Representations of the orthosymplectic Yangian

Alexander Molev

University of Sydney

Plan

- Yangian for $\mathfrak{g l}_{N}$ and its representations

Plan

- Yangian for $\mathfrak{g l}_{N}$ and its representations
- Yangian for $\mathfrak{o s p}_{N \mid 2 m}$ in the RTT presentation

Plan

- Yangian for $\mathfrak{g l}_{N}$ and its representations
- Yangian for $\mathfrak{o s p}_{N \mid 2 m}$ in the RTT presentation
- Explicit construction of representations of $\mathrm{Y}\left(\mathfrak{o s p}_{1 \mid 2}\right)$

Plan

- Yangian for $\mathfrak{g l}_{N}$ and its representations
- Yangian for $\mathfrak{o s p}_{N \mid 2 m}$ in the RTT presentation
- Explicit construction of representations of $\mathrm{Y}\left(\mathfrak{o s p}_{1 \mid 2}\right)$
- Classification theorems for $\mathfrak{o s p}_{1 \mid 2 m}$ and $\mathfrak{o s p}_{2 \mid 2 m}$

Yangian for $\mathfrak{g l}_{N}$

Yangian for $\mathfrak{g l}_{N}$

The Yangian for $\mathfrak{g l}_{N}$ is the associative algebra over \mathbb{C} with countably many generators $t_{i j}^{(1)}, t_{i j}^{(2)}, \ldots$ where $i, j=1, \ldots, N$, and the defining relations

$$
\left[t_{i j}^{(r+1)}, t_{k l}^{(s)}\right]-\left[t_{i j}^{(r)}, t_{k l}^{(s+1)}\right]=t_{k j}^{(r)} t_{i l}^{(s)}-t_{k j}^{(s)} t_{i l}^{(r)}
$$

where $r, s=0,1, \ldots$ and $t_{i j}^{(0)}=\delta_{i j}$.

Yangian for $\mathfrak{g l}_{N}$

The Yangian for $\mathfrak{g l}_{N}$ is the associative algebra over \mathbb{C} with countably many generators $t_{i j}^{(1)}, t_{i j}^{(2)}, \ldots$ where $i, j=1, \ldots, N$, and the defining relations

$$
\left[t_{i j}^{(r+1)}, t_{k l}^{(s)}\right]-\left[t_{i j}^{(r)}, t_{k l}^{(s+1)}\right]=t_{k j}^{(r)} t_{i l}^{(s)}-t_{k j}^{(s)} t_{i l}^{(r)}
$$

where $r, s=0,1, \ldots$ and $t_{i j}^{(0)}=\delta_{i j}$.

This algebra is denoted by $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$.

Introduce the formal generating series

$$
t_{i j}(u)=\delta_{i j}+t_{i j}^{(1)} u^{-1}+t_{i j}^{(2)} u^{-2}+\cdots \in \mathrm{Y}\left(\mathfrak{g l}_{N}\right)\left[\left[u^{-1}\right]\right] .
$$

Introduce the formal generating series

$$
t_{i j}(u)=\delta_{i j}+t_{i j}^{(1)} u^{-1}+t_{i j}^{(2)} u^{-2}+\cdots \in \mathrm{Y}\left(\mathfrak{g l}_{N}\right)\left[\left[u^{-1}\right]\right] .
$$

The defining relations take the form

$$
(u-v)\left[t_{i j}(u), t_{k l}(v)\right]=t_{k j}(u) t_{i l}(v)-t_{k j}(v) t_{i l}(u):
$$

equate the coefficients of $u^{-r} v^{-s}$.

Introduce the permutation operator

$$
P=\sum_{i, j=1}^{N} e_{i j} \otimes e_{j i} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}
$$

where $e_{i j} \in \operatorname{End} \mathbb{C}^{N}$ are the standard matrix units.

Introduce the permutation operator

$$
P=\sum_{i, j=1}^{N} e_{i j} \otimes e_{j i} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}
$$

where $e_{i j} \in \operatorname{End} \mathbb{C}^{N}$ are the standard matrix units.

The rational function

$$
R(u)=1-P u^{-1}
$$

with values in End $\mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}$ is called the Yang R-matrix.

Introduce the permutation operator

$$
P=\sum_{i, j=1}^{N} e_{i j} \otimes e_{j i} \in \operatorname{End} \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}
$$

where $e_{i j} \in \operatorname{End} \mathbb{C}^{N}$ are the standard matrix units.

The rational function

$$
R(u)=1-P u^{-1}
$$

with values in End $\mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N}$ is called the Yang R-matrix.

It satisfies the Yang-Baxter equation.

