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Abstract

Many important physical systems, such as the Earth’s climate, are chaotic: as such
we would like (probabilistic) predictions of these systems into the far future. These
systems’ long-term statistical behaviour is mathematically encoded by various ob-
jects, which can be studied functional-analytically using the so-called transfer opera-
tor. While rigorous study of many simple, usually one-dimensional, chaotic systems
is theoretically tractable, for more complex, high-dimensional systems it is not: as
a result the statistical properties of simple chaotic systems are often used as models
for those of more complex systems, an idea that has been partially formalised as the
Gallavotti-Cohen chaotic hypothesis.

To study these simple dynamical systems better, we will in the first part of
this thesis rigorously develop efficient, powerful numerics for two classes of one-
dimensional maps: uniformly expanding Markov maps, and intermittent maps. To
do this, we harness the smooth structure of these problems, in particular by dis-
cretising transfer operators using spectral basis functions. We obtain highly accurate
numerical estimates of statistical properties of these maps: later, we apply the meth-
ods profitably to a numerical continuation problem associated with more complex
systems.

In the second part of the thesis we investigate high-dimensional systems, fo-
cusing on the differentiability of the response of statistical properties to dynamical
perturbations (linear response theory). Although there are rigorous examples of
one-dimensional maps that do not have differentiable responses, it is commonly be-
lieved that complex, high-dimensional chaotic systems generally do. We examine
this belief through a study of model classes of “high-dimensional systems”. We pro-
vide a comprehensive picture of the response properties of these systems and give
broadly-applicable criteria governing the response’s differentiability. In particular,
we find classes of maps that, despite being composed of microscopic subsystems with
non-differentiable responses, obey linear response theory, and vice versa.
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Chapter 1

Introduction

Of the physical processes in the world that are most vital to us, a great many are
chaotic dynamical systems such as the Earth’s climate system. We are naturally
interested in predicting the future behaviour of chaotic systems. Unfortunately, it
is almost by definition impossible to derive information about the future state of a
chaotic system far into the future, given uncertain initial conditions (Lorenz, 1963).

On the other hand, “lack of information” in fact corresponds to a probabilistic
structure: in the far future one will almost certainly see the same statistical behaviour
regardless of initial conditions. For the Earth’s atmospheric and oceanic system, this
means that—modulo slower changes in the Earth’s climate over time, for example
caused by changes in solar radiation due to oscillatory changes in the earth’s axis and
orbit around the sun (so-called Milankovitch cycles) or caused by human greenhouse
gas emissions—we have some expectations of temperatures, rainfall, likelihoods of
extreme events, temporal autocorrelations of climate events, sensitivity to forcing (for
example by the aforementioned processes) and so on at times beyond the predictive
time length of any single forceast.

These statistical properties may be codified through various mathematical ob-
jects, which typically give rise to convergence in a weak sense (see for example Lasota
and Mackey (1994)). Suppose our dynamical system is a map f : X → X, and we
have a smooth observable function A : X → R. These maps are typically endowed
with invariant measures on the phase space X: they are invariant in the sense that
they are equal to their push-forwards under the map f . These measures encode
geometric structure of the system and may be studied using ergodic theory, but typ-
ically a chaotic map possesses an uncountable number of invariant measures, even
ergodic invariant measures, many of which are supported on dynamically unstable
sets of zero Lebesgue measure. When it comes to studying the long-time statistics
of a (topologically mixing) chaotic system, the measure of interested is a physical
measure. These are invariant measures µ such that Birkhoff averages converge to
averages over µ for Lebesgue-almost all initial conditions (Young, 2002):

(1.1) N−1

N∑

n=1

A(fn(x))
N→∞−−−→

∫

X

A dµ, x a.e..

13



14 1. Introduction

The physical measure represents the asymptotic likelihood of a system being in a
certain state over long times. One may then consider various ways to quantitatively
measure the convergence to this “average behaviour”: for example, diffusion coeffi-
cients σ2

f (A) can be given to quantify corrections in a central limit theorem to the
limit in (1.1). Furthermore, supposing one has a smooth family of maps f ε param-
eterised by ε, one may also study the so-called response of the respective physical
measures µε to small changes in ε: typically this is done in a weak sense by studying
the regularity and derivatives of functions of the perturbation:

(1.2) ε 7→
∫

X

A dµε,

for A a smooth observable. In particular, the derivatives of this response, where they
exist, may be calculated using linear response theory (LRT) (Ruelle, 2009a; Baladi,
2014).

The tool that has, over the last twenty years, become standard for theoretical and
practical study of these statistical properties is the transfer (or Perron-Frobenius)
operator (Young, 1998; Baladi, 2000, 2017). This is a linear endomorphism L on
L1(X) (or some other function space on X) associated to f which essentially tracks
the evolution of measure (i.e. likelihoods of events) on the phase space of the dy-
namical systems. In hyperbolic systems (which globally enforce a splitting between
stable and unstable directions in phase space) and for certain other, low-dimensional
systems, transfer operator techniques have been used to prove existence and give for-
mulae for many statistical properties: for hyperbolic diffeomorphisms and flows these
include the existence of a physical measure (Lasota and Yorke, 1973; Gora and Bo-
yarsky, 1989) and bounds on mixing rates (Baladi, 2000; Field et al., 2007; Baladi and
Liverani, 2012; Korepanov et al., 2016), and for hyperbolic diffeomorphisms, large
deviations laws for Birkhoff sums (Melbourne and Nicol, 2008; Crimmins and Froy-
land, 2019b) and the existence of an almost sure invariance principle, i.e. a functional
central limit theorem for Birkhoff sums (Melbourne and Nicol, 2005; Melbourne and
Török, 2004; Gouëzel, 2010) and (Dolgopyat, 2004; De Simoi and Liverani, 2015,
2016).

While hyperbolic systems have been generally well-studied (Pollicott, 1985; Ru-
elle, 1997; Baladi, 2017), as have one-dimensional non-hyperbolic systems (Rugh,
1999; Gouëzel, 2004a; Ruelle, 2009b; Baladi and Smania, 2012), research into most
deterministic non-hyperbolic systems in dimensions greater than one has been rather
limited. This is a result of the extraordinarily complicated structure of the geom-
etry that emerges (Benedicks and Carleson, 1991), which makes even some two-
dimensional model systems intractable to altogether rigorous study (Blumenthal
et al., 2017). Because of this perhaps, simple one-dimensional systems have of-
ten come to stand for the more complex non-hyperbolic ones: in practice many of
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the same phenomena known for low-dimensional simple chaotic systems manifest in
the more complex chaotic systems as well, and as such the hope is that a “good”
understanding of the theoretically tractable systems informs study of systems that
occur in applications1.

As well as being integral to exploring systems of direct interest, numerics are a
useful tool for the theorist studying model systems. Outsourcing the work of per-
forming calculations to a computer enables discovery or visualisation of examples and
phenomena that a mathematician working alone may not themselves easily grasp or
come to. With the use of rigorously validated interval arithmetic they may even be
used to prove mathematical results (Tucker, 2011). Rigorously justified numerical
methods have been developed for many simple chaotic systems. Often this is done
through discretisations of the transfer operator, in particular via Ulam’s method
(Dellnitz and Junge, 1999; Froyland, 1999; Dellnitz et al., 2001; Galatolo and Nisoli,
2014; Bahsoun et al., 2016; Crimmins and Froyland, 2019b), or by exploiting the
theory of dynamical zeta functions which is an alternate, and in certain cases highly
effective, method of extracting statistical properties (Pollicott and Jenkinson, 2000;
Jenkinson and Pollicott, 2005; Pollicott and Vytnova, 2016; Jenkinson et al., 2018).
These existing methods, however, have certain limitations. Ulam’s method operates
only in function spaces of low regularity: consequently, it exhibits slow convergence
(Bose and Murray, 2001). Moreover, the insufficient degree of regularity restricts
it from deducing anything on the linear response of deterministic systems, i.e. the
derivatives of functions (1.2) (Bahsoun et al., 2018). On the other hand, zeta func-
tion methods have better convergence but are only practicable for analytic maps with
a small number of branches, as they require computation of exponentially growing
numbers of periodic orbits (Jenkinson et al., 2018).

In the first part of my thesis I will develop transfer operator-based numerical
methods for exemplary classes of one-dimensional maps, which harness good regular-
ity properties, in particularly of Fourier and Chebyshev approximations (Trefethen,
2013), for fast convergence: in Chapter 2 for uniformly expanding maps, and in
Chapter 3 for non-uniformly expanding intermittent maps. Through efficient and
extremely accurate estimation of quantities such as physical measures and mixing
rates, these methods enable exploration of these simple systems, which can be useful
in making broader statements about chaotic systems.

1Hyperbolic systems are themselves hardly seen in the world, the most well-known and indeed
common example being chain linkages (Hunt and MacKay, 2003; Magalhães and Pollicott, 2013).
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Coming back to the premise invoked above that the statistical behaviour of gen-
eral chaotic dynamical systems can be deduced from simple one-dimensional maps,
we focus in the second part of this thesis on linear response theory, a salient area
where this premise may not hold. Linear response theory has long been believed to
apply in higher dimensions, which has been corroborated by many successes in ap-
plying linear response theory to a large variety of climate models (Bell, 1980; North
et al., 1993; Majda et al., 2010; Lucarini and Sarno, 2011; Cooper et al., 2013; Gritsun
and Dymnikov, 1999; Dymnikov and Gritsoun, 2001; Ring and Plumb, 2008; Ragone
et al., 2016; Lembo et al., 2019), although this success is not universal (Kirk-Davidoff,
2009; Cooper and Haynes, 2013; Chekroun et al., 2014). To explain this, physicists
have invoked the chaotic hypothesis of Gallavotti and Cohen (1995a,b), under which
the dynamics of complex chaotic systems on their attractors are hypothesised to be
“for all intents and purposes” hyperbolic systems. This invocation, however, is not
valid: while hyperbolic systems do have linear response (Ruelle, 1997), the chaotic
hypothesis only speaks to the dynamics when restricted to the attractor (for one
fixed parameter): linear response depends on the manifold structure of the systems
in a neighbourhood of the attractor as well (Ruelle, 2009a). Moreover, from the
work of Baladi and others logistic maps, which are a family of one-dimensional non-
hyperbolic maps, are known to have responses which are not differentiable, even in
the sense of Whitney (Baladi and Smania, 2008, 2010; Baladi, 2014). This motivates
the question: how might linear response theory be valid for macroscopic observabless
in high-dimensional systems when more simple systems, which may in fact be their
constituents, do not have linear response?

As a first model for the broad class of “complex chaotic systems” we will study
large ensembles of simple one-dimensional chaotic systems which may either evolve
independently or be coupled via a mean-field, and we will consider the response of
the mean fields of these ensembles. In Chapter 4 we will combine a (non-rigorous)
stochastic reduction of the macroscopic dynamics of these systems with a numerical
study to obtain a comprehensive survey of the linear response properties of these sys-
tems. In Section 4.5 we will make a detailed study of the uncoupled case. Through
this study, we find a system where the microscopic variables are logistic maps whose
parameters are randomly selected from a distribution: we find that despite the micro-
scopic variables not having LRT a linear response emerges in the macroscopic mean
field observable. Following on from this in Section 4.6 we will consider the linear
response theory of a distinguished variable driven by the uncoupled system, a stan-
dard scenario treated in many statistical physics works (Ford et al., 1965; Zwanzig,
1973; Kupferman et al., 2002). In Section 4.7 we will consider the linear response
for a system that is coupled to itself via a mean-field. We find that for systems in
finite size generate emergent stochastic behaviour in the mean-field, which induces
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LRT in the system, regardless of the composition of the microscopic variables. Fur-
thermore, we will describe a self-coupled system, comprised of microscopic variables
that in isolation satisfy LRT, which nonetheless in the thermodynamic limit fails to
satisfy linear response; in Section 4.8 we will, using the numerics developed in Chap-
ter 2, find a homoclinic tangency in this system. This implies that the macroscopic
dynamics are actually non-hyperbolic, which is a violation of the Galavotti-Cohen
hypothesis itself (Gallavotti and Cohen, 1995a,b; Gallavotti, 2019).

Furthermore, in Chapters 2 and 4 we will provide more detailed background
on the statistical properties of one-dimensional maps and linear response theory,
respectively.



Chapter 2

Spectral Galerkin methods for transfer operators in
uniformly expanding dynamics

2.1. Introduction

One-dimensional full-branch Markov uniformly expanding maps are an impor-
tant class of chaotic dynamical systems: as well as being common toy models,
more complex chaotic systems may be reduced to this class, for example by con-
structing carefully-chosen return maps Young (1998). Mathematically, these maps
are endomorphisms f on a compact and connected one-dimensional manifold Λ for
which there are a set of disjoint open intervals (Oι)ι∈I of full measure such that,

for all ι ∈ I, f |Oι is injective with f(Oι) = Λ, and on Oι, f is differentiable with
|f ′| ≥ λ > 1. A standard example of such a map is the Lanford map, defined on
[0, 1] with f(x) = 2x+ 1

2
x(1− x) mod 1 Lanford (1998).

Many significant properties of these maps can be determined from the transfer
operator L : BV (Λ) → BV (Λ), which describes the action of the map f pushing
forward signed measure densities on the phase space. The transfer operator has the
property that for all φ ∈ BV (Λ) and ψ ∈ L∞(Λ),

∫

Λ

Lφψ dx =

∫

Λ

φψ ◦ f dx,

and for the maps we consider has explicit action

(2.1) (Lφ)(x) =
∑

f(y)=x

1

|f ′(y)|φ(y),

where BV (Λ) denotes the space of functions of bounded variation on Λ. The prime
example of a mathematical object that can be derived from the transfer operator is
that the density ρ of the system’s physical measure, which is an absolutely contin-
uous invariant measure (acim), is the unique 1-eigenfunction of L with

∫
Λ
ρ dx = 1.

