Theorem. Every finite-dimensional irreducible representation of the Yangian $X(\mathfrak{osp}_{N|2m})$ is isomorphic to a unique irreducible highest weight representation $L(\lambda(u))$.

The same problem is open for

the queer and periplectic Yangians.

The same problem is open for

the queer and periplectic Yangians.

Work in progress and partial results:

N. Guay, B. Kettle, E. Poletaeva, V. Serganova, ...

The same problem is open for

the queer and periplectic Yangians.

Work in progress and partial results:

N. Guay, B. Kettle, E. Poletaeva, V. Serganova, ...

Earlier results for the Yangian $Y(\mathfrak{gl}_{N|M})$:

The same problem is open for the queer and periplectic Yangians.

Work in progress and partial results:

N. Guay, B. Kettle, E. Poletaeva, V. Serganova, ...

Earlier results for the Yangian $Y(\mathfrak{gl}_{N|M})$:

M. Nazarov 1991, R. Zhang 1996, A. M. 2022.

Definition. For each $\alpha \in \mathbb{C}$, the elementary module $L(\alpha) = L(\lambda(u))$ over the Yangian $X(\mathfrak{osp}_{1|2})$

Definition. For each $\alpha \in \mathbb{C}$, the elementary module $L(\alpha) = L(\lambda(u))$ over the Yangian $X(\mathfrak{osp}_{1|2})$

is associated with the highest weight $\lambda(u) = (\lambda_1(u), \lambda_2(u))$,

$$\lambda_1(u) = 1 + \alpha u^{-1}, \qquad \lambda_2(u) = 1.$$

Definition. For each $\alpha \in \mathbb{C}$, the elementary module $L(\alpha) = L(\lambda(u))$ over the Yangian $X(\mathfrak{osp}_{1|2})$

is associated with the highest weight $\lambda(u) = (\lambda_1(u), \lambda_2(u))$,

$$\lambda_1(u) = 1 + \alpha u^{-1}, \qquad \lambda_2(u) = 1.$$

The solution relies on an explicit construction of the modules $L(\alpha)$.

Let *K* be the submodule of $M(\lambda(u))$ generated by all vectors

$$t_{21}^{(r)}\xi$$
 for $r \ge 2$ and $(t_{31}^{(r)} + (\alpha - 1/2)t_{31}^{(r-1)})\xi$ for $r \ge 3$,

where ξ is the highest vector.

Let *K* be the submodule of $M(\lambda(u))$ generated by all vectors

$$t_{21}^{(r)}\xi$$
 for $r \ge 2$ and $(t_{31}^{(r)} + (\alpha - 1/2)t_{31}^{(r-1)})\xi$ for $r \ge 3$,

where ξ is the highest vector.

The small Verma module $M(\alpha)$ is the quotient $M(\lambda(u))/K$.

Let *K* be the submodule of $M(\lambda(u))$ generated by all vectors

$$t_{21}^{(r)}\xi$$
 for $r \ge 2$ and $(t_{31}^{(r)} + (\alpha - 1/2)t_{31}^{(r-1)})\xi$ for $r \ge 3$,

where ξ is the highest vector.

The small Verma module $M(\alpha)$ is the quotient $M(\lambda(u))/K$.

Proposition. The elementary module $L(\alpha)$ is a quotient of the small Verma module $M(\alpha)$.

Set $T_{ij}(u) = u(u + \alpha - 1/2) t_{ij}(u)$.

Set $T_{ij}(u) = u(u + \alpha - 1/2) t_{ij}(u)$. These operators on the small Verma module $M(\alpha)$ are polynomials in *u*.

Set $T_{ij}(u) = u(u + \alpha - 1/2) t_{ij}(u)$. These operators on the small Verma module $M(\alpha)$ are polynomials in *u*.

For any $r, s \in \mathbb{Z}_+$ introduce vectors in $M(\alpha)$ by

$$\xi_{rs} = T_{21}(-\alpha - r + 3/2) \dots T_{21}(-\alpha - 1/2) T_{21}(-\alpha + 1/2)$$
$$\times T_{21}(-\alpha - s + 1) \dots T_{21}(-\alpha - 1) T_{21}(-\alpha) \xi.$$

Set $T_{ij}(u) = u(u + \alpha - 1/2) t_{ij}(u)$. These operators on the small Verma module $M(\alpha)$ are polynomials in *u*.

For any $r, s \in \mathbb{Z}_+$ introduce vectors in $M(\alpha)$ by

$$\xi_{rs} = T_{21}(-\alpha - r + 3/2) \dots T_{21}(-\alpha - 1/2) T_{21}(-\alpha + 1/2)$$
$$\times T_{21}(-\alpha - s + 1) \dots T_{21}(-\alpha - 1) T_{21}(-\alpha) \xi.$$

Proposition. For any $\alpha \in \mathbb{C}$ the vectors ξ_{rs} with $0 \leq r \leq s$ form a basis of $M(\alpha)$.

Basis diagram of $M(\alpha)$

Basis diagram of $M(\alpha)$

Horizontal levels are $\mathfrak{osp}_{1|2}$ -weight spaces:

Basis diagram of $M(\alpha)$

Horizontal levels are $\mathfrak{osp}_{1|2}$ -weight spaces:

Basis diagram of $M(\alpha)$

Horizontal levels are $\mathfrak{osp}_{1|2}$ -weight spaces:

...

Theorem.

The X(osp_{1|2})-module M(α) is irreducible if and only if −α ∉ Z₊ and −α + 1/2 ∉ Z₊.

Theorem.

- The X(osp_{1|2})-module M(α) is irreducible if and only if −α ∉ Z₊ and −α + 1/2 ∉ Z₊.
- The X(osp_{1|2})-module L(α) is finite-dimensional if and only if −α = k ∈ Z₊.