Consider the algebra
End $\mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right)\left[\left[u^{-1}\right]\right]$

Consider the algebra

$$
\text { End } \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right)\left[\left[u^{-1}\right]\right]
$$

and introduce its elements by

$$
T_{1}(u)=\sum_{i, j=1}^{N} e_{i j} \otimes 1 \otimes t_{i j}(u) \quad \text { and } \quad T_{2}(u)=\sum_{i, j=1}^{N} 1 \otimes e_{i j} \otimes t_{i j}(u) .
$$

Consider the algebra

$$
\text { End } \mathbb{C}^{N} \otimes \operatorname{End} \mathbb{C}^{N} \otimes \mathrm{Y}\left(\mathfrak{g l}_{N}\right)\left[\left[u^{-1}\right]\right]
$$

and introduce its elements by

$$
T_{1}(u)=\sum_{i, j=1}^{N} e_{i j} \otimes 1 \otimes t_{i j}(u) \quad \text { and } \quad T_{2}(u)=\sum_{i, j=1}^{N} 1 \otimes e_{i j} \otimes t_{i j}(u) .
$$

The defining relations of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ can be written in the form of $R T T$-relation [Faddeev's school, 1980s]

$$
R(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R(u-v)
$$

Classification theorem

Classification theorem

A representation L of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is called a highest weight representation if there exists a nonzero vector $\xi \in L$ such that L is generated by ξ

Classification theorem

A representation L of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is called a highest weight representation if there exists a nonzero vector $\xi \in L$ such that L is generated by ξ and

$$
\begin{array}{lll}
t_{i j}(u) \xi=0 & \text { for } & 1 \leqslant i<j \leqslant N, \\
t_{i i}(u) \xi=\lambda_{i}(u) \xi & \text { for } & 1 \leqslant i \leqslant N,
\end{array}
$$

Classification theorem

A representation L of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is called a highest weight representation if there exists a nonzero vector $\xi \in L$ such that L is generated by ξ and

$$
\begin{array}{lll}
t_{i j}(u) \xi=0 & \text { for } & 1 \leqslant i<j \leqslant N, \\
t_{i i}(u) \xi=\lambda_{i}(u) \xi & \text { for } & 1 \leqslant i \leqslant N,
\end{array}
$$

for some formal series

$$
\lambda_{i}(u)=1+\lambda_{i}^{(1)} u^{-1}+\lambda_{i}^{(2)} u^{-2}+\ldots, \quad \lambda_{i}^{(r)} \in \mathbb{C} .
$$

Let $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)$ be an arbitrary tuple of formal series.

Let $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)$ be an arbitrary tuple of formal series.

The Verma module $M(\lambda(u))$ is the quotient of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ by the left ideal generated by all the coefficients of the series $t_{i j}(u)$ for $1 \leqslant i<j \leqslant N$ and $t_{i i}(u)-\lambda_{i}(u)$ for $1 \leqslant i \leqslant N$.

Let $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{N}(u)\right)$ be an arbitrary tuple of formal series.

The Verma module $M(\lambda(u))$ is the quotient of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ by the left ideal generated by all the coefficients of the series $t_{i j}(u)$ for $1 \leqslant i<j \leqslant N$ and $t_{i i}(u)-\lambda_{i}(u)$ for $1 \leqslant i \leqslant N$.

The irreducible highest weight representation $L(\lambda(u))$ of $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ with the highest weight $\lambda(u)$ is the quotient of the Verma module $M(\lambda(u))$ by the unique maximal proper submodule.

Theorem. Every finite-dimensional irreducible representation of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is isomorphic to a unique irreducible highest weight representation $L(\lambda(u))$.

Theorem. Every finite-dimensional irreducible representation of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is isomorphic to a unique irreducible highest weight representation $L(\lambda(u))$.

The irreducible highest weight representation $L(\lambda(u))$ of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is finite-dimensional if and only if

$$
\frac{\lambda_{i}(u)}{\lambda_{i+1}(u)}=\frac{P_{i}(u+1)}{P_{i}(u)}, \quad i=1, \ldots, N-1,
$$

Theorem. Every finite-dimensional irreducible representation of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is isomorphic to a unique irreducible highest weight representation $L(\lambda(u))$.

The irreducible highest weight representation $L(\lambda(u))$ of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is finite-dimensional if and only if

$$
\frac{\lambda_{i}(u)}{\lambda_{i+1}(u)}=\frac{P_{i}(u+1)}{P_{i}(u)}, \quad i=1, \ldots, N-1,
$$

for certain monic polynomials $P_{1}(u), \ldots, P_{N-1}(u)$ in u.

Theorem. Every finite-dimensional irreducible representation of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is isomorphic to a unique irreducible highest weight representation $L(\lambda(u))$.

The irreducible highest weight representation $L(\lambda(u))$ of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is finite-dimensional if and only if

$$
\frac{\lambda_{i}(u)}{\lambda_{i+1}(u)}=\frac{P_{i}(u+1)}{P_{i}(u)}, \quad i=1, \ldots, N-1,
$$

for certain monic polynomials $P_{1}(u), \ldots, P_{N-1}(u)$ in u.

Every tuple $\left(P_{1}(u), \ldots, P_{N-1}(u)\right)$ arises in this way.

Theorem. Every finite-dimensional irreducible representation of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is isomorphic to a unique irreducible highest weight representation $L(\lambda(u))$.

The irreducible highest weight representation $L(\lambda(u))$ of the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N}\right)$ is finite-dimensional if and only if

$$
\frac{\lambda_{i}(u)}{\lambda_{i+1}(u)}=\frac{P_{i}(u+1)}{P_{i}(u)}, \quad i=1, \ldots, N-1
$$

for certain monic polynomials $P_{1}(u), \ldots, P_{N-1}(u)$ in u.