Another example is that the central limit theorem for the long-time average of an
observable φ ∈ BV (Λ) for initial condition x0 sampled from a BV density can be
written ∑n

i=0 φ(f i(x0))− nEφ
σf (φ)

√
n

n→∞−−−→d N(0, 1),

18
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where the expectation value ρ(φ) is given

ρ(φ) =

∫

Λ

φ ρ dx(2.2)

and the diffusion coefficient σf (φ) is defined via the Green-Kubo formula

σ2
f (φ) =

∫

Λ

φ

∞∑

n=−∞

L|n|
(

(φ− ρ(φ)) ρ
)
dx.(2.3)

Transfer operator problems cannot in general be solved analytically, and numeri-
cal approaches are therefore of prime importance. One scheme that has been widely
studied in the literature is Ulam’s method. In Ulam’s method the transfer operator
is projected onto the subspace generated by the characteristic functions of this par-
tition of the phase space and statistical properties are estimated using the projected
transfer operator (Dellnitz and Junge, 1999; Dellnitz et al., 2001). Ulam’s method is
effective for a range of families of chaotic systems (Froyland et al., 2011; Froyland,
2007; Murray, 2010), and in particular Ulam estimates for a variety of statistical
quantities have been proven to converge for uniformly expanding maps (Froyland,
2007; Bahsoun et al., 2016). Higher-order extensions of Ulam’s method to compactly
supported piecewise continuous functions have also been used (Tian et al., 2016), in
particular to compute quantities such as linear response that require a higher degree
of regularity (Bahsoun et al., 2018); theory for a wavelet-based method has also been
developed (Holschneider, 1996). On the other hand Pollicott, Jenkinson and others
have presented a completely different approach, wherein one computes statistical
properties using the theory of dynamical zeta functions: this involves computing
sums over periodic orbits of the system (Jenkinson and Pollicott, 2005; Jenkinson
et al., 2018). Zeta function-based methods have furnished the most accurate esti-
mates in the literature, but due to the rate of exponential growth of the number
periodic points of a given length are functionally limited to analytic maps possessing
only a few branches.

In this chapter we will pursue a different approach: we will construct a so-called
spectral Galerkin approximation, whereby one studies the transfer operator of the
dynamical system of interest and functions it acts on in a basis of orthogonal poly-
nomials and orthogonally project to finite-dimensional spaces EN ⊆ BV spanned by
low-index elements in the basis. Spectral methods are the gold standard for solving
high regularity operator problems in other areas, including ODE and PDE theory
Boyd (2001); Trefethen (2013). In the realm of chaotic systems, spectral methods
have previously been applied to transfer operators of stochastic flows (Froyland et al.,
2013; Denner et al., 2015): the theory is much more straightforward here than in the
deterministic case, as elliptic operator theory can be applied.
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Since the publication of the work in this chapter, spectral methods have also
been rigorously applied in other deterministic settings beyond the one we consider,
in particular to the transfer operator eigendata of Anosov maps in higher dimensions
(Crimmins and Froyland, 2019a) and of analytic expanding maps of the interval
(Bandtlow and Slipantschuk, 2020).

We consider the Fourier exponential basis

(2.4) ek(x) = eikx, k ∈ Z,

which is orthogonal in L2([0, 2π)), and the Chebyshev polynomial basis

(2.5) Tk(x) = cos k cos−1 x, k ∈ N,

which is orthogonal on [−1, 1] with respect to the weight (1− x2)−1/2.
In our theoretical results we find that, providing the maps under consideration

exhibit sufficient regularity, these kinds of spectral methods provide up to exponen-
tially fast convergence with a small numerical outlay. Our main theoretical results
are that spectral Galerkin estimates of acims and the resolvent of the transfer oper-
ator L at the eigenvalue 1 converge exponentially fast in the approximation order N
for analytic maps, and as O(N2.5−r) for Cr maps (we will be more specific about the
kinds of map we consider in Section 2.2.1). The algorithmic outlay of our method
is O(N3). These results are summarised respectively in Corollaries 2.4 and 2.5 in
Section 2.2.2.

We obtain these results by defining a so-called solution operator that allows one to
access transfer operator resolvent data at eigenvalue 1 (Theorem 2.1 in Section 2.2.2),
and then showing that spectral Galerkin approximations of this solution operator
converge at the aforementioned rates (Theorem 2.3). These rates of convergence
are determined via bounds on entries of the spectral basis matrix representations of
transfer operators, proved in Theorems 2.6-2.7.

This theoretical work carries out some of the directions for further research sug-
gested in Baladi and Holschneider (1999), which proved convergence of eigenvalue
and eigenvector estimates of transfer operators of circle maps in a wavelet basis (a
transformation of a Fourier basis). In particular, we extend from periodic intervals to
non-periodic intervals, and establish quantitative convergence rates for the invariant
density and resolvent data at the eigenvalue 1.

The chapter is structured as follows. In Section 2.2 we define the classes of maps
pertinent to our results, and introduce the main theorems, which we then prove
in Section 2.3. In Section 2.4 we describe the algorithms we use that demonstrate
the possiblities of transfer operator spectral methods, and in Section 2.5 we present
numerical results illustrating these algorithms. Finally in Section 2.6 we discuss the
methods presented and consider possible extensions.
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2.2. Set-up and main theorems

We first set up the problem, introducing the maps under consideration. We then
present the major results: Theorem 2.1 characterising an operator that explicitly
solves many typical transfer operator problems; the main theorem, Theorem 2.3,
which gives convergence of spectral operator estimates and Corollaries 2.4 and 2.5,
which give convergence of acims and other statistical properties as a result; and
finally Theorems 2.6 and 2.7 bounding the magnitude of transfer operator spectral
coefficient matrix entries Ljk, which are central to the proof of Theorem 2.3. We
finally present two rigorously validated bounds on the Lyapunov exponent and a
diffusion coefficient of the Lanford map, obtained via a rigorous implementation of
our spectral method.

2.2.1. Dynamical systems under consideration. We first introduce the two
generic classes of maps we will consider; we will then introduce a set of so-called
distortion conditions that maps from these classes may optionally hold, and which
determine the spectral method’s rates of convergence.

2.2.1.1. Classes of maps. We define two main classes of maps: circle maps UP
and interval maps UNP . Maps in UP are defined on the one-dimensional torus and
must be continuous and differentiable on the whole domain, whereas maps in UNP
are defined on a (non-periodic) interval, and there is no requirement for any continu-
ity or differentiability between branches of the map. For example, a Markovian tent
map may lie in UNP , whereas maps in UP must have a derivative defined everywhere.

A map f : Λ→ Λ is in UP if it satisfies the following axioms:

• Its domain Λ is a circle, which we suppose to be canonically R/2πZ.
• It is piecewise C2 with Lipschitz-bounded distortion, that is,

sup
x∈Λ

|f ′′(x)|
|f ′(x)|3 <∞.

• It is uniformly expanding, that is,

(E) λ := inf
x∈Λ
|f ′(x)| > 1.

Maps in UP are circle maps, and can be extended to bijective lifts f̂ : [0, 2π] →
[0, 2βπ] for some β ∈ {2, 3, 4, . . .}. We denote the inverse of f̂ by v = f̂−1, and for
consistency with the notation for UNP define vι(x) := v(x+ 2ιπ) for x ∈ [0, 2π] and
ι ∈ I := {0, 1, . . . , β − 1}.

A map f : Λ→ Λ is in UNP if it satisfies the following axioms:
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• Its domain Λ is an interval, which we suppose to be the canonical interval for
Chebyshev expansions [−1, 1].
• It is full-branch Markov, i.e. there are open disjoint intervals Oι, ι ∈ I whose

union is of full measure in Λ such that f |Oι extends continuously to a bijective

function f̂ι : Oι → Λ.
• The functions f̂ι are all C2 and furthermore, the map f has Lipschitz-bounded

distortion. We will find it useful to formulate the Lipschitz distortion condi-
tion in terms of vι := f̂−1

ι , as

(DD1) sup
x∈Λ,ι∈I

∣∣∣∣
v′′ι (x)

v′ι(x)

∣∣∣∣ <∞.

• It satisfies a uniform C-expansion condition1

(CE) λ̌ = inf
x∈∪ι∈IOι

√
1− x2

√
1− f(x)2

|f ′(x)| > 1.

• It satisfies a partition spacing condition

(P) sup

{ |Oι|
d(Oι, ∂Λ)

: d(Oι, ∂Λ) > 0

}
= ξ <∞.

The latter two conditions we introduce to control the high oscillatory behaviour of
the spectral basis functions’ images under the action of the transfer operator near
the endpoints of the interval. They are not especially onerous conditions: uniformly
expanding maps typically satisfy (CE), and a uniformly expanding map satisfying
all conditions of UNP except (CE) will have an iterate in UNP (see Appendix A1
for a discussion of C-expansion); (P ) is always satisfied for maps with finitely many
branches. The bounded distortion condition (DD1) is a standard regularity condition
necessary for, among other things, a spectral gap in BV .

We also consider maps that satisfy the conditions of UP (resp. UNP ) except that
the associated expansion parameter in (E) (resp. (CE)) need only be positive, rather
than strictly greater than 1. We denote the class of such maps ŪP (resp. ŪNP ).

2.2.1.2. Distortion conditions. To obtain good convergence results we will op-
tionally impose the following generalised distortion conditions on our maps.

The first set of distortion conditions are equivalent to uniform bounds on deriva-
tives of the distortion log |v′ι|. A map satisfies distortion condition (DDr) for some
r ∈ N+ if

(DDr) sup
ι∈I,x∈Λ

∣∣∣∣∣
v

(n+1)
ι (x)

v′ι(x)

∣∣∣∣∣ = Cn <∞, n = 1, . . . , r.

1This condition can be reformulated as requiring |(cos−1 ◦f ◦ cos)′| ≥ λ̌ > 1.
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The second set of distortion conditions are equivalent to uniform bounds on the
first derivative of the distortion on a complex neighbourhood of the map’s domain
Λ. For circle maps, the neighbourhood is the closed complex strip Λβ

δ = {x+ iy | x ∈
R/2βπZ, |y| ≤ δ}, for a given δ > 0. For intervals, the neighbourhood is Λ̌δ, defined
to be a Bernstein ellipse2 of parameter eδ. We assume that v′ and v′ι respectively
extend holomorphically to these sets. A map satisfies (ADδ) for some δ > 0 if

(ADδ)





supz∈Λβδ

∣∣∣v′′(z)v′(z)

∣∣∣ = C1,δ <∞, Λ = R/2πZ,

supι∈I,z∈Λ̌δ

∣∣∣v′′ι (z)
v′ι(z)

∣∣∣ = C1,δ <∞, Λ = [−1, 1].

We associate with each distortion condition a spectral rate of convergence. We
formulate these rates of convergence κ(·) as function classes:

κ (DDr) =
{
x 7→ C(1 + x)−r : C > 0

}
,(2.6)

κ (ADδ) =
{
x 7→ Ce−ζx : C > 0, ζ ∈ (0, δ]

}
.(2.7)

2.2.2. Main results. Before formulating the main theoretical results of this
paper, we introduce an operator derived from the transfer operator that explicitly
generates acims and other statistical properties. Many statistical properties can be
computed using resolvent data of L at its eigenvalue 1: the so-called solution operator
is the inverse of a bounded perturbation of id−L which allows the resolvent data to
be recovered.

We define the solution operator inverse

(2.8) K = id−L+ uS

and the solution operator

(2.9) S = K−1 = (id−L+ uS )−1,

where the functional S is the total Lebesgue integral on Λ and u is a function in
the domain of L such that S u = 1.

For any transfer operator L with a spectral gap (i.e. with a simple eigenvalue
at 1 and the remaining spectrum bounded inside a disk of radius less than 1), the
solution operator therefore solves for two important quantities, according to the
following theorem:

Theorem 2.1. Let L : E → E be a transfer operator with a spectral gap. Choose
u ∈ E with S u = 1.

Then S = (id−L+uS )−1 is well-defined and bounded as an operator on E, and

2A Bernstein ellipse of parameter ρ > 1 is an ellipse in the complex plane centred at 0 with
semi-major axis of length 1

2 (ρ+ ρ−1) along the real axis and semi-minor axis 1
2 (ρ− ρ−1) along the

imaginary axis.
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(a) If ρ is the unique acim with S ρ = 1,

(2.10) ρ = Su.
(b) For any φ ∈ ker S ,

(2.11)
∞∑

n=0

Lnφ = Sφ.

Remark 2.2. As a result of Theorem 2.1, many important statistical quantities
can be simply expressed using the solution operator and the acim. For example, the
Green-Kubo formula for the diffusion coefficient given in (2.3) can be rewritten using
Theorem 2.1(b) as

(2.12) σ2
f (A) =

∫

Λ

A (2S − id)(id−ρS )(ρA) dx.

This closed formula enables effective rigorous calculation of diffusion coefficients, as
we will see in Section 2.5.