Theorem.

- The X(osp_{1|2})-module M(α) is irreducible if and only if −α ∉ Z₊ and −α + 1/2 ∉ Z₊.
- The X(osp_{1|2})-module L(α) is finite-dimensional if and only if −α = k ∈ Z₊. In this case,

$$\dim L(-k) = \binom{k+2}{2}.$$

...

The module $V(\mu)$ is finite-dimensional if and only if $\mu \in \mathbb{Z}_+$. In that case, $\dim V(\mu) = 2\mu + 1$.

The module $V(\mu)$ is finite-dimensional if and only if $\mu \in \mathbb{Z}_+$. In that case, dim $V(\mu) = 2\mu + 1$.

For any $k \in \mathbb{Z}_+$ we have

$$L(-k)\Big|_{\mathfrak{osp}_{1|2}} \cong \bigoplus_{p=0}^{\lfloor k/2 \rfloor} V(k-2p)$$

The module $V(\mu)$ is finite-dimensional if and only if $\mu \in \mathbb{Z}_+$. In that case, dim $V(\mu) = 2\mu + 1$.

For any $k \in \mathbb{Z}_+$ we have

$$L(-k)\Big|_{\mathfrak{osp}_{1|2}}\cong \bigoplus_{p=0}^{\lfloor k/2 \rfloor} V(k-2p).$$

In the example,

$$L(-3)\Big|_{\mathfrak{osp}_{1|2}}\cong V(3)\oplus V(1).$$

Recall that $\lambda(u) = (\lambda_1(u), \ldots, \lambda_{m+1}(u))$.

Recall that $\lambda(u) = (\lambda_1(u), \ldots, \lambda_{m+1}(u))$.

Theorem. The representation $L(\lambda(u))$ is finite-dimensional if and only if

$$\frac{\lambda_{i+1}(u)}{\lambda_i(u)} = \frac{P_i(u+1)}{P_i(u)}, \qquad i=1,\ldots,m,$$

for some monic polynomials $P_i(u)$ in u.

Recall that $\lambda(u) = (\lambda_1(u), \ldots, \lambda_{m+1}(u))$.

Theorem. The representation $L(\lambda(u))$ is finite-dimensional if and only if

$$\frac{\lambda_{i+1}(u)}{\lambda_i(u)} = \frac{P_i(u+1)}{P_i(u)}, \qquad i=1,\ldots,m,$$

for some monic polynomials $P_i(u)$ in u.

Every tuple $(P_1(u), \ldots, P_m(u))$ arises in this way.

Recall that $\lambda(u) = (\lambda_1(u), \ldots, \lambda_{m+1}(u))$.

Theorem. The representation $L(\lambda(u))$ is finite-dimensional if and only if

$$\frac{\lambda_{i+1}(u)}{\lambda_i(u)} = \frac{P_i(u+1)}{P_i(u)}, \qquad i=1,\ldots,m,$$

for some monic polynomials $P_i(u)$ in u.

Every tuple $(P_1(u), \ldots, P_m(u))$ arises in this way.

Commun. Math. Phys. 398 (2023), 541-571.

$$\lambda_1(u) = 1 - k u^{-1}, \qquad \lambda_2(u) = 1.$$

$$\lambda_1(u) = 1 - k u^{-1}, \qquad \lambda_2(u) = 1.$$

The Drinfeld polynomial P(u) is found from the relation

 $\frac{\lambda_2(u)}{\lambda_1(u)} = \frac{P(u+1)}{P(u)}.$

$$\lambda_1(u) = 1 - k u^{-1}, \qquad \lambda_2(u) = 1.$$

The Drinfeld polynomial P(u) is found from the relation

$\lambda_2(u)$	P(u+1)
$\overline{\lambda_1(u)}$	P(u)

Hence,

$$\frac{P(u+1)}{P(u)} = \frac{u}{u-k}$$

$$\lambda_1(u) = 1 - k u^{-1}, \qquad \lambda_2(u) = 1.$$

The Drinfeld polynomial P(u) is found from the relation

$$\frac{\lambda_2(u)}{\lambda_1(u)} = \frac{P(u+1)}{P(u)}.$$

Hence,

$$\frac{P(u+1)}{P(u)} = \frac{u}{u-k}$$

and so

$$P(u) = (u-1)(u-2)\dots(u-k).$$

We now have $\lambda(u) = (\lambda_1(u), \dots, \lambda_{m+2}(u)).$

We now have $\lambda(u) = (\lambda_1(u), \ldots, \lambda_{m+2}(u)).$

Theorem. The representation $L(\lambda(u))$ is finite-dimensional if and only if there exist monic polynomials $\overline{Q}(u), Q(u), P_2(u), \dots, P_{m+1}(u)$ in *u* such that

We now have $\lambda(u) = (\lambda_1(u), \ldots, \lambda_{m+2}(u)).$

Theorem. The representation $L(\lambda(u))$ is finite-dimensional if and only if there exist monic polynomials

 $\overline{Q}(u), Q(u), P_2(u), \dots, P_{m+1}(u)$ in *u* such that

$$\frac{\lambda_1(u)}{\lambda_2(u)} = \frac{\overline{Q}(u)}{Q(u)},$$
$$\frac{\lambda_{i+1}(u)}{\lambda_i(u)} = \frac{P_i(u+1)}{P_i(u)} \quad \text{for} \quad i = 2, \dots, m$$

and

$$\frac{\lambda_{m+2}(u)}{\lambda_{m+1}(u)} = \frac{P_{m+1}(u+2)}{P_{m+1}(u)}.$$
 Alg. Rep. Th., online.