Every tuple $\left(P_{1}(u), \ldots, P_{N-1}(u)\right)$ arises in this way.
[V. Tarasov 1985, V. Drinfeld 1988].

Super Yangians

Super Yangians

Consider the \mathbb{Z}_{2}-graded vector space $\mathbb{C}^{N \mid 2 m}$ with the canonical basis $e_{1}, e_{2}, \ldots, e_{N+2 m}$.

Super Yangians

Consider the \mathbb{Z}_{2}-graded vector space $\mathbb{C}^{N \mid 2 m}$ with the canonical basis $e_{1}, e_{2}, \ldots, e_{N+2 m}$. Set $i^{\prime}=N+2 m-i+1$.

Super Yangians

Consider the \mathbb{Z}_{2}-graded vector space $\mathbb{C}^{N \mid 2 m}$ with the canonical basis $e_{1}, e_{2}, \ldots, e_{N+2 m}$. Set $i^{\prime}=N+2 m-i+1$.

The vector e_{i} has the parity $\bar{\imath} \bmod 2$ and

$$
\bar{\imath}= \begin{cases}1 & \text { for } \quad i=1, \ldots, m, m^{\prime}, \ldots, 1^{\prime}, \\ 0 & \text { for } \quad i=m+1, \ldots,(m+1)^{\prime},\end{cases}
$$

Super Yangians

Consider the \mathbb{Z}_{2}-graded vector space $\mathbb{C}^{N \mid 2 m}$ with the canonical basis $e_{1}, e_{2}, \ldots, e_{N+2 m}$. Set $i^{\prime}=N+2 m-i+1$.

The vector e_{i} has the parity $\bar{\imath} \bmod 2$ and

$$
\bar{\imath}= \begin{cases}1 & \text { for } \quad i=1, \ldots, m, m^{\prime}, \ldots, 1^{\prime}, \\ 0 & \text { for } \quad i=m+1, \ldots,(m+1)^{\prime},\end{cases}
$$

The endomorphism algebra End $\mathbb{C}^{N \mid 2 m}$ is equipped with
\mathbb{Z}_{2}-gradation, the parity of the matrix unit $e_{i j}$ is $\bar{\imath}+\bar{\jmath} \bmod 2$.

A standard basis of the Lie superalgebra $\mathfrak{g l}_{N \mid 2 m}$ is formed by elements $E_{i j}$ of parity $\bar{\imath}+\bar{\jmath} \bmod 2$ with the commutation relations

$$
\left[E_{i j}, E_{k l}\right]=\delta_{k j} E_{i l}-\delta_{i l} E_{k j}(-1)^{(\bar{\imath}+\bar{\jmath})(\bar{k}+\bar{l})}
$$

A standard basis of the Lie superalgebra $\mathfrak{g l}_{N \mid 2 m}$ is formed by elements $E_{i j}$ of parity $\bar{\imath}+\bar{\jmath} \bmod 2$ with the commutation relations

$$
\left[E_{i j}, E_{k l}\right]=\delta_{k j} E_{i l}-\delta_{i l} E_{k j}(-1)^{(\bar{\imath}+\bar{\jmath})(\bar{k}+\bar{l})}
$$

The orthosymplectic Lie superalgebra $\mathfrak{o s p}_{N \mid 2 m}$ is the subalgebra of $\mathfrak{g l}_{N \mid 2 m}$ spanned by the elements

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}}(-1)^{\bar{\imath} \bar{\jmath}+\bar{\imath}} \theta_{i} \theta_{j}
$$

A standard basis of the Lie superalgebra $\mathfrak{g l}_{N \mid 2 m}$ is formed by elements $E_{i j}$ of parity $\bar{\imath}+\bar{\jmath} \bmod 2$ with the commutation relations

$$
\left[E_{i j}, E_{k l}\right]=\delta_{k j} E_{i l}-\delta_{i l} E_{k j}(-1)^{(\bar{\imath}+\bar{\jmath})(\bar{k}+\bar{l})}
$$

The orthosymplectic Lie superalgebra $\mathfrak{o s p}_{N \mid 2 m}$ is the subalgebra of $\mathfrak{g l}_{N \mid 2 m}$ spanned by the elements

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}}(-1)^{\bar{\imath} \bar{\jmath}+\bar{\imath}} \theta_{i} \theta_{j}
$$

where

$$
\theta_{i}=\left\{\begin{aligned}
1 & \text { for } \quad i=1, \ldots, N+m \\
-1 & \text { for } \quad i=N+m+1, \ldots, N+2 m
\end{aligned}\right.
$$

Presentation of $\mathfrak{o s p}_{N \mid 2 m}$: even part $\mathfrak{o}_{N} \oplus \mathfrak{s p}_{2 m}$ is

Presentation of $\mathfrak{o s p}_{N \mid 2 m}$: even part $\mathfrak{o}_{N} \oplus \mathfrak{s p}_{2 m}$ is

The permutation operator P takes the form

$$
P=\sum_{i, j=1}^{N+2 m} e_{i j} \otimes e_{j i}(-1)^{\bar{\jmath}} \in \operatorname{End} \mathbb{C}^{N \mid 2 m} \otimes \text { End } \mathbb{C}^{N \mid 2 m}
$$