We now provide some notation to enable us to state the main theorem, which
proves the convergence of the spectral methods. We define the finite-dimensional
subspaces (EN)N∈N+

EN =

{
span{e−N , . . . , eN},Λ = [0, 2π)

span{T0, . . . , TN},Λ = [−1, 1],

where the Fourier exponentials ek and Chebyshev polynomials Tk are defined respec-
tively in (2.4-2.5). We also define the corresponding orthogonal projections PN onto
the EN in the L2 space in which the bases are orthogonal (L2([0, 2π]) for the Fourier
basis (ek)k∈Z, and L2([−1, 1], (1− x2)−1/2) for the Chebyshev basis (Tk)k∈N. We also
define the spectral Galerkin operator discretisations, which are as endomorphisms
on the finite-dimensional space EN :

(2.13) LN = PNL|EN
and

(2.14) SN := K−1
N := (id−LN + uS |EN )−1,

where the function u is taken to be in EN . (A typical choice of u is u = 1/|Λ|.)
Our main theorem can then be formulated as follows, recalling the definitions of

κ(·) in (2.6-2.7):
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Theorem 2.3. Suppose f ∈ UP or UNP , and satisfies a distortion bound (DDr)
(resp. (ADδ)). Then there exist functions K, K̄ ∈ κ(DDr) (resp. κ(ADδ)) such that
for sufficiently large N and all φ ∈ EN ,

‖LNφ− Lφ‖BV < N
√
NK(N)‖φ‖BV ,

and
‖SNφ− Sφ‖BV < N

√
NK̄(N)‖φ‖BV .

For ease of expression, in the rest of this section we use the notation (D) to denote
either of (DDr) or (ADδ).

Theorem 2.3 together with Theorem 2.1 directly implies the convergence of es-
timates of statistical quantities. In particular, the following corollary gives spectral
convergence of the acim.

Corollary 2.4. Suppose f ∈ UP or UNP , and satisfies a distortion bound (D).
Let ρN = SNu. Then there exists K ∈ κ(D) such that for all N sufficiently large

‖ρN − ρ‖BV < N
√
NK(N).

The next corollary gives strong convergence of
∑∞

n=1 Ln, and consequently many
important statistical estimates (see (2.12) for an example).

Corollary 2.5. Suppose f ∈ UP or UNP , and satisfies a distortion bound (D). Then
there exists K ∈ κ(D) such that for N large enough and all φ ∈ EN ∩ ker S ,∥∥∥∥∥SNφ−

∞∑

n=0

Lnφ
∥∥∥∥∥
BV

< N
√
NK(N)‖φ‖BV .

Since the operators LN and SN are endomorphisms on EN , Theorem 2.3 and
Corollary 2.5 show that the spectral method converges in operator norm within
EN . When attempting to estimate, for example, Sφ for some φ /∈ EN , one can
simply substitute φ for its spectral discretisation PNφ, and propagate through the
calculation the error arising from this substitution.

Critical to proving Theorem 2.3 are bounds on the entries Ljk of the transfer
operator considered as a matrix with respect to the Fourier or Chebyshev orthogonal
basis, which are stated in the following two analogous theorems for transfer operators
on periodic and non-periodic domains: the situation is illustrated in Figure 2.1.
Abstractly, these results reformulate the characterisation of the transfer operator of
a uniformly-expanding map as the sum of a strictly upper-triangular operator and
a compact operator developed by Holschneider (1996) and Baladi and Holschneider
(1999) in the context of C∞ circle maps in wavelet bases. The important development
of our approach is the large amount of quantitative information generated, which
allows us to prove convergence rates and provide rigorous concrete bounds for specific
maps.
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Theorem 2.6. Suppose f is in the class ŪP satisfying some distortion bound (D),
with λ1 ≤ f ′ ≤ λ2. Suppose L is the matrix representing the transfer operator of f
in a Fourier exponential basis.

Then for every p1 > λ−1
1 and p2 < λ−1

2 there exists K ∈ κ(D) such that for
j/k > p1 or k = 0,

|Ljk| ≤ K(|j − p1k|),
and for j/k < p2 or k = 0,

|Ljk| ≤ K(|j − p2k|).

0

k

0j

j =
λ −11 k

j = λ−1
2 k

j =
p
1k

j = p2k

(a)

0

k

0

j

j = λ̌−1
k

j = pk

j = pk + C

(b)

Figure 2.1. Heatmaps of maximum possible magnitudes of coeffi-
cients Ljk of transfer operator matrix of a system described in: (a)
Theorem 2.6; (b) Theorem 2.7. Shown are contours of constant mag-
nitude of coefficients (thin black lines) and, in grey block colour, coef-
ficients not characterised by the theorems. Note that because the full
Fourier and Chebyshev bases are indexed by Z and N respectively, the
matrix indices range over these values.

Theorem 2.7. Suppose f is in the class ŪNP , satisfying some distortion bound
(D). Suppose L is the matrix representing the transfer operator of f in a Fourier
exponential basis.

Then for every p > λ̌ there exists K ∈ κ(D) such that for j/k > p or k = 0,

|Ljk| ≤ K(|j − pk|).
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Remark 2.8. One can prove similar results for transfer operators with general
weights (c.f. (2.1)):

(2.15) (Lgφ)(x) =
∑

f(y)=x

g(y)φ(y).

This class of operator includes transfer operators and composition operators Cv : φ 7→
φ ◦ v.

From the previous results, we are able to prove extremely accurate rigorous
bounds on maps in UP and UNP satisfying sufficiently strong distortion conditions.
In particular, we prove the following bound on the Lanford map:

Theorem 2.9. Consider the Lanford map f : [0, 1]→ [0, 1], f(x) = 2x + 1
2
x(1− x)

mod 1.

(a) The Lanford map’s Lyapunov exponent λ :=
∫

Λ
log |f ′| ρ dx lies in the range

λ = 0.657 661 780 006 597 677 541 582 413 823 832 065 743 241 069

580 012 201 953 952 802 691 632 666 111 554 023 759 556 459

752 915 174 829 642 156 331 798 026 301 488 594 89± 2× 10−128.

(b) The diffusion coefficient for the Lanford map with observable φ(x) = x2 lies in
the range

σ2
f (φ) = 0.360 109 486 199 160 672 898 824 186 828 576 749 241 669 997

797 228 864 358 977 865 838 174 403 103 617 477 981 402 783

211 083 646 769 039 410 848 031 999 960 664 7± 6× 10−124.

These bounds are derived in Section 2.5.1.

2.3. Proofs of results

Our attack on the theorems in Section 2.2.2 is structured as follows.
We begin by proving Theorem 2.1 characterising the solution operator. This

proof uses standard quasi-compactness properties of the transfer operator.
We then turn to proving the entry bound results (Theorems 2.6 and 2.7). These

results stem from more general properties of Fourier series representations of compo-
sition operators (Lemma 2.11), which we prove using oscillatory integral techniques.
Because it is necessary to make a non-diffeomorphic cosine transformation to obtain
Fourier basis functions from Chebyshev polynomials, some work is required to prove
appropriate bounds on derivatives after the transformation.

We then go on to prove Theorem 2.3. We consider a perturbation of the transfer
operator L that is block-upper-triangular in the relevant spectral basis (in the Fourier
case, under the basis order e0, e1, e−1, e2, e−2, . . .), with the finite matrix LN forming
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the first block on the diagonal. Since the solution operator of such a perturbation is
a composition of upper block-diagonal operators, the first diagonal block can thus be
approximated only from knowledge of LN (Lemma 2.15). Using that the BV -norm
of our perturbation can be bounded using spectral matrix coefficients (Lemma 2.16),
we obtain the main result.

We begin with the proof of Theorem 2.1, which gives the properties of the solution
operator S = (I − L+ uS )−1 (see (2.9)).

Proof of Theorem 2.1. Split E as V⊥ ⊕ V where V⊥ = span{u} and V = ker S .
Since V⊥ and V are closed subspaces of E there exists a bounded operator N : E →
V⊥ such that one may also define id−N : E → V . We now consider the action with
respect to this splitting of the putative solution operator inverse, K = id−L+ uS .

Since S (L − id) = 0, we have for any element φ ∈ V that

(2.16) Kφ = (id−L)φ+ uS φ = (id−L)|V φ ∈ V.
Similarly, for any scalar α we have

(2.17) Kαu = (id−L)(αu) + uS αu = αu+ (id−L)(αu),

where the sum follows the splitting of E = V⊥ ⊕ V .
Since the transfer operator L has a spectral gap, the spectral radius of L|V is

strictly less than 1, and the operator

Q := (id−L|V )−1 =
∞∑

n=0

Ln|V

is bounded as an endomorphism on V .
Back-solving (2.16-2.17) thus gives that for any ψ ∈ V ,

Sφ = K−1ψ = Qψ,
and for any scalar α that

Sαu = αu−Q(id−L)αu = lim
n→∞

Lnαu = αρ.

Since αρ = ρS (αu), we can use these results to write the solution operator

(2.18) S = Q(id−N ) + ρSN ,
which is clearly bounded.

It clearly follows from (2.18) that Su = ρ and Sφ = Qφ for φ ∈ V . �

Remark 2.10. The solution operator can be written as the following expression

(2.19) S = uS +
∞∑

n=0

Ln(id +(Lu− 2u)S ).
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We now set about proving Theorems 2.6 and 2.7, which place bounds on the
magnitudes of the entries of transfer operator matrices in Fourier and Chebyshev
bases.

We begin by proving similar kinds of bounds on the coefficients of a matrix
associated with a more general operator M on the circle R/2πZ. We introduce M
as a generalised transfer operator (2.15) where instead of using the inverse of the
map, one uses a general function v which may be non-injective. Bounds on elements
of the Fourier basis transfer operator matrix forM imply similar bounds on transfer
operators in Fourier and Chebyshev bases.

Lemma 2.11. Let v be a differentiable function from R/2βπZ, β ∈ Z+ to R/2πZ
such that v′(R/2βπZ) = µ̃ = [µ2, µ1], and let h be a continuous function on the circle
R/2βπZ.

Let M be the endomorphism on L2([0, 2π]) defined by

(2.20) M : φ 7→
β∑

b=1

h (x+ 2πb)φ (v (x+ 2πb)) .

Let M be the corresponding bi-infinite matrix in the Fourier complex exponential
basis.

Then:

(a) The entries of M are bounded uniformly by ‖h‖1/2π.
(b) Suppose that for n = 1, . . . , r, sup |v(n+1)| ≤ Υn < ∞ and sup |h(n)/h| ≤ Hn <
∞. Then there exist constants Wr,n such that for j /∈ kµ̃,

(2.21) |Mjk| ≤
‖h‖1

2π

r∑

n=0

Wr,n|k|n
d(j, kµ̃)n+r

.

Each Wr,n is bounded by a linear combination of Hl, l ≤ r− n, whose coeffi-
cients are polynomials in Υl, l ≤ r − n.

(c) Suppose v and h extend analytically to the complex strip Λβ
δ = [0, 2βπ) + i[−δ, δ],

and on this strip sup |h′/h| ≤ H1,δ <∞ and sup |v′′| ≤ Υ1,δ <∞.
Choose any p̃ = [p1, p2] such that µ̃ ⊂

∫
p̃. Define ζ = min

{
2Υ−1

1,δd(µ̃,R\p̃), δ
}
.

Then ζ > 0 and

(2.22) |Mjk| ≤
‖h‖1

2π
eζ(H1,δ−d(j,p̃)).

Proof of Lemma 2.11. The matrix element Mjk is the jth Fourier coefficient of
the function Mek, so using the orthogonality of Fourier bases in L2 and (2.20), we
have that

Mjk =
1

2π

∫ 2π

0

β∑

b=1

h (x+ 2πb) eikv(x+2πb)e−ijxdx,
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which using the 2π-periodicity of eijx we can rewrite as a single integral

(2.23) Mjk =
1

2π

∫ 2βπ

0

h(x)ei(kv(x)−jx)dx.

We obtain (a) from this equation simply by taking absolute values.
For (b), we use that the integrand in (2.23) is oscillatory when the derivative of

kv(x)− jx is bounded away from zero, that is, when j/k /∈ [µ2, µ1]. As a result, we
can improve the bound we got in the first part by repeatedly integrating by parts.

Starting from (2.23), we separate the integrand into two terms
(

h(x)

i(kv′(x)− j)

)(
i(kv′(x)− j)ei(kv(x)−jx)

)
,

so as to integrate by parts, differentiating the left term and integrating the right.
Because the right term integrates to zero, the boundary terms in the integration by
parts formula cancel, and we are left with an integral of the same form as (2.23) on
which we can repeat the process. Thus we obtain a family of expressions

Mjk =
(−1)n

2π

∫ 2βπ

0

hn(x)ei(kv(x)−jx)dx, n ≤ r,

with each hn being (r−n)-times differentiable and defined by the recurrence relation

h0 = h, hn+1 = −i
[

hn
j − kv′

]′
.

We find by induction that

hn = in
n∑

l=0

klwn,l(x)

(j − kv′(x))n+l
,

with wn,l having the recurrence relation

wn,l = w′n−1,l + (n+ l − 1)v′′wn−1,l−1, 0 < l < n,

wn,0 = w′n−1,0, n > 0,

wn,n = 2nv′′wn−1,n−1, n > 0,

w0,0 = h.

By induction, we see that each wn,l has the form

wn,l =
n−l∑

l′=0

ωn,l,l′(v
′′, . . . , v(n−l+2))h(l′),
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where ωn,l,l′ are degree l homogeneous polynomials with positive coefficients. (The
ωn,0,l′ are constants as a result, and thus issues of existence of derivatives do not
arise.)

Setting

Wn,l = sup
x∈[0,2π]

|wn,l(x)|
|h(x)| ≤

n−l∑

l′=0

ωn,l,l′(Υ1, . . . ,Υn−l+1)Hl′ ,

we have

|Mjk| ≤
1

2π

∫ 2βπ

0

n∑

l=0

Wn,l|h(x)||k|l
|j − kv′(x)|n+l

dx,

from which (2.21) follows by Hölder’s inequality.
For (c), we use the 2βπ-periodicity of the integrand of (2.23) to move the contour

of integration. When j/k < p2, we shift the contour of integration by −iζ sgn k in
the complex plane so

(2.24) Mjk =
1

2π

∫ 2βπ

0

h(x− iζ sgn k)eikv(x−iζ sgn k)−ij(x−iζ sgn k)dx.

We now use our bounds on derivatives of h and v to bound elements of this
expression, beginning with the argument of the exponential.

Applying Taylor’s theorem to =v(x+ iξ), we have

=v(x− iζ sgn k) = −ζ sgn kv′(x)− 1

2
ζ2=v′′(ξ)

for some ξ ∈ Λβ
δ . This gives us that

<(ikv(x− iζ sgn k)) ≤ ζk sgn k|v′(x)|+ |k|1
2
ζ2Υ1,δ

≤ ζ|k|
(
µ1 +

ζΥ1,δ

2

)

≤ ζ|k|p1,

where the last inequality results from the definition of ζ in the statement of the
lemma.

We can bound h(x− iζ sgn k) by using that the Lipschitz constant of log h on Λβ
δ

is sup |h′/h| ≤ H1,δ. As a result,

|h(x− iζ sgn k)| ≤ |h(x)|e|iζ sgn k|H1 = |h(x)|eζH1,δ .

Thus when we take absolute values on (2.24) we obtain that

|Mjk| ≤
1

2π

∫ 2βπ

0

|h(x)|eζH1,δeζ sgn k(kp1−j)dx.
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Using that sgn k = sgn(j − p1k) for j > p1k and Hölder’s inequality yields (2.22).
The proof of (c) for j/k < p2 is analogous, with the contour shifted in the opposite

direction.
�

Given Lemma 2.11, Theorem 2.6 is an elementary result. It is necessary only to
check that the conditions for the theorem imply the conditions for the lemma, and
vice versa for the results.

Proof of Theorem 2.6. From (2.1), the transfer operator L of a map f ∈ ŪP has
action

Lφ(x) =
b∑

n=1

σv′(x+ 2bπ)φ(v(x+ 2bπ)),

where σ = sgn v′(0). (Note that v is monotonic and so σv′ = |v′|).
Since λ−1

2 < |v′| < λ−1
1 , we can apply Lemma 2.11 with h = σv′.

Suppose that f satisfies (DDr). Then we can set Υn = Cn for all n ≤ r, as the
definition of Cn in (DDr) and of Υn in Lemma 2.11 are the same. We can also set

|vn+1| ≤
∣∣∣∣
v(n+1)

v′

∣∣∣∣ |v′| ≤
Cn

min{|λ1|, |λ2|}
= Hn <∞.

This gives us what we need for Lemma 2.11(b), and so there exist Wr,n such that

Ljk ≤
‖v′‖1

2π

r∑

n=0

Wr,n|k|n
|j − λ−1

m k|n+r

where λm is λ1 for j/k > λ−1
1 and λ2 for j/k < λ−1

2 .
We can eliminate the sum by using that for j/k > p1,

|k|r
|j − λ−1

m k|r =
1

|j/k − λ−1
1 |r
≤ 1

(p1 − λ−1
1 )r

,

and similarly for p2. Furthermore, since v′ does not change sign, ‖v′‖1 = |v(2πβ)−
v(0)| = 2π.

Thus there exists a constant C depending on the distortion constants Cr, expan-
sion bounds λ1,2 and constants p1, p2 such that for j/k /∈ [p2, p1] or k = 0,

Ljk ≤
C

|j − λ−1
m k| ≤

C

|j − p−1
m k| ,

which implies the bound for maps in (DDr) from Theorem 2.6.
Similarly, suppose that f satisfies (DDr). Then Υ1,δ = C1,δ <∞, and

sup
v∈Λβδ

|v′| ≤ eδC1,δ · sup
x∈[0,2βπ)

|v′(x)| <∞,
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and hence by Lemma 2.11(c) there exists C > 0 and ζ ∈ (0, δ] such that for j/k > p1,
|Ljk| < Ce−ζ|j−p2k|, and similarly for j/k < p2. �

Theorem 2.7 also follows from Lemma 2.11, using the following relation between
Chebyshev polynomials and Fourier modes:

Tk(cos θ) =
1

2
eikθ +

1

2
e−ikθ.

However, because the cosine function on [0, 2π) is two-to-one with critical points
at 0 and π, the proof is less straightforward than for Theorem 2.6. In particular,
we will have to address how to turn the transfer operator of a map in ŪNP into
the sum of operators of the form (2.20), with regard to the two-to-one nature of
the transformation. We will then need to examine how distortion bounds translate
quantitatively under this transformation. Once we have done these, the bounds
follow easily.

Proof of Theorem 2.7. From the definition of transfer operators (2.1) and the
orthogonality relation for the Chebyshev basis, we obtain the following formula for
Chebyshev basis matrix elements of transfer operators of maps in ŪNP :

Ljk =
tj
π

∑

ι∈I

∫ 1

−1

σι√
1− x2

v′ι(x)Tk(vι(x)))Tj(x) dx,

where σι = sgn v′ι, tj = 2− δj0, and the sum is taken over the branches of the map.
Under the transformation x = cos θ and using that Tk(x) = cos(k cos−1 x), we find
that Ljk is related to a Fourier basis matrix entry for a weighted transfer operator:

(2.25) Ljk =
tj
π

∑

ι∈I

σι

∫ π

0

v′ι(cos θ) cos(k cos−1 vι(cos θ))) cos jθ dx.

Based on this, we set hι = v′ι ◦ cos for each ι ∈ I. These functions hι are 2π-periodic.
Defining νι+ := cos−1 ◦vι ◦ cos and νι− = 2π − νι+, we find

Ljk =
tj
π

∑

ι∈I

σι

∫ π

0

hι(θ) cos(kνι+(θ)) cos jθ dx

=
tj
4π

∑

ι∈I

σι

∫ π

0

hι(θ)
∑

±

(
ei(kνι±(θ)−jθ) + ei(kνι±(θ)+jθ)

)
dθ.

Continuing νι± differentiably to the interval [0, 2π] and using that the integrands
are symmetric about π, we can finally rewrite the transfer operator in the form

(2.26) Ljk =
tj
8π

∑

ι∈I,±

σι

∫ 2π

0

hι(θ)
(
ei(kνι±(θ)−jθ) + ei(kνι±(θ)+jθ)

)
dθ.
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If neither or both of vι(−1) and vι(1) are a singular point of the cos−1 transfor-
mation (i.e. −1 or 1), then the νι± are differentiably defined on the circle R/2πZ. If
one of these values is, then νι+ will continue across the critical points on either side
to νι− and so their concatenation νι is a differentiable map on R/4πZ. Thus, if we
define the sets Ic = {ι ∈ I : |vι({±1}) ∩ {±1}| = 1} and I ′ = (I\Ic × {+,−}) ∪ Ic,
and set βι′ = 1 + 1Ic(ι

′), we have

(2.27) Ljk =
tj
8π

∑

ι∈I′
σι

∫ 2π

0

βι′−1∑

b=0

hι′(θ + 2πb)eikνι′ (θ+2πb)
(
e−ijθ + eijθ

)
dθ.

Clearly, the summands are two-element sums of Fourier coefficient matrix ele-
ments of operators of the form 2.20. The following lemma, whose proof is for ease of
exposition in Appendix A3, shows that that the relevant bounds on νι′ and hι hold
uniformly for all ι:

Lemma 2.12. Suppose f ∈ ŪNP with partition spacing constant ξ and I ′ is defined
as above. Then

(a) If the vι satisfy (DDr) with the same distortion constants Cn, n ≤ r, then for
these n there exist Υn, Hn <∞ depending only on Cm,m ≤ n and ξ such that

sup
θ∈[0,2π],ι′∈I′

ν
(n+1)
ι′ (θ) ≤ Υn

and

sup
θ∈[0,2π],ι′∈I′

∣∣∣∣∣
h

(n)
ι′ (θ)

hι′(θ)

∣∣∣∣∣ ≤ Hn <∞.

(b) If the vι obey (ADδ) with the same distortion constant C1,δ, then there exists ζ ∈
(0, δ], Υ1,ζ , H1,ζ <∞ depending only on ζ, C1,δ and partition spacing constant ξ
such that

sup
θ∈Λ

βι′
ζ ,ι′∈I′

ν ′′ι′(θ) ≤ Υ1,ζ

and

sup
θ∈Λ

βι′
ζ ,ι′∈I′,±

∣∣∣∣
h′ι′(θ)

hι′(θ)

∣∣∣∣ ≤ H1,ζ <∞.

Setting µ̃ = [−λ̌−1, λ̌−1] and p̃ = [−p, p], Lemma 2.12 means we can apply
Lemma 2.11 to each summand in (2.27). Up to a constant factor G to be discussed
later we have that if f satisfies (DDr) then there exist Wr,n such that for j > pk ≥ 0,

|Ljk| ≤ 2
tj
8π
G

r∑

n=0

Wr,nk
n

(j − λ̌−1k)n+r
.
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Similarly, if f satisfies (ADδ) there exists ζ ′ ∈ (0, ζ] such that for j > pk ≥ 0,

|Ljk| ≤ 2
tj
8π
Geζ

′(H1,ζ−(j−pk))

which gives the decay rates stated in Theorem 2.7 by the same means as in the proof
of Theorem 2.6.

However, we need to check that the constant factor

G =
∑

ι′∈I′

∫ 2βι′π

0

|v′ι(cos θ)|dθ

is in fact finite.
We convert back to a sum over I by collapsing the sum over ± for ι ∈ I\Ic,

obtaining

G = 2
∑

ι∈I

∫ 2π

0

|v′ι(cos θ)|dθ.

We then make the two-to-one change of variable x = cos θ to find that

G = 4
∑

ι∈I

∫ 1

−1

|v′ι(x)| 1√
1− x2

dx

≤ 4
∑

ι∈I

∫ 1

−1

(1 + 2C1)|Oι|
2
√

1− x2
dx = 4π(1 + 2C1) <∞,

where the first inequality is a result of Lemma A.3(b).
This concludes the proof of Theorem 2.7. �

Remark 2.13. Elements of Fourier and Chebyshev transfer operator matrices are
uniformly bounded, with

|Ljk| ≤ 1

for maps in ŪP , and
|Ljk| ≤ (2− δj0)(2 + 4C1)

for maps in ŪNP .
This follows by applying Lemma 2.11(a) in the proofs of Theorems 2.6-2.7.

Remark 2.14. The uniform C-expansion condition (CE) is the natural expansion
condition for any choice of spectral basis on an interval. Our reasoning is as fol-
lows. If one wishes to use oscillatory integral techniques on these basis functions
as in Lemma 2.11, it is best for the wavelength of the basis functions to be approx-
imately spatially constant. However, wavelengths of sufficiently high-order spectral
basis functions on intervals will always be much smaller towards the endpoints. Po-
tential theory (Trefethen, 2013) tells us that the optimal transformation to even out
high-order basis functions across the interval is always the cosine transformation.
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We now turn to proving the main theorem, Theorem 2.3, and its corollaries.
Our idea is to perturb L such that the associated coefficient matrix is block-upper-
triangular (in the Fourier case, with the ordering of basis elements e0, e1, e−1, e2, . . .).
This isolates the top block EN → EN , which then approximates the corresponding
EN × EN block of the full, unperturbed transfer operator, yielding convergence on
domain EN .

We summarise this using the following lemma, where we do not require our
Banach space E to be BV .

Lemma 2.15. Let E be a Banach space such that EN := (id−PN)LPN is an endo-
morphism on E.

Suppose L has a spectral gap on E. Then

(2.28) ‖LN − L|EN‖E = ‖EN‖E
and

(2.29) ‖SN − S|EN‖E ≤
‖S‖E‖EN‖E

1− ‖S‖E‖EN‖E
.

Proof. The first equality (2.28) arises simply because LN−L|EN = (id−PN)LN |EN =
EN .

Let

L̃N := L − EN = LN + L(id−PN).

Recalling that we defined S to be the Lebesgue integral functional and u an element
of EN with S u = 1, let us also define S̃N = (id−L̃N + uS )−1. If ‖EN‖ is small
enough, this is well-defined, since S̃N = (id +SEN)−1S and thus

(2.30) ‖S̃N − S‖ ≤
‖S‖‖EN‖

1− ‖S‖‖EN‖
.

For φ ∈ EN , we have that

S̃−1
N φ = φ− L̃Nφ+ uS φ = φ− LNφ+ uS φ ∈ EN ,

and thus S̃−1
N |EN is an endomorphism on EN , is equal to S−1

N . Consequently, SN |EN =

S̃N |EN , which combined with (2.30) yields as desired (2.29). �

The following lemma is then required to connect ‖EN‖BV to spectral matrix
coefficients.

Lemma 2.16. Suppose F : BV (Λ)→ BV (Λ) is an operator for Λ either [0, 2π) or
[−1, 1]. Let the matrix D = (kδjk)j,k∈Z and Ď = (kδ(j−1)k)j,k∈N.

If F has Fourier coefficient matrix F , then

(2.31) ‖F‖BV ≤ 2π(‖DF‖`2 + ‖F‖`2) .
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Similarly, if F has Chebyshev coefficient matrix F , then

(2.32) ‖F‖BV ≤ 2π(
∥∥ČĎF Č−1‖`2 + ‖ČF Č−1‖`2

)
,

where Č = (t
−1/2
k δjk)j,k∈N.