The permutation operator P takes the form

$$
P=\sum_{i, j=1}^{N+2 m} e_{i j} \otimes e_{j i}(-1)^{\bar{\jmath}} \in \operatorname{End} \mathbb{C}^{N \mid 2 m} \otimes \text { End } \mathbb{C}^{N \mid 2 m}
$$

Set

$$
Q=\sum_{i, j=1}^{N+2 m} e_{i j} \otimes e_{i^{\prime} j^{\prime}}(-1)^{\bar{\imath} \bar{\jmath}} \theta_{i} \theta_{j} \in \text { End } \mathbb{C}^{N \mid 2 m} \otimes \text { End } \mathbb{C}^{N \mid 2 m}
$$

The permutation operator P takes the form

$$
P=\sum_{i, j=1}^{N+2 m} e_{i j} \otimes e_{j i}(-1)^{\bar{\jmath}} \in \operatorname{End} \mathbb{C}^{N \mid 2 m} \otimes \text { End } \mathbb{C}^{N \mid 2 m}
$$

Set

$$
Q=\sum_{i, j=1}^{N+2 m} e_{i j} \otimes e_{i^{\prime} j^{\prime}}(-1)^{\bar{\imath} \jmath} \theta_{i} \theta_{j} \in \operatorname{End} \mathbb{C}^{N \mid 2 m} \otimes \operatorname{End} \mathbb{C}^{N \mid 2 m}
$$

The R-matrix associated with $\mathfrak{o s p}_{N \mid 2 m}$ is the rational function in u given by

$$
R(u)=1-\frac{P}{u}+\frac{Q}{u-\kappa}, \quad \kappa=\frac{N}{2}-m-1 .
$$

The permutation operator P takes the form

$$
P=\sum_{i, j=1}^{N+2 m} e_{i j} \otimes e_{j i}(-1)^{\bar{\jmath}} \in \operatorname{End} \mathbb{C}^{N \mid 2 m} \otimes \text { End } \mathbb{C}^{N \mid 2 m}
$$

Set

$$
Q=\sum_{i, j=1}^{N+2 m} e_{i j} \otimes e_{i^{\prime} j^{\prime}}(-1)^{\bar{\imath} \jmath} \theta_{i} \theta_{j} \in \text { End } \mathbb{C}^{N \mid 2 m} \otimes \text { End } \mathbb{C}^{N \mid 2 m}
$$

The R-matrix associated with $\mathfrak{o s p}_{N \mid 2 m}$ is the rational function in u given by

$$
R(u)=1-\frac{P}{u}+\frac{Q}{u-\kappa}, \quad \kappa=\frac{N}{2}-m-1 .
$$

[A. B. Zamolodchikov and AI. B. Zamolodchikov, 1979]

The extended Yangian $\mathrm{X}\left(\mathfrak{o s p}_{N \mid 2 m}\right)$ as a \mathbb{Z}_{2}-graded algebra with generators $t_{i j}^{(r)}$ of parity $\bar{\imath}+\bar{\jmath} \bmod 2$, where $1 \leqslant i, j \leqslant N+2 m$ and $r=1,2, \ldots$, satisfying the following defining relations.

The extended Yangian $\mathrm{X}\left(\mathfrak{o s p}_{N \mid 2 m}\right)$ as a \mathbb{Z}_{2}-graded algebra with generators $t_{i j}^{(r)}$ of parity $\bar{\imath}+\bar{\jmath} \bmod 2$, where $1 \leqslant i, j \leqslant N+2 m$ and $r=1,2, \ldots$, satisfying the following defining relations.

Introduce the formal series

$$
t_{i j}(u)=\delta_{i j}+\sum_{r=1}^{\infty} t_{i j}^{(r)} u^{-r} \in \mathrm{X}\left(\mathfrak{o s p}_{N \mid 2 m}\right)\left[\left[u^{-1}\right]\right]
$$

and combine them into the matrix $T(u)=\left[t_{i j}(u)\right]$.

The extended Yangian $\mathrm{X}\left(\mathfrak{o s p}_{N \mid 2 m}\right)$ as a \mathbb{Z}_{2}-graded algebra with generators $t_{i j}^{(r)}$ of parity $\bar{\imath}+\bar{\jmath} \bmod 2$, where $1 \leqslant i, j \leqslant N+2 m$ and $r=1,2, \ldots$, satisfying the following defining relations.

Introduce the formal series

$$
t_{i j}(u)=\delta_{i j}+\sum_{r=1}^{\infty} t_{i j}^{(r)} u^{-r} \in \mathrm{X}\left(\mathfrak{o s p}_{N \mid 2 m}\right)\left[\left[u^{-1}\right]\right]
$$

and combine them into the matrix $T(u)=\left[t_{i j}(u)\right]$.

The defining relations are given by the $R T T$-relation

$$
R(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R(u-v)
$$

The extended Yangian $\mathrm{X}\left(\mathfrak{o s p}_{N \mid 2 m}\right)$ as a \mathbb{Z}_{2}-graded algebra with generators $t_{i j}^{(r)}$ of parity $\bar{\imath}+\bar{\jmath} \bmod 2$, where $1 \leqslant i, j \leqslant N+2 m$ and $r=1,2, \ldots$, satisfying the following defining relations.

Introduce the formal series

$$
t_{i j}(u)=\delta_{i j}+\sum_{r=1}^{\infty} t_{i j}^{(r)} u^{-r} \in \mathrm{X}\left(\mathfrak{o s p}_{N \mid 2 m}\right)\left[\left[u^{-1}\right]\right]
$$

and combine them into the matrix $T(u)=\left[t_{i j}(u)\right]$.

The defining relations are given by the $R T T$-relation

$$
R(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R(u-v)
$$

[D. Arnaudon, J. Avan, N. Crampé, L. Frappat, E. Ragoucy, '03]

Verma modules

Verma modules

Let $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{1^{\prime}}(u)\right)$ be an arbitrary tuple of series.

Verma modules

Let $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{1^{\prime}}(u)\right)$ be an arbitrary tuple of series.
The Verma module $M(\lambda(u))$ is the quotient of $X\left(0^{0_{p}}{ }_{N \mid 2 m}\right)$ by the left ideal generated by all the coefficients of the series $t_{i j}(u)$ for $1 \leqslant i<j \leqslant 1^{\prime}$ and $t_{i i}(u)-\lambda_{i}(u)$ for $1 \leqslant i \leqslant 1^{\prime}$.

Verma modules

Let $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{1^{\prime}}(u)\right)$ be an arbitrary tuple of series.
The Verma module $M(\lambda(u))$ is the quotient of $X\left(0^{0_{p}}{ }_{N \mid 2 m}\right)$ by the left ideal generated by all the coefficients of the series $t_{i j}(u)$ for $1 \leqslant i<j \leqslant 1^{\prime}$ and $t_{i i}(u)-\lambda_{i}(u)$ for $1 \leqslant i \leqslant 1^{\prime}$.

Theorem. The Verma module $M(\lambda(u))$ is nonzero if and only if

$$
\begin{aligned}
\lambda_{i}(u) \lambda_{i^{\prime}}\left(u-\frac{N}{2}-\right. & \left.(-1)^{\bar{\imath}}(m-i)+1\right) \\
& =\lambda_{i+1}(u) \lambda_{(i+1)^{\prime}}\left(u-\frac{N}{2}-(-1)^{\bar{\imath}}(m-i)+1\right)
\end{aligned}
$$

for $1 \leqslant i<m+N / 2$.

Hence we can re-define the highest weight by

$$
\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{m+n+1}(u)\right)
$$

for $N=2 n+1$ and $N=2 n$.

Hence we can re-define the highest weight by

$$
\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{m+n+1}(u)\right)
$$

for $N=2 n+1$ and $N=2 n$.

The irreducible highest weight representation $L(\lambda(u))$ of $\mathrm{X}\left(\mathfrak{o s p}_{N \mid 2 m}\right)$ is the quotient of the nonzero Verma module $M(\lambda(u))$ by the unique maximal proper submodule.

Hence we can re-define the highest weight by

$$
\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{m+n+1}(u)\right)
$$

for $N=2 n+1$ and $N=2 n$.

The irreducible highest weight representation $L(\lambda(u))$ of $\mathrm{X}\left(\mathfrak{o s p}_{N \mid 2 m}\right)$ is the quotient of the nonzero Verma module $M(\lambda(u))$ by the unique maximal proper submodule.

Theorem. Every finite-dimensional irreducible representation of the Yangian $\mathrm{X}\left(\mathfrak{o s p}_{N \mid 2 m}\right)$ is isomorphic to a unique irreducible highest weight representation $L(\lambda(u))$.

Open problem. Find necessary and sufficient conditions on
$\lambda(u)$ for the representation $L(\lambda(u))$ to be finite-dimensional.

Open problem. Find necessary and sufficient conditions on
$\lambda(u)$ for the representation $L(\lambda(u))$ to be finite-dimensional.

The same problem is open for
the queer and periplectic Yangians.

Open problem. Find necessary and sufficient conditions on
$\lambda(u)$ for the representation $L(\lambda(u))$ to be finite-dimensional.

The same problem is open for
the queer and periplectic Yangians.

Work in progress and partial results:
N. Guay, B. Kettle, E. Poletaeva, V. Serganova, ...

Open problem. Find necessary and sufficient conditions on
$\lambda(u)$ for the representation $L(\lambda(u))$ to be finite-dimensional.

The same problem is open for
the queer and periplectic Yangians.

Work in progress and partial results:
N. Guay, B. Kettle, E. Poletaeva, V. Serganova, ...

Earlier results for the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N \mid M}\right)$:

Open problem. Find necessary and sufficient conditions on
$\lambda(u)$ for the representation $L(\lambda(u))$ to be finite-dimensional.

The same problem is open for
the queer and periplectic Yangians.

Work in progress and partial results:
N. Guay, B. Kettle, E. Poletaeva, V. Serganova, ...

Earlier results for the Yangian $\mathrm{Y}\left(\mathfrak{g l}_{N \mid M}\right)$:
M. Nazarov 1991, R. Zhang 1996, A. M. 2022.