Proof. Consider first the Fourier case. Then since 1√
2π
‖ ·‖L2 ≤ ‖·‖BV ≤

√
2π‖ ·‖H1 ,

(2.33) ‖F‖BV ≤ 2π‖F‖L2→H1 = 2π (‖DF‖L2 + ‖F‖L2) .

By the Plancherel equality, ‖DF‖L2 = ‖DF‖`2 and ‖F‖L2 = ‖F‖`2 . This gives the
required bound in (2.31).

Consider instead the Chebyshev case. Define the Jacobi weight function j(x) =√
1− x2, and the Sobolev spaces Ȟk ⊂ L2([−1, 1], 1/j), k ≥ 0 with norm

(2.34) ‖φ‖Ȟk =
k∑

n=0

∫ 1

−1

j2n−1|φ(n)|2dx.

Note that Ȟ0 = L2([−1, 1], 1/j).
If G is the set of even functions on R/2πZ, simple trigonometric manipulations

show that the operator C : φ 7→ 1
2
φ ◦ cos is an isometry from Ȟk to G ∩Hk([0, 2π))

and similarly from BV ([−1, 1]) to G ∩BV ([0, 2π)). Thus,

‖F‖BV ([−1,1]) = ‖CFC−1‖G∩BV ([0,2π))

≤ 2π
(
‖DCFC−1‖G∩L2 + ‖CFC−1‖G∩L2

)
,

where the inequality comes from (2.33). We can then convert back to Ȟ0 to get the
inequality

‖F‖BV ([−1,1]) ≤ 2π
(
‖C−1DCF‖Ȟ0 + ‖F‖Ȟ0

)
.

We can convert these operator norms into matrix norms as follows. The Cheby-
shev polynomial basis is an orthogonal basis for Ȟ0 with ‖Tk‖Ȟ0 =

√
π/tk and

furthermore the functions

C−1DCTk = k sin(k cos−1 x)

are orthogonal in Ȟ0 with norms k
√
π/tk respectively. The resulting Plancherel

equality results in (2.32). �

We now have the requisite results to tie together to prove Theorem 2.3.

Proof of Theorem 2.3. Maps in UP have a spectral gap in BV as they are uni-
formly expanding with bounded distortion. Since maps in UNP have a forward iterate
that is uniformly expanding with bounded distortion by Theorem A.1 in Appendix
A1, they also have a spectral gap in BV .
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Suppose EN is the Fourier coefficient matrix of EN and the expansion coefficient
of the associated map f is λ > 1. Then given p ∈ (λ, 1), there exists an appropriate
spectral decay function K such that when |j| ≥ |k|,

|Ljk| ≤ K(|j| − p|k|).
Now suppose f satisfies (DDr) for some r ≥ 2. Then K(M) = CM−r for some

C > 0, and so

‖EN‖2
`2 ≤

N∑

k=−N

∞∑

j=N+1

(
|Ljk|2 + |L−jk|2

)

≤
N∑

k=−N

∞∑

j=N+1

2C2(j − p|k|)−2r

≤ 2C2

2r − 1

N∑

k=−N

(N − p|k|)1−2r,

by converting to an integral. We can then take the supremum of the summands to
obtain

N∑

k=−N

(N − p|k|)1−2r ≤ (2N + 1)(N − pN)1−2r ≤ 3

(1− p)2r−1
N2−2r

and thus

‖EN‖2
`2 ≤

6

(2r − 1)(1− p)2r−1
N2K(N)2.

Similarly,

‖DEN‖2
`2 ≤

6

(2r − 2)(1− p)2r−2
N3K(N)2,

where D is as in Lemma 2.16.
Hence as a result of Lemma 2.16, there exists a function K ′ ∈ κ(DDr) such that

‖EN‖ ≤ N
√
NK ′(N).

Suppose f instead satisfies (ADδ). Then for some ζ ∈ (0, δ] there exists p > 1
such that for all |j| ≥ |k|, Ljk ≤ Ce−ζ(|j|−p|k|). Consequently,

‖EN‖2
`2 ≤

N∑

k=−N

∞∑

j=N+1

2e−2ζ(j−p|k|) ≤ 4N

ζ2
e−2ζ(1−p)N

with a comparable result for DEN . Thus, there exists a function K ′ ∈ κ(ADδ) such
that

‖EN‖ ≤ NK ′(N) ≤ N
√
NK ′(N).
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Similarly, we get the same results up to constants in the Chebyshev case: the C
matrices are unproblematic as ‖C‖`2 = 1 and ‖C−1‖`2 = 2.

We therefore have by Lemma 2.15 that if f satisfies some distortion condition
(D) then there exists K ′ ∈ κ(D) such that for any N and φ in LN ,

‖LNφ− Lφ‖BV ≤ N
√
NK ′(N)‖φ‖BV

and if N is sufficiently large,

‖SNφ− Sφ‖BV ≤
‖S‖BVN

√
NK ′(N)

1− ‖S‖BVN
√
NK ′(N)

≤ 2N
√
N‖S‖BVK ′(N)‖φ‖BV ,

which is what was required for Theorem 2.3. �

Corollary 2.4 is a direct result of this convergence and Theorem 2.1:

Proof of Corollary 2.4. We know from Theorem 2.1 that ρ = Su. We have also
defined ρN = SNu, recalling that u lies in EN . As a result, by Theorem 2.3,

‖ρN − ρ‖BV = ‖SNu− Su‖BV ≤ N
√
NK̄(N)‖u‖BV ,

as required. �

Note that here, unlike in Theorem 2.3, we actually have that estimates converge
in norm to the true values.

Corollary 2.5 also follows directly from Theorems 2.1 and 2.3.

Proof of Corollary 2.5. We know from Theorem 2.1 that on V , the space of zero
integral functions, the solution operator S is identical to

∑∞
n=0 Ln. We then need

only apply the second part of Theorem 2.3 to get the required inequality. �

Remark 2.17. When a map satisfies (ADδ), one might be interested in the best rate
of decay one can get for ‖EN‖BV , which controls the convergence of estimates. In
the non-periodic case one can show that

(2.35) lim
N→∞

1

N
log ‖EN‖BV = sup

ι∈I,x∈[0,2π]

|=νι(x+ iζ)| − ζ.

The value of z where the supremum in (2.35) is maximised will have =ν ′ι(z) = 0; if
this value of z varies continuously with ζ, then it will have a maximum when |<ν ′ι(z)|
is 1 or −1. Thus, one expects the right-hand side of (2.35) to be maximised for

(2.36) ζ = min
{

inf
{
|=z| | z ∈ (ν ′ι)

−1({±1}), ι ∈ I
}
, δ
}
.

The result is the same in the periodic case but with vι substituted for νι.)
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2.4. Algorithms

Our results suggest a variety of possible algorithms to capture, given a map f ,
statistical properties that can be expressed as Sφ for some φ, such as acims (2.10)
and diffusion coefficients (2.12). We present two possible algorithms a practitioner
might wish to use to calculate invariant measures: one that gives rigorous bounds on
statistical properties but is somewhat cumbersome for exploratory use, and one that
gives accurate but non-validated estimates that is much more convenient to use. In
this section we describe the two algorithms, and then explain how in both algorithms
we calculate elements of the transfer operator matrix. We will demonstrate the
algorithms in Section 2.5.

Algorithm 1 is a traditional fixed-order spectral method, implemented in interval
arithmetic. It requires as input the map inverses vι and their derivatives, a spectral
order N , various bounds on elements of the transfer operator matrix in the relevant
spactral basis, and a bound on the norm of the solution operator3 S; it then outputs
an estimate for the acim ρ with a rigorously validated BV error.

By contrast, Algorithm 2 is an adaptive-order spectral method that is not rigor-
ously validated: it uses an adaptive QR factorisation of the solution operator inverse
K to solve the linear problem and test for convergence (Olver and Townsend, 2013;
Hansen, 2010). It requires as input only an algorithm to calculate the map f and
outputs an estimate for ρ whose error is not rigorously bounded but is of the order of
‖S‖BV ε1−θ, where ε is the floating-point precision and θ is a small number depending
on the order of differentiability of f .

Algorithm 2 is extremely well-suited for numerical exploration. Because the only
required input is the map itself, Algorithm 2 requires a minimum of drudge work on
the part of the user. It is typically also extremely fast: just with a personal com-
puter, Algorithm 2 gives estimates of statistical quantities of a simple analytic map
accurate to 14 decimal places in less than one-tenth of a second (see Section 2.5).
Because our spectral methods are very accurate in an easily verifiable way, an adap-
tive, non-validated method is also highly reliable. We have consequently made an
implementation of Algorithm 2 available in the open-source Julia package Poltergeist
(Wormell, 2017).

In the presentation of the algorithms and the following discussion we assume that
the Fourier and Chebyshev spectral bases have been relabeled as (bk)k∈N+ . We also

3Available theoretical bounds typically scale exponentially with the distortion bound C1 (see
Korepanov et al. (2016) and Appendix A4). However, at least in the analytic case, the spectrally
fast convergence dominates the large theoretical bounds. It is only necessary to control floating-
point error using an appropriately high numerical precision. Alternatively and more generally, one
may apply the approach of Galatolo and Nisoli (2014).
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Input: Map inverses and derivatives vι, v
′
ι, ι ∈ I; spectral order N ; aliasing

bounds A
(N)
jk for j, k = 1, . . . , N ; bound bS ≥ ‖S‖BV ; bound

bEN ≥ ‖EN‖BV (see Lemma 2.15); bounds bLjk ≤ |Ljk|.
Output: High-precision floating-point vector ρ̃ containing spectral

coefficients of acim estimate; rigorous BV error bound ε̄obs

1 Check that bEN bS < 1: if this is not the case increase N ;

2 Set the number of floating-point bits to be greater than − log2(N4 ∗ bEN );

3 Initialise N ×N matrix of intervals L(N);
4 for k ← 1 to N do
5 Calculate interpolant values q(k,N) = {L(bk)(xl,N)}Nl=1 in interval

arithmetic, using (2.1);

6 Calculate spectral coefficients of the interpolant p(k,N) = FFT (q(k,N))

(DCT (q(k,N)) in the Chebyshev case);
7 for j ← 1 to N do

8 Calculate spectral coefficient matrix entry L
(N)
jk as q

(k,N)
j plus aliasing

error [−A(N)
jk , A

(N)
jk ];

9 Refine interval estimate L
(N)
jk by intersecting it with [−bLjk, bLjk];

10 end
11 end

12 Calculate u(N) = {[δj0/|Λ|, δj0/|Λ|]}Nj=1;

13 Calculate row vector of intervals S (N) = (S bj)
N
j=1 using standard formulae

(Trefethen, 2013);

14 Calculate the spectral coefficient matrix of S−1
N ,

K(N) = I − L(N) + S (N)u(N), where I is an N ×N identity matrix;

15 Calculate ρ(N) = K(N)\u(N);

16 Calculate ρ̃ = {midpoint(ρ
(N)
j )}Nj=1;

17 Calculate a bound ε̄interval > ‖ρ(N) − ρ̃‖BV ;

18 Calculate ε̄finite = 1/(1/(bEN bS)− 1);
19 Calculate ε̄obs = ε̄interval + ε̄finite;

Algorithm 1: Rigorous algorithm to compute acims.

implicitly assume that the Fourier exponential basis has been transformed to sines
and cosines so that real functions have real spectral coefficients.

In both algorithms, one calculates LN by columns, using that the kth column of
LN consists of the first N spectral coefficients of Lbk. The most effective way to esti-
mate these coefficients is by calculating an interpolant. The idea of this is as follows.
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Input: Map f ; map derivative f ′ (optional; may be calculated automatically
using dual number routines (Revels et al., 2016)); tolerance ε

Output: Adaptive order kopt; floating-point vector ρ̃ containing spectral
coefficients of acim estimate ρ̃Nopt

# Extendable vectors encode an infinite vector with finitely

many non-zero entries, ragged matrices’ columns are

extendable vectors. These will encode infinite-dimensional

objects approximating u, K.
1 Initialise empty ragged matrix H, which will hold Householder vectors for

row-reduction;

2 Initialise empty ragged matrix K̂, which will hold row-reduced coefficients of
solution operator inverse K;

3 Calculate extendable vector û = (δj1/|Λ|)j≥1 containing coefficients of u that
will be progressively row-reduced;

4 Set k, the number of columns of matrix K̂, to be 0;

5 repeat # Loop between calculating columns of K̂ and row-reducing

6 Increment k by 1;
7 Set the interpolation order M = 4;
8 repeat # Calculating optimum order interpolant of Lbk
9 Set M ← 2M ;

10 Calculate values of the interpolant q(k) = {L(bk)(xl,M)}Ml=1 using (2.1)
with Newton iteration for the transfer operator;

11 Calculate spectral coefficients of the interpolant p(k) = FFT (q(k))

(DCT (q(k)) in the Chebyshev case);
12 until the interpolant has converged according to the reasoning in Aurentz

and Trefethen (2017);

13 Calculate κ(k), which will become the kth column of K̂, as an extendable

vector {δjk + Skδj1}j≥1 − p(k), where Sk = (S bk) is calculated from
Chebyshev and Fourier integral formulae (Trefethen, 2013);

14 Apply previous Householder transformations encoded as column vectors

of H to κ(k);

15 Calculate Householder vector h that will row-reduce κ(k) considered as

the kth column of K̂;

16 Apply h to κ(k);

17 Right-concatenate κ(k) onto K̂;

# Note K̂ is row-reduced and so upper-triangular

18 Apply h to û;
19 Right-concatenate h onto H;
20 until max{uj}j≥k+1 ≤ ε/|Λ|−1 # i.e. negligible benefit from larger

k;
21 Set Nopt = k;

22 Calculate ρ̃ = {K̂jk}Nopt

j,k=1\{ûj}
Nopt

j=1 via backsolving;

Algorithm 2: Algorithm to compute acims using adaptive interpolation and
infinite-dimensional adaptive QR solver.
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Using (2.1) one evaluates the function Lbk at N special interpolation nodes xl,N : in
the Fourier case these interpolation nodes are evenly-spaced on the periodic interval,
in the Chebyshev case, the interpolation nodes are given by Chebyshev nodes of the
first kind (Trefethen, 2013; Boyd, 2001). One then applies the Fast Fourier Transform
(resp. Discrete Cosine Transform) to the vector ((Lbk)(xl,N))l=1,...,N . The resulting
length-N vector contains the spectral coefficients of the unique function p(k,N) ∈ EN
which matches Lbk at the interpolation nodes. The so-called interpolant p(k,N) is
a close approximation of Lbk: the difference between the jth spectral coefficient of
p(k,N) and that of Lbk (the so-called aliasing error) is guaranteed to be smaller than
some bound Ajk;N . This bound can be determined from aliasing formulae standard
in approximation theory (Trefethen, 2013) combined with bounds on higher-order
spectral elements of Lbk (e.g. from Theorems 2.6-2.7).