Solution for $\mathfrak{o s p}_{1 \mid 2}$

Solution for $\mathfrak{o s p}_{1 \mid 2}$

Definition. For each $\alpha \in \mathbb{C}$, the elementary module
$L(\alpha)=L(\lambda(u))$ over the Yangian $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$

Solution for $\mathfrak{o s p}_{1 \mid 2}$

Definition. For each $\alpha \in \mathbb{C}$, the elementary module
$L(\alpha)=L(\lambda(u))$ over the Yangian $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$
is associated with the highest weight $\lambda(u)=\left(\lambda_{1}(u), \lambda_{2}(u)\right)$,

$$
\lambda_{1}(u)=1+\alpha u^{-1}, \quad \lambda_{2}(u)=1 .
$$

Solution for $\mathfrak{o s p}_{1 \mid 2}$

Definition. For each $\alpha \in \mathbb{C}$, the elementary module
$L(\alpha)=L(\lambda(u))$ over the Yangian $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$
is associated with the highest weight $\lambda(u)=\left(\lambda_{1}(u), \lambda_{2}(u)\right)$,

$$
\lambda_{1}(u)=1+\alpha u^{-1}, \quad \lambda_{2}(u)=1 .
$$

The solution relies on an explicit construction of the modules $L(\alpha)$.

Small Verma modules

Small Verma modules

Let K be the submodule of $M(\lambda(u))$ generated by all vectors
$t_{21}^{(r)} \xi \quad$ for $\quad r \geqslant 2 \quad$ and $\quad\left(t_{31}^{(r)}+(\alpha-1 / 2) t_{31}^{(r-1)}\right) \xi \quad$ for $\quad r \geqslant 3$,
where ξ is the highest vector.

Small Verma modules

Let K be the submodule of $M(\lambda(u))$ generated by all vectors
$t_{21}^{(r)} \xi \quad$ for $\quad r \geqslant 2 \quad$ and $\quad\left(t_{31}^{(r)}+(\alpha-1 / 2) t_{31}^{(r-1)}\right) \xi \quad$ for $\quad r \geqslant 3$,
where ξ is the highest vector.

The small Verma module $M(\alpha)$ is the quotient $M(\lambda(u)) / K$.

Small Verma modules

Let K be the submodule of $M(\lambda(u))$ generated by all vectors
$t_{21}^{(r)} \xi \quad$ for $\quad r \geqslant 2 \quad$ and $\quad\left(t_{31}^{(r)}+(\alpha-1 / 2) t_{31}^{(r-1)}\right) \xi \quad$ for $\quad r \geqslant 3$,
where ξ is the highest vector.

The small Verma module $M(\alpha)$ is the quotient $M(\lambda(u)) / K$.

Proposition. The elementary module $L(\alpha)$ is a quotient of the small Verma module $M(\alpha)$.

Set $T_{i j}(u)=u(u+\alpha-1 / 2) t_{i j}(u)$.

Set $T_{i j}(u)=u(u+\alpha-1 / 2) t_{i j}(u)$. These operators on the small
Verma module $M(\alpha)$ are polynomials in u.

Set $T_{i j}(u)=u(u+\alpha-1 / 2) t_{i j}(u)$. These operators on the small
Verma module $M(\alpha)$ are polynomials in u.

For any $r, s \in \mathbb{Z}_{+}$introduce vectors in $M(\alpha)$ by

$$
\begin{aligned}
\xi_{r s}=T_{21}(-\alpha- & r+3 / 2) \ldots T_{21}(-\alpha-1 / 2) T_{21}(-\alpha+1 / 2) \\
& \times T_{21}(-\alpha-s+1) \ldots T_{21}(-\alpha-1) T_{21}(-\alpha) \xi
\end{aligned}
$$

Set $T_{i j}(u)=u(u+\alpha-1 / 2) t_{i j}(u)$. These operators on the small
Verma module $M(\alpha)$ are polynomials in u.

For any $r, s \in \mathbb{Z}_{+}$introduce vectors in $M(\alpha)$ by

$$
\begin{aligned}
\xi_{r s}=T_{21}(-\alpha- & r+3 / 2) \ldots T_{21}(-\alpha-1 / 2) T_{21}(-\alpha+1 / 2) \\
& \times T_{21}(-\alpha-s+1) \ldots T_{21}(-\alpha-1) T_{21}(-\alpha) \xi
\end{aligned}
$$

Proposition. For any $\alpha \in \mathbb{C}$ the vectors $\xi_{r s}$ with $0 \leqslant r \leqslant s$ form a basis of $M(\alpha)$.

Basis diagram of $M(\alpha)$

Basis diagram of $M(\alpha)$

Horizontal levels are $\mathfrak{o s p}_{1 \mid 2}$-weight spaces:

Basis diagram of $M(\alpha)$

Horizontal levels are $\mathfrak{o s p}_{1 \mid 2}$-weight spaces:

Basis diagram of $M(\alpha)$

Horizontal levels are $\mathfrak{o s p}_{1 \mid 2}$-weight spaces:

```
\(\xi_{00} \bullet\)
\(\xi_{01}\) •
\(\xi_{02} \cdot \quad \cdot \xi_{11}\)
\(\xi_{03} \bullet \quad \cdot \xi_{12}\)
\(\xi_{04} \bullet \quad \bullet \quad \xi_{22}\)
\(\xi_{05} \bullet \quad \bullet \quad \xi_{23}\)
\(\xi_{06} \bullet \quad \bullet \quad \bullet \quad \xi_{33}\)
\(\xi_{07} \bullet \quad \bullet \quad \bullet \quad \xi_{34}\)
```


Submodules of $M(\alpha)$

Submodules of $M(\alpha)$

Theorem.

- The $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$-module $M(\alpha)$ is irreducible if and only if
$-\alpha \notin \mathbb{Z}_{+}$and $-\alpha+1 / 2 \notin \mathbb{Z}_{+}$.

Submodules of $M(\alpha)$

Theorem.

- The $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$-module $M(\alpha)$ is irreducible if and only if
$-\alpha \notin \mathbb{Z}_{+}$and $-\alpha+1 / 2 \notin \mathbb{Z}_{+}$.
- The $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$-module $L(\alpha)$ is finite-dimensional if and only

$$
\text { if }-\alpha=k \in \mathbb{Z}_{+} \text {. }
$$

Submodules of $M(\alpha)$

Theorem.

- The $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$-module $M(\alpha)$ is irreducible if and only if
$-\alpha \notin \mathbb{Z}_{+}$and $-\alpha+1 / 2 \notin \mathbb{Z}_{+}$.
- The $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$-module $L(\alpha)$ is finite-dimensional if and only if $-\alpha=k \in \mathbb{Z}_{+}$. In this case,

$$
\operatorname{dim} L(-k)=\binom{k+2}{2}
$$

Suppose that $-\alpha=k \in \mathbb{Z}_{+}$. The vector $\xi_{0 k+1}$ generates an $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$-submodule of $M(-k)$:

Suppose that $-\alpha=k \in \mathbb{Z}_{+}$. The vector $\xi_{0 k+1}$ generates an X $\left(\mathfrak{o s p}_{1 \mid 2}\right)$-submodule of $M(-k)$:

Suppose that $-\alpha=k \in \mathbb{Z}_{+}$. The vector $\xi_{0 k+1}$ generates an X $\left(\mathfrak{o s p}_{1 \mid 2}\right)$-submodule of $M(-k)$:

Suppose that $-\alpha=k \in \mathbb{Z}_{+}$. The vector $\xi_{0 k+1}$ generates an $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$-submodule of $M(-k)$:

- - $\operatorname{dim} L(-3)=\binom{5}{2}=7+3=10$.

For any given $\mu \in \mathbb{C}$ denote by $V(\mu)$ the irreducible highest weight module over $\mathfrak{o s p}_{1 \mid 2}$ generated by a nonzero vector ξ such that $F_{11} \xi=\mu \xi$ and $F_{12} \xi=0$.

For any given $\mu \in \mathbb{C}$ denote by $V(\mu)$ the irreducible highest weight module over $\mathfrak{o s p}_{1 \mid 2}$ generated by a nonzero vector ξ such that $F_{11} \xi=\mu \xi$ and $F_{12} \xi=0$.

The module $V(\mu)$ is finite-dimensional if and only if $\mu \in \mathbb{Z}_{+}$. In that case, $\operatorname{dim} V(\mu)=2 \mu+1$.

For any given $\mu \in \mathbb{C}$ denote by $V(\mu)$ the irreducible highest weight module over $\mathfrak{o s p}_{1 \mid 2}$ generated by a nonzero vector ξ such that $F_{11} \xi=\mu \xi$ and $F_{12} \xi=0$.

The module $V(\mu)$ is finite-dimensional if and only if $\mu \in \mathbb{Z}_{+}$. In that case, $\operatorname{dim} V(\mu)=2 \mu+1$.

For any $k \in \mathbb{Z}_{+}$we have

$$
\left.L(-k)\right|_{\mathcal{O s p}_{1 \mid 2}} \cong \bigoplus_{p=0}^{\lfloor k / 2\rfloor} V(k-2 p)
$$

For any given $\mu \in \mathbb{C}$ denote by $V(\mu)$ the irreducible highest weight module over $\mathfrak{o s p}_{1 \mid 2}$ generated by a nonzero vector ξ such that $F_{11} \xi=\mu \xi$ and $F_{12} \xi=0$.

The module $V(\mu)$ is finite-dimensional if and only if $\mu \in \mathbb{Z}_{+}$. In that case, $\operatorname{dim} V(\mu)=2 \mu+1$.

For any $k \in \mathbb{Z}_{+}$we have

$$
\left.L(-k)\right|_{\text {osp }_{| | 2}} \cong \bigoplus_{p=0}^{\lfloor k / 2\rfloor} V(k-2 p) .
$$

In the example,

$$
\left.L(-3)\right|_{\text {osp }_{1 \mid 2}} \cong V(3) \oplus V(1) .
$$

Now suppose that $-\alpha+1 / 2=k \in \mathbb{Z}_{+}$. The vector $\xi_{k+1 k+1}$ generates an $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$-submodule of $M(-k+1 / 2)$:

Now suppose that $-\alpha+1 / 2=k \in \mathbb{Z}_{+}$. The vector $\xi_{k+1 k+1}$ generates an $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$-submodule of $M(-k+1 / 2)$:

Now suppose that $-\alpha+1 / 2=k \in \mathbb{Z}_{+}$. The vector $\xi_{k+1 k+1}$ generates an $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$-submodule of $M(-k+1 / 2)$:

Now suppose that $-\alpha+1 / 2=k \in \mathbb{Z}_{+}$. The vector $\xi_{k+1 k+1}$ generates an $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$-submodule of $M(-k+1 / 2)$:

$$
k=1
$$

$L(-1 / 2)$

Representations of $X\left(\mathfrak{o s p}_{1 \mid 2 m}\right)$

Representations of $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2 m}\right)$

Recall that $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{m+1}(u)\right)$.