These algorithms generalise very easily to other transfer operator problems of the
form ψ = Sφ. This can be done by formulating the problem as Kψ = φ and thus
substituting ρ and u (when it is not constituting the solution operator) for ψ and φ
respectively in the algorithms. As an example, the formula for diffusion coefficients
σ2
f (A) (2.12) requires computing ψ = S[(id−ρK)(ρA)] for a given observable A. The

input (id−ρK)(ρA) may be approximated by projection onto Chebyshev nodes, and
estimating the final expression reduces to simply numerically solving the equation

Kψ = (id−ρK)(ρA)

using the same approximation methods as above.

2.5. Numerical results

In Section 2.5.1 we will prove some rigorous bounds on basic statistical properties
of the Lanford map using the rigorous Algorithm 1; we will then demonstrate the
adaptive Algorithm 2 using the Lanford map and a non-smooth circle map, assessing
the adaptive algorithm’s accuracy and the spectral method’s rate of convergence.

2.5.1. Rigorous bounds on statistical quantities: the Lanford map. The
Lanford map, f : [0, 1]→ [0, 1]

f(x) = 2x+
1

2
x(1− x) mod 1

is a common test case for rigorous estimation of statistical quantities of maps (Gala-
tolo and Nisoli, 2014; Jenkinson et al., 2018; Bahsoun et al., 2016). By linearly
rescaling of [0, 1] onto [−1, 1] we can apply our spectral method to it.

The Lanford map’s uniform expansion parameter is λ = 3
2

and its distortion

bound (on [0, 1]) is C1 = 4
9
. Applying (A.12), we find that ‖S‖BV ≤ 9235.

By considering explicit bounds that will be given in Lemma 2.11, we choose
ζ = cosh−1 7

4
, as it is close to the optimal value for ζ given in Remark 2.17. Using
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Mathematica (Wolfram Research, Inc., 2013) we show that as a result of Remark
2.17,

(2.37) |Ljk| ≤ tj

√

7 +

√
33

2
ecosh−1(4−

√
6)k−cosh−1 7

4
j.

To calculate an estimate of the acim of this map, we implement Algorithm 1 with
N = 2048. We find the truncation error to be ‖EN‖BV ≤ 6.75× 10−133, and choose
the floating-point precision to be 512 significand bits.

Consequently, we obtain an acim estimate ρ̃ with the rigorously validated error
bound

‖ρ̃− ρ‖BV ≤ 6.3× 10−129.

This estimate is plotted in Figure 2.2. The Chebyshev coefficients of ρ̃ are available
in Lanford-acim.zip.
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Figure 2.2. The density of the absolutely continuous invariant mea-
sure for the Lanford map, obtained by Algorithm 1.

We then use this estimate of the acim ρ to calculate the Lyapunov exponent of
the Lanford map

λ =

∫

Λ

log |f ′(x)|ρ(x)dx.

using Clenshaw-Curtis quadrature (Trefethen, 2013). on ρ̃ log |f ′| = ρ̃ log(2− 3x) to
obtain the rigorous estimate given in Theorem 2.9(a).

We then calculated the diffusion coefficient of the observable φ(x) = x2 by evalu-
ating the natural finite-order approximation of formula (2.12), using Clenshaw-Curtis
quadrature. obtaining the rigorous bound given in Theorem 2.9(b).

Lanford-acim.zip


2.5. Numerical results 45

The results together were obtained in 9 hours over 15 hyper-threaded cores of a
research server running 2 E5-2667v3 CPUs with 128GB of memory. The most time-
consuming operation was inverting the Galerkin projection of the solution operator
inverse matrix K2048 = P2048K|E2048 (see (2.14)): this process took up 94% of the
runtime, which may stem partly from using an unoptimised routine. Once K−1

2048,
i.e. the solution operator matrix, was supplied, all the statistical quantities were
calculated on a personal computer in seconds.

2.5.2. Adaptive algorithms. We now present results from the adaptive Algo-
rithm 2, and illustrate the algorithm’s convergence by comparison with a fixed-order
version of Algorithm 2.

We have implemented Algorithm 2 in Julia, an open-source dynamic scientific
computing language. This implementation is publically available in the package
Poltergeist (Wormell, 2017). Poltergeist is integrated with ApproxFun, a compre-
hensive function approximation package written in Julia (Olver, 2019); thus, stan-
dard manipulations of functions and operators may readily be applied to invariant
measures, transfer operators and so on.

Using Poltergeist, we present empirical convergence results for the Lanford map
(for comparison with rigorous methods), and a circle map which is C4 but not ana-
lytic.

2.5.2.1. The Lanford map. The Lanford map experiment in Section 2.5.1 can be
repeated in Poltergeist in a few lines of Julia code:

using Poltergeist, ApproxFun

f_lift(x) = 5x/2 - x^2/2; d = 0..1

f = modulomap(f_lift,d);

K = SolutionInv(f);

rho = acim(K);

L_exp = lyapunov(f,rho)

sigmasq_A = birkhoffvar(K,Fun(x->x^2,d))

This code instantiates a MarkovMap object f and creates a QROperator object
K, which stands in for the corresponding solution operator inverse K (recalling the
definition of the solution operator inverse (2.8)). The acim function carries out Algo-
rithm 2 by calling ApproxFun’s adaptive QR solver (Hansen, 2010) on the equation
Kρ = u. The output is an ApproxFun Fun object containing ρ̃N , the Chebyshev
coefficients of the adaptive acim estimate. The Lyapunov exponent and diffusion
coefficient are calculated using special commands defined in the package that call
appropriate ApproxFun integration and QR solving routines, in the latter case via
(2.12). Once the relevant functions have compiled using Julia’s just-in-time com-
piler, the last five lines of the code will run in less than 0.12 seconds on a personal
computer.
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By applying Algorithm 2 with fixed orders N , the exponential convergence of ρN
with N predicted in Theorem 2.3 was seen to hold in practice. Indeed, only Nopt = 24
columns of the transfer operator were required for convergence using Algorithm 2
(see Figure 2.3).

The estimate of Algorithm 2 for ρ is in fact remarkably accurate: the `∞ error on
Chebyshev coefficients is less than 8 × 10−15 (40 times the floating point precision)
and the BV error on the acim estimate is 3× 10−13 (around 1300 times the floating
point precision). The Lyapunov exponent estimate was correct almost to within
the floating point precision, with the error compared to the rigorous estimate being
2.2 × 10−16: this level of accuracy appears fortuitous rather than representative.
More realistically, the estimate for σ2

f (A) was accurate to about 25 times floating

point precision (1.4× 10−15).
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Figure 2.3. Exponential convergence with N of floating-point esti-
mates of ρN for the Lanford map. The error of the adaptive estimate
for ρNopt from Algorithm 2 is shown as a cross for comparison.

2.5.2.2. A non-analytic circle map. We now consider a circle map which does not
satisfy an analytic distortion condition (ADδ) but rather a differentiable distortion
condition (DDr).

Define the uniformly expanding, triple-covering circle map g : [0, 2π) → [0, 2π)
via the inverse of its lift:

vg(x) =
x

3
+
∞∑

m=0

2−
33
8
m cos

(
2m
(

1− cos
x

3

))
.

The map g is C4.125−ε and thus satisfies distortion condition (DD3) but not (DD4).
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We implement the acim-finding process in a similar fashion to the Lanford map,
although to optimise for speed we also supply CircleMap with the derivative for the
lift:

g = CircleMap(v_g,0..2pi,diff=v_g_dash,dir=Reverse)

Lg = Transfer(g);

rho_g = acim(Lg);

This routine took approximately 9 minutes to run on a personal computer and re-
quired the evaluation of Nopt = 2747 columns of the transfer operator. It produced
an acim estimate (plotted in Figure 2.4) whose BV error we estimate to be approx-
imately 4.8 × 10−10, by comparison with an estimate obtained using high-precision
floating-point arithmetic and N = 6144 columns.
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Figure 2.4. Invariant measure estimate for g using Algorithm 2.

The convergence of ρN is illustrated in Figure 2.5. The BV error on ρN is es-
timated to be O(N ε−2.125), which is better than the estimate in Theorem 2.3 of
O(N−1.5). We conjecture that acim estimates of Cr+α circle maps (i.e. those satis-
fying “(DDr−1+α)”) converge in BV as O(N2−r−α+ε) for all ε > 0, supposing that
the transfer operator matrix coefficients have decay rates that interpolate those in
Theorems 2.6-2.7.

2.6. Discussion

In this chapter we have demonstrated that adaptive spectral methods allow for
very fast and user-friendly computation of statistical properties, via an implemen-
tation of transfer operator spectral methods in the Julia package Poltergeist. Using
Poltergeist, the quantities in Theorem 2.9 may be estimated in under 0.1 seconds on
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Figure 2.5. The convergence with N of floating-point estimates of
ρN for g. The error of the adaptive estimate for ρNopt using Algorithm
2 is plotted with a cross. The slope of a function K(N) = CN−2.125

is plotted with a dashed line. Error estimates are by comparison with
an N = 6144 high-precision floating point acim estimate.

a personal computer to 13 decimal places of accuracy; the package also allows for
computation of a great many statistical quantities not included here, such as transfer
operator spectra, correlation functions and linear response.

To give a rigorous illustration of the power of spectral Galerkin methods for
transfer operators, we have also applied a rigorously justified spectral method to
the Lanford map to get validated bounds for the Lyapunov exponent and diffusion
coefficient to 123 decimal places (see Theorem 2.9 in Section 2.2.2).

The rates of convergence we obtain compare very favourably with other ap-
proaches. While set-based approaches (Ulam’s method) cover a much larger class of
maps than we consider, they have an optimal convergence rate of only O(log(N)/N)
irrespective of regularity, where N is the size of the Ulam matrix. Spectral methods
are also significantly more efficient than algorithms that use periodic orbits to cal-
culate statistical quantities: in the case of analytic maps, these algorithms converge
superexponentially in the order (i.e. maximum length of periodic orbits), but the
number of periodic orbits that must be computed, and hence the computational cost,
grows exponentially with the order (Jenkinson et al., 2018; Jenkinson and Pollicott,
2005). In terms of computational power P , which is the relevant quantity in prac-

tice, periodic orbit algorithms have error O(e−k(logP )2
) as opposed to the spectral

method’s convergence rate of O(e−kP
1/3

).
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Consequently, the illustrative numerical bounds we obtain in Theorem 2.9 are
well beyond the practicable capabilities of other numerical results. The previous
best rigorous bound on the Lyapunov exponent found in the literature was λ =
0.6575 ± 0.0015 obtained by Ulam’s method in Galatolo and Nisoli (2014). The
diffusion coefficient of A(x) = x2 was calculated rigorously in Bahsoun et al. (2016)
to less than one significant figure of accuracy using Ulam’s method; in Jenkinson
et al. (2018) an estimate was given correct to 55 significant figures, of which 17 were
rigorously validated. For comparison, we use a comparable amount of computational
power to obtain 123 validated significant figures for both the Lyapunov exponent and
diffusion coefficient (see Section 2.5.1 for further details).

Similarly, our adaptive algorithms provide a much higher degree of accuracy
for practical uses than previous algorithms. This is of great advantage in broader
study of chaotic dynamics, as having rigorous (or at least very reliable) algorithms
at one’s disposal allows one to easily explore mathematical phenomena for which
analytical results may not yet exist. An example of such an endeavour is provided
in Gottwald et al. (2016), where the authors make use of a Fourier spectral method
to explore a particular rate of convergence in linear response theory, directing a
subsequent proof; another is in Chapter 4, wherein we use a Chebyshev spectral
method to study the macroscopic dynamics of a mean-field coupled chaotic system
in the thermodynamic limit and show that it violates various hypotheses about the
behaviour of complex chaotic systems. We hope that our spectral methods become
a useful tool in theoretical and numerical study of chaotic systems.