Representations of $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2 m}\right)$

Recall that $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{m+1}(u)\right)$.

Theorem. The representation $L(\lambda(u))$ is finite-dimensional if and only if

$$
\frac{\lambda_{i+1}(u)}{\lambda_{i}(u)}=\frac{P_{i}(u+1)}{P_{i}(u)}, \quad i=1, \ldots, m
$$

for some monic polynomials $P_{i}(u)$ in u.

Representations of $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2 m}\right)$

Recall that $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{m+1}(u)\right)$.

Theorem. The representation $L(\lambda(u))$ is finite-dimensional if and only if

$$
\frac{\lambda_{i+1}(u)}{\lambda_{i}(u)}=\frac{P_{i}(u+1)}{P_{i}(u)}, \quad i=1, \ldots, m
$$

for some monic polynomials $P_{i}(u)$ in u.

Every tuple $\left(P_{1}(u), \ldots, P_{m}(u)\right)$ arises in this way.

Representations of $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2 m}\right)$

Recall that $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{m+1}(u)\right)$.

Theorem. The representation $L(\lambda(u))$ is finite-dimensional if and only if

$$
\frac{\lambda_{i+1}(u)}{\lambda_{i}(u)}=\frac{P_{i}(u+1)}{P_{i}(u)}, \quad i=1, \ldots, m
$$

for some monic polynomials $P_{i}(u)$ in u.

Every tuple $\left(P_{1}(u), \ldots, P_{m}(u)\right)$ arises in this way.

Commun. Math. Phys. 398 (2023), 541-571.

Example: $m=1$. For the elementary module $L(-k)$ we have

$$
\lambda_{1}(u)=1-k u^{-1}, \quad \lambda_{2}(u)=1 .
$$

Example: $m=1$. For the elementary module $L(-k)$ we have

$$
\lambda_{1}(u)=1-k u^{-1}, \quad \lambda_{2}(u)=1 .
$$

The Drinfeld polynomial $P(u)$ is found from the relation

$$
\frac{\lambda_{2}(u)}{\lambda_{1}(u)}=\frac{P(u+1)}{P(u)} .
$$

Example: $m=1$. For the elementary module $L(-k)$ we have

$$
\lambda_{1}(u)=1-k u^{-1}, \quad \lambda_{2}(u)=1 .
$$

The Drinfeld polynomial $P(u)$ is found from the relation

$$
\frac{\lambda_{2}(u)}{\lambda_{1}(u)}=\frac{P(u+1)}{P(u)} .
$$

Hence,

$$
\frac{P(u+1)}{P(u)}=\frac{u}{u-k}
$$

Example: $m=1$. For the elementary module $L(-k)$ we have

$$
\lambda_{1}(u)=1-k u^{-1}, \quad \lambda_{2}(u)=1 .
$$

The Drinfeld polynomial $P(u)$ is found from the relation

$$
\frac{\lambda_{2}(u)}{\lambda_{1}(u)}=\frac{P(u+1)}{P(u)} .
$$

Hence,

$$
\frac{P(u+1)}{P(u)}=\frac{u}{u-k}
$$

and so

$$
P(u)=(u-1)(u-2) \ldots(u-k) .
$$

Representations of $\mathrm{X}\left(\mathbf{o s p}_{2 \mid 2 m}\right)$

Representations of $\mathrm{X}\left(\mathfrak{o s p}_{2 \mid 2 m}\right)$

We now have $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{m+2}(u)\right)$.

Representations of $\mathrm{X}\left(\mathfrak{o s p}_{2 \mid 2 m}\right)$

We now have $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{m+2}(u)\right)$.
Theorem. The representation $L(\lambda(u))$ is finite-dimensional if and only if there exist monic polynomials
$\bar{Q}(u), Q(u), P_{2}(u), \ldots, P_{m+1}(u)$ in u such that

Representations of $\mathrm{X}\left(\mathfrak{o s p}_{2 \mid 2 m}\right)$

We now have $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{m+2}(u)\right)$.
Theorem. The representation $L(\lambda(u))$ is finite-dimensional if and only if there exist monic polynomials
$\bar{Q}(u), Q(u), P_{2}(u), \ldots, P_{m+1}(u)$ in u such that

$$
\begin{aligned}
\frac{\lambda_{1}(u)}{\lambda_{2}(u)} & =\frac{\bar{Q}(u)}{Q(u)} \\
\frac{\lambda_{i+1}(u)}{\lambda_{i}(u)} & =\frac{P_{i}(u+1)}{P_{i}(u)} \quad \text { for } \quad i=2, \ldots, m,
\end{aligned}
$$

and

$$
\frac{\lambda_{m+2}(u)}{\lambda_{m+1}(u)}=\frac{P_{m+1}(u+2)}{P_{m+1}(u)} . \quad \text { Alg. Rep. Th., online. }
$$