There are several further directions for research. Numerical results indicate that
the actual rates of convergence are slightly better than what we have proven (see
Section 2.5.2), and a different theoretical approach may yield the optimal conver-
gence rates. While we have used function spaces with bounded variation norms,
most of our results are largely agnostic to the function space used: that said, the
exposition would likely be substantially simplified by using weighted Sobolev Hilbert
spaces suited to the orthogonal polynomial bases. Furthermore, with a proof of con-
vergence of the spectral method on a scale of these spaces one could obtain estimates
of linear response to dynamical perturbations. Numerical experiments demonstrate
that eigenvalues and eigenfunctions of LN using the spectral method converge in
norm to those of L, as proved in the periodic case by Baladi and Holschneider
(1999). The observed rates of convergence are the standard spectral rates. Interest-
ingly, numerical experiments have also shown that convergence of estimates of the
Fredholm determinant of (id−zL)−1 using adaptive QR factorisations give accurate
estimates of transfer operator eigenvalues: this may imply the possibility of com-
puting dynamical zeta functions using spectral methods (notwithstanding that the
most important property of the zeta functions are their zeros, which are given by the
transfer operator’s eigenvalues).
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Our results may be extended to higher dimensions, possibly including maps with
contracting directions. A significant problem with extending to higher dimensions,
however, is that the number of basis functions necessary to compute estimates of a
given accuracy will increase exponentially with the dimension: this may be reme-
diable to a limited extent by using bases of smooth, compactly-supported wavelets
(Holschneider, 1996; Baladi and Holschneider, 1999), which could lower the complex-
ity as a result of their sparse structure.

Finally, by constructing efficient numerical inducing schemes, it seems likely that
our methods can provide fast, accurate and more or less rigorous estimates of sta-
tistical properties for almost all major classes of one-dimensional chaotic maps, such
as non-Markov expanding maps, quadratic maps, and, as we will discuss in the next
chapter, intermittent maps.



Chapter 3

Accurate and efficient numerical methods for intermittent
dynamics

3.1. Introduction

Intermittent dynamics, wherein long periods of regular dynamics alternate with
bursts of chaotic dynamics, is a feature of many physical systems around a bifur-
cation between chaotic and regular dynamics, such as in turbulence (Pomeau and
Manneville, 1980). The ergodic and statistical behaviour of intermittent dynamics
is commonly studied using a prototypical class of so-called Pomeau-Manneville-type
maps, which we denote by PM (an example of which is plotted in Figure 3.1). These
maps are defined on an interval, which we take to be [0, 1], and their phase spaces
can be divided into a “good” set [a, 1], on which the map is uniformly expanding,
and a “bad” set close to an unstable but linearly neutral fixed point at 0:

(3.1) f(x) =

{
fb(x) := xh(xα)), x ∈ [0, a)

fg(x), x ∈ [a, 1],

where α > 0, f ′b ≥ 1, h(0) = 1, h′(0) > 0 and fg : [a, 1] → [0, 1] is a full-branch ex-
panding Markov map in class UNP , as defined in Section 2.2.1. For simplicity we will
assume fg satisfies analytic distortion condition (ADδ), and h extends analytically
into the complex plane, but our proofs may be appropriately modified to cover the
differentiable case.

A standard example of such a map is the Liverani-Saussol-Vaienti map (Liverani
et al., 1999) on the interval [0, 1] with a = 1

2
, given by

(3.2) f(x) =

{
x(1 + (2x)α), x ∈ [0, 1

2
)

2x− 1, x ∈ [1
2
, 1].

This map and its typical dynamics for α = 0.8 are shown in Figure 3.1.
Maps of class PM are endowed with absolutely continuous invariant measures

(acims), which are finite for α ∈ (0, 1), and have summable correlations for α ∈ (0, 1
2
)

(Gouëzel, 2004b).
The standard framework for theoretical study of intermittent maps is via the so-

called induced map f τ : [a, 1] 	 (i.e. f(x) iterated τ(x) times), where τ : [a, 1]→ N+

51
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Figure 3.1. Left: Graph of the LSV map (3.2) for α = 0.8. Right:
Time series of its dynamics.

is the return time to the inducing set, the “good” set [a, 1]:

(3.3) τ(x) := inf{n ∈ N+ : fn(x) ∈ [a, 1]}.
The induced map is uniformly expanding (see Figure 3.2), and it is therefore possible
to apply results on uniformly expanding dynamics to it, as well as numerical methods
such as those developed in Chapter 2.
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Figure 3.2. The LSV map (3.2) (blue) for α = 0.8 with its induced
map on [1

2
, 1] (orange).

The non-mixing dynamics near the fixed point poses a problem for obtaining
accurate numerical estimates for these maps. This is true even when one naively
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attempts to estimate expectations of observables by taking Birkhoff sums: expecta-
tions converge as a stable law for α ∈ [1

2
, 1] (Gouëzel, 2004b), and do not converge

for α ≥ 1 since for these values of α the acim has infinite measure (Aaronson, 1997).
Nonetheless, a variety of transfer-operator based numerical methods have been

considered. Various authors have proposed applying Ulam’s method or modifications
thereof to the full intermittent system: that is, partitioning the phase space into
intervals and calculating statistical properties from an associated discretisation of the
transfer operator (Murray, 2010; Froyland et al., 2011; Galatolo and Nisoli, 2014).
With a suitable choice of partitions estimates of the invariant measure were found to
converge for α < 1 as O(N−(1−α)), where N is the cardinality of the partition: the
source of this slow convergence is the map’s weak expansion near the neutral fixed
point.

By discretising the transfer operator of the induced map, the slow convergence
with respect to the partition size was notionally avoided by Bahsoun et al. (2015)
and the standard convergence rate of Ulam’s method, N−1 logN in the partition
cardinality N , was obtained. However, to calculate an Ulam-like discretisation of
the transfer operator, one must repeatedly evaluate the induced map: this requires
iterating the full map past the neutral fixed point, a procedure whose computational
expense grows as Nα. Furthermore, the number of evaluations of the induced map
required to estimate the transfer operator to a given accuracy is proportional to the
norm of the derivative of the induced map, which increases polynomially with the
length of the orbit of the full dynamics corresponding to the step of the induced
map. The computational time required to estimate an order N Ulam matrix is
consequently O(Nα+2) as opposed to the O(N) for uniformly expanding maps, and
perhaps due to the inefficiency of this method, this numerical approach has not yet
been implemented. Consequently, it is clear that for good numerics it is not enough
just compute with the induced map: it is necessary also to avoid iterating through
the full dynamics.

In this chapter, we will present a numerical method that both solves this prob-
lem and harnesses the smooth structure to attain fast convergence rates with low
numerical overhead. There are three main ingredients at play. The first ingredient
solves the problem of efficiently computing the induced map: this is achieved by
employing the Abel function, a concept developed in the area of functional iterative
equations (Abel, 1826; Kuczma et al., 1990). The Abel function conjugates the map
f close to the neutral fixed point to a unit shift, thus allowing the induced map to
be calculated in closed form. Furthermore, we find that the Abel function possesses
an asymptotic expansion that enables efficient computation. The second ingredi-
ent is the Chebyshev Galerkin transfer operator method presented in the previous
chapter, which enables statistical properties of the induced map to be computed ex-
ponentially accurately. The Chebyshev method requires pointwise evaluation of the
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action of the transfer operator of the induced map, which has an infinite number of
branches, each of which contribute to the transfer operator. To treat this efficiently,
the final ingredient is the Euler-Maclaurin formula, which allows us to very efficiently
evaluate infinite sums over the branches. The end result is that statistical properties
of the induced map can practically be computed to very high accuracy: because
many statistical properties of the full map can be obtained by summing appropriate
statistics of the induced map over backward orbits (see Proposition 3.3 and Remark
3.4 below), the full map’s statistical properties can then be accurately computed by
the same methods.

This chapter is organised as follows. In Section 3.2 we state the main theorems
that form the core ideas in our numerical methods; in Section 3.3 we prove Theorems
3.1-3.2; in Section 3.4 we give explicit bounds the convergence of Euler-Maclaurin
summation over backward orbits. In Section 3.5 we give some rigorously validated
numerical results and in Section 3.6 we consider possible extensions of the work.

3.2. Main theorems

We first state two theorems which allow us to efficiently compute the induced
map by means of Abel functions, which allows us to express the induced map

f τ (x) = (f ◦ · · · ◦ f︸ ︷︷ ︸
τ(x) times

)(x)

in closed form. A cursory background on Abel functions is given in Section 3.3
In Theorem 3.1 we show that the induced map and return times can both be

expressed in terms of an Abel function, if it exists; in Theorem 3.2 we show that
such a function exists and is the principal Abel function: we give an asymptotic
expansion for it around the neutral fixed point.

Theorem 3.1. For maps in class PM , the return map f τ : [a, 1] → [a, 1] has the
explicit expression

(3.4) f τ = A−1({A(fg(x))})
where {y} denotes the fractional part of y.

The return time τ : [a, 1] → N given by (3.3) is also explicitly given in terms of
the Abel function by

(3.5) τ =

{
bA(fg(x))c+ 1, x 6= a

1, x = a,

where the bijection A : [0, 1]→ [0,∞] is an Abel function with

(3.6) A(fb(x)) = A(x)− 1
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for x ∈ [0, a] and A(1) = 0.

Theorem 3.2. For maps in class PM there exists a (principal) Abel function A :
[0, 1]→ [0,∞] such that

(a) A satisfies

(3.7) A(x) = lim
k→∞

1

αh′(0)

(
f−kb (x)−α − f−kb (1)−α

)
.

(b) There is an analytic extension of A into the complex plane having asymptotic
expansion uniformly as z → 0,<z−1 ≥ R1 <∞

(3.8) A(z) ∼ a−1z
−α + a` log x+ a0 +

∞∑

n=1

anz
nα.

Furthermore, this expansion, truncated after the zNα term for N ≥ 1, has
error

EN(z) = O(NN+2|z|−(N+1)α)

with explicit constants given in the proof.

An example of a principal Abel function is plotted on the map’s real domain in
Figure 3.3.

0.0 0.5 1.0

x

0

5

10

A
(x

)

Figure 3.3. Plot of the principal Abel function for the LSV map for
α = 0.8.

Because the induced map has many desirable properties for the computation of
statistical properties, in particular being uniformly expanding, we will compute sta-
tistical properties of the full map using those of the induced map. This will at various
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points require the computation of sums over backward orbits of the intermittent dy-
namics: for example, using the chain rule the transfer operator of the induced map
has the form
(3.9)

Lindφ(z) =
∑

fτ (y)=z

|(f τ )′(y)|−1φ(y) =
∑

n∈N,fnb (fg(y))=z

(fnb )′(fg(y))−1|f ′g(y)|−1φ(y).

To deal with these sums in a unified way, we will suppose that the summands of
these systems can be written as functions Q of the backward orbit x = fg(y), the
derivative d = (fnb (x))−1, and the orbit index x: for example, from (3.9) we can see
that the induced map’s transfer operator has summand function QLind,φ(x, d, n)

QLind,φ(x, d, n) = d(Lgφ)(x),

where Lg is the transfer operator of fg : [a, 1]→ [0, 1]:

(Lgφ)(x) =
∑

fg(y)=x

|f ′g(y)|−1φ(y).

We introduce the operator T[n; ·] which acts on the summand functions Q :
(0, 1]× R× N→ R so as to output the nth summand:

T[Q](n;x) = Q(f−nb (x), (f−nb )′(x), n)(3.10)

= Q(A−1(A(x) + n), (A′(x)(A−1)′(A(x) + n), n).(3.11)

We further introduce the operator S which acts on the summand functions Q to
output the sum over all n:

S[Q](x) =
∞∑

n=0

T[Q](n;x)..(3.12)

In Section 3.4 we will show that, when Q extends to a complex analytic function,
these sums S[Q](x) may be very efficiently estimated using the Euler-Maclaurin for-
mula.

The proposition provides the recipe to compute the transfer operator Lind and
the acim of the induced map, via Abel functions. As in Chapter 2, we consider the
solution operator, but now for the induced map: Sind = (id−Lind + u ∫)−1, where ∫
is the Lebesgue integral functional on [a, 1] and u(x) = 1

1−a .

Proposition 3.3. Let f ∈ PM as in (3.1). The induced map’s invariant probability
measure ρind is given by Sindu.

Furthermore, the induced map’s transfer operator Lind : BV ([a, 1])→ BV ([a, 1])
can be written as Lind[φ](x) = S[QLind,φ](x), where QLind,φ(x, d, n) = d(Lgφ)(x).
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Remark 3.4. Many statistics of the full dynamics may be efficiently computed
through similar formulations. In particular, we have the following formulae for some
statistical quantities associated the full dynamics:

a) Expectations of functions ψ of the return time to the inducing set are given
by

(3.13) ρind(ψ(τ)) :=

∫ 1

a

ψ(τ(x))ρind(x)dx =

∫ 1

a

S[Qτ,ψ](x)dx,

where
Qτ,ψ(x, d, n) = ψ(n)d(Lgφ)(x).

b) The full invariant measure ρdx evaluated pointwise is given by

(3.14) ρ(x) = S[QLind,ρind ](x).

This is normalised so its restriction to [a, 1] is a probability measure; for α < 1
it may be renormalised to a probability measure on the full set by the constant
factor 1

ρind(τ)
.

c) The average of an observable A : [0, 1]→∞ over ρ is given by

ρ(A) :=

∫ 1

0

A(x)ρ(x) dx.

Analyticity-preserving properties of S ensure that ρ(z) extends into the com-
plex plane sufficiently as to allow for accurate quadrature.

d) For α < 1
2
, the diffusion coefficient of an observable A : [0, 1] → ∞ is given

by
σ2
f (A) = ρ(φA + S[QLind,Sind(φA|[a,1])]),

where φA(x) = S[Qφ,A(x)] and Qφ,A(x, d, n) = d φ(x)(A(x)− ρ(A)).

Theorems 3.1-3.2 and Proposition 3.3 can be exploited to design algorithms to
capture statistical properties of intermittent maps with high accuracy. We give some
results from such an algorithm in Section 3.5.

3.3. Return maps and Abel function

Given an iterated function of one dimension xn+1 = g(xn), a function A is con-
sidered an Abel function of g if it satisfies the Abel functional equation A(g(x)) =
A(x) + 1 and is invertible (at least locally). The existence and behaviour of Abel
functions around fixed points which are linearly neutral and stable (as opposed to
unstable, the case we consider) have been studied in statistics by Szekeres (1958)
and others (Kuczma et al., 1990). This corresponds to studying the local inverse f−1

b

of our map near the fixed point 0, because the fixed point is linearly neutral and
unstable. Consequently, our definition assumes iteration of f decrements the Abel
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function A (as in Theorem 3.1) rather than incrementing it, as is standard in the
literature.

Around a fixed point there are an infinite number of continuous or even smooth
solutions to the Abel functional equation. It is possible to define a so-called principal
Abel function via a certain iterative equation (Szekeres, 1958), which may be seen to
be equivalent to (3.7): principal Abel functions have the best regularity properties
of all possible solutions to the Abel equation.

We begin by proving Theorem 3.1, which states that the induced map and return
time can be appropriately computed using a monotonic function A satisfying the
Abel equation (3.6).

Proof of Theorem 3.1. SupposeA is a bijection [0, 1]→ [0,∞] satisfyingA(fb(x)) =
A(x)− 1 and A(1) = 0. For x ∈ (a, 1], the return time, which measures the number
of iterates required to return to the inducing set, is given by

τ(x) = inf{n ∈ N+ : fn(x) ∈ [a, 1]}.
This definition implies that f j(x) ∈ (0, a) for 0 < j < τ(x), and consequently
f j(x) = fb(f

j−1(x)) = A−1(A(f j−1(x)− 1)) for 0 < j < τ(x). As a result,

f τ (x) = f τ(x)(x) = f
τ(x)−1
b (f(x)) = A−1(A(f(x))− τ(x) + 1),

and since x ∈ (a, 1], f(x) = fg(x).
Since f τ (x) ∈ (a, 1] and since A : [0, 1]→ [0,∞] is a bijection with A(1) = 0, we

find that A is decreasing and so 0 ≤ A(f τ (x)) < A(a) = A(fb(a))+1 = A(1)+1 = 1,
and consequently A(f(x))−τ(x)+1 ∈ [0, 1). Using that τ(x) is an integer we obtain
(3.4) and (3.5). �

We will now prove the existence of a principal Abel function with nice asymptotic
properties (Theorem 3.2). We will do this by showing that an analytic function
satisfying part (b) of the theorem must have asymptotic properties as given in part
(a). Using results in Szekeres (1958), we then prove the existence of such a function.

Proof of Theorem 3.2. In this setting we find it convenient to transform to coor-
dinates z = xα, considering the conjugated inverse map which we define

f̂(z) := zĥ(z) := f−1
b (x)α.

By the implicit function theorem, f̂ is uniquely defined for z in a complex neigh-
bourhood of [0, aα], and in particular for |z| ≤ R for some R > 0. We consider the

principal Abel function for this map, having Â(f̂(z)) = Â(z)+1, and set A(x) = Â(z).

Let the power series at 0 of f̂(z) = z +
∑∞

n=1 ĥn(−z)n+1: in particular, ĥ1 =

αh′(0). We have that f̂−1 is analytic in a neighbourhood of zero with f̂−1(z) ∼
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z + ĥ1z
2 + . . ., and consequently that f̂ is similarly analytic near zero with f̂(z) ∼

z − ĥ1z
2 + . . ..

For n ≥ 0 define the following functions, which are holomorphic except at zero,

(3.15) Ân(z) = a−1z
−1 + a`α

−1 log z + C +
n∑

i=1

aiz
i,

with constant C to be determined later, such that as z → 0,

(3.16) Ân(f̂(z))− Ân(z) + 1 =: Dn(z) = O(zn+2).

Let us define the function g by

(3.17)
1

f̂(z)
=

1

z
+ ĥ1 + g(z)z.

From the Taylor expansion of f̂ at z = 0 we can see that the magnitude |g(z)| ≤ G
for all |z| ≤ R and some constant G <∞.

The error Dn is given by the following lemma, whose proof is in Appendix B:

Lemma 3.5. Let

rn = min{R, 0.4(ĥ1 +
√

0.4G)−1}n−1,(3.18)

d2 = 1 + 2.5e3/5(1 + 0.4Gĥ−2
1 ),(3.19)

d1 =
1 +Gĥ−2

1

d2
2

.(3.20)

For |z| ≤ rn,

|Dn(z)| ≤ d1

(
d2|z|
rn

)n+2

.

The following lemmas, whose proofs are in Appendix B give bounds on iterates
of f̂ :

Lemma 3.6. Let ℵ ∈ (0, 1) and R1 = min{R,ℵG−1ĥ1}.
Then for all z with <z−1 ≥ R1, and all k ∈ N,

(3.21) <z−1 + (1 + ℵ)ĥ1k ≥ <f̂k(z)−1 ≥ <z−1 + (1− ℵ)ĥ1k,

and

(3.22) |z−1 + kĥ1|+ ℵĥ1k ≥ |f̂k(z)|−1 ≥ |z−1 + kĥ1| − ℵĥ1k ≥ R1.

Lemma 3.7. Let ℵ, R1 be as before, and let β̄ − 1 ≥ δ ≥ 0. Then for all z with
<z−1 ≥ R1,

∞∑

k=0

|f̂k(z)|β̄kδ ≤ ,β̄,δ|z|β̄−δ−1ג
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where

β̄,δג := (1− ℵ)−β̄ĥ−δ−1
1

(
1

δ + 1
+

1

β̄ − δ − 1
+ ĥ1R

−1
1

)
.

Define the sets
Sr = {z ∈ C | 0 < |z| < r,<z−1 ≥ R1}

for r > 0, where R1 is given in Lemma 3.6, and consider a function Â : Sr → C such
that for all z ∈ Sr and n > 0,

(3.23) lim
k→∞

Â(f̂k(z))− Ân(f̂k(z)) = 0.

Later, we will show that A(zα) where A is given in (3.7) is such a function. We will

prove bounds on |f̂n(z)| for z ∈ SR′ for some R′ < R, which will allow us to bound

the error between Â and the Ân on this set.
Now defining

En(z) = Â(z)− Ân(z),

we have that

En(z) = En(f̂(z))− (Â(f̂(z))− Â(z)) + (Ân(f̂(z))− Ân(z)) = En(z) +Dn(z)

and thus by (3.23) and the fact that f−k(z)→ 0 as k →∞, we have that

En(z) =
∞∑

k=1

Dn(f̂k(z))

and thus by Lemma 3.5

|Â(z)− Ân(z)| ≤ d1d
n+2
2 r−(n+2)

n

∞∑

k=1

|f̂k(z)|n+2.

When <z−1 ≥ R1 we can apply Lemma 3.7 to obtain that for n ≥ 1 and |z| ≤
min{R1, rn},

|Â(z)− Ân(z)| ≤ d1d
n+2
2 r−(n+2)

n n+2,0|z|n+1ג

≤ d3d
n+2
2 r−(n+2)

n |z|−n+1,(3.24)

where

(3.25) d3 = n+2,0d2ג

Consequently Â satisfies the appropriate asymptotic expansion generated by the
Ân with the error bound given by (3.24).

By change of coordinates xα = z we have that

En(z) = d3(d2/rn)n+2
(
|z|−α − dR

)−(n+1)
.
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We now show that Â is in fact given by the principal Abel function that we
desired. Let

Â(x) = lim
k→∞

f̂k(1)− f̂k(x)

f̂k(1)− f̂k+1(1)
.

Note that Â(xα) is just our principal Abel function (3.7), and Â(f̂(z)) = Â(z) − 1

where Â is defined. As a result of Lemma 7 in Szekeres (1958), Â extends into the
complex plane, and for a correct choice of C in (3.15) for every C there exists a D
so that this map satisfies

lim
z→0

(
Â(z)− Â0(z)

)
= 0

for |<z−1| > D, |=z−1| ≤ C. By Lemma 3.6 we have that <f̂n(z)−1 is increasing in

n, and the following lemma, proved in Appendix B, gives that =f̂n(z)−1 is bounded:

Lemma 3.8. For all z with <z−1 ≥ R1,

sup
k∈N

∣∣∣=f̂k(z)−1
∣∣∣ <∞.

As a result, f̂n(z) goes to 0 as n→∞.
Furthermore, as a result of the monotonicity of fb and (3.7), A is clearly mono-

tonically increasing on [0, 1]→ [0,∞]; because it is analytic and unbounded it must
be a bijection. �

Remark 3.9. The Thaler map is an interval map with an explicitly known invariant
measure that has a neutral fixed point of order 1 + α at zero:

f(z) = z
[
1 + zα−1

(
(1 + z)1−α − 1

)]1/(α−1)
.

This map is not in class PM as the series expansion of f(z)/z at zero contains
integer powers of z as well as of zα. However, one could extend the methods in this
paper accordingly.

3.4. Calculating statistical properties via inducing

Because the infinite sums required to evaluate statistical properties, such as in
Proposition 3.3 and Remark 3.4, are summing over smooth functions evaluated on
a lattice, we can use the Euler-Maclaurin formula to approximate these sums with
exponentially decreasing errors. We state a general theorem that in particular allows
us to obtain rigorous bounds on the error of these approximations.

Define the small, bounded sets Rs := {x ∈ C : <(x−α) ≥ s−1}, and its transform

to z coordinates, R̂s := {z ∈ C : <(z−1) ≥ s−1}.
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We will first find it useful to define a constant encoding the regularity of our of
our map,

G′ = sup
z∈R̂R1

∣∣∣∣
d

dz
zg(z)

∣∣∣∣

and a radius

(3.26) Z := min{R1, (2G
′)−1/2, (2G′2,0ג)−1},

which will be used to specify the region inside which the Euler-Maclaurin formula
may be used.

Theorem 3.10. Suppose Q(x, d, n) is analytic such that for some Q̄, some non-
negative β, γ, δ with β̄ := (β + (1 + α)γ)/α > 1 + δ, and for all z ∈ RR, all d ≤ 1
and all n with <n > 0,

|Q(z, d, n)| ≤ Q̄|z|β|d|γ|n|δ.

Let ρ > 0.
Then for all z such that

n∗ρ := inf{n : f−nb z ∈ R(Z−α+2ĥ1+ρ)−1/α}

is defined, then

S[Q](z) =

n∗ρ−1∑

0

T[Q](n; z) +
1

2
T[Q](n∗ρ; z)−

∫ f
−n∗ρ
b (z)

0

A′(ζ)Q

(
ζ,
A′(z)

A′(ζ)
, A(ζ)− A(z)

)
dζ

(3.27)

−
K∑

k=1

B2k

(2k)!

∂2k−1

∂n2k−1
T[Q](n∗ρ; z) + EK ,

where Bp are the Bernoulli numbers, and EK = O(ρ−K+δ−(β+(1+α)γ)/α), with an ex-
plicit bound given in (3.30-3.31).

We will find the following proposition useful in proving this theorem:

Proposition 3.11. Let m ∈ C. If we restrict Â to act on R̂Z, then for any z0 ∈
R̂(Z−1+2ĥ1|m|)−1,

|A−1(A(z0) +m)−α − z−α0 | ≤ 2ĥ1|m|.
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Proof of Theorem 3.10. A simple application of the Euler-Maclaurin formula (Abramowitz
and Stegun, 1973) gives most of the terms in (3.27); we convert the integral expres-
sion

∫ ∞

n∗ρ

T[Q](n, z)dn =

∫ ∞

n∗ρ

Q

(
A−1(n+ A(z)),

A′(z)

A′(A−1(n+ A(z)))
, n

)
dn

=

∫ ∞

n∗ρ+A(z)

Q

(
A−1(n),

A′(z)

A′(A−1(n))
, n− A(z)

)
dn

=

∫ T
n∗ρ (z)

0

−A′(ζ)Q

(
ξ,
A′(z)

A(ξ)
, n− A(z)

)
dζ.

The remainder term EK can be bounded (Lehmer, 1940; Abramowitz and Stegun,
1973) by

(3.28) |EK | ≤
2

(2π)2K+1

∫ ∞

n∗ρ

∣∣∣∣
∂2K+1

∂n2K+1
T[Q](n; z)

∣∣∣∣ dn.

From Lemma 3.6 we have that if s−1 = <z−α with s−1 > Z−1 + 2ĥ1, then z ∈ Rs

with

A−1(n+ A(z)) = f−nb (z) ∈ R(s−1+n(1−ℵ)ĥ1)−1

for integer n, and from Proposition 3.11 that for n ∈ (0, 1) that

A−1(A(z)− n) ∈ R(s−1−2ĥ1)−1 ;

consequently for all n > 0,

(3.29) A−1(A(z) + n) ∈ R(s−1+ĥ1((1−ℵ)n−2))−1 .

Thus, for any z, n ≥ n∗ρ, and m ∈ B(0, ρ+ (1− ℵ)(n− n∗ρ)/2), ζ := A−1(A(z) +
n+m) ∈ RZ and so

|T[Q](n+m; z)| =
∣∣∣∣Q
(
ζ,
A′(z)

A′(ζ)
, n+m

)∣∣∣∣

≤ Q̄|ζ|β| |A
′(z)|γ

|A′(ζ)|γ |n+m|δ

= Q̄|A′(z)|γ|ζ|β
∣∣∣∣

ζ1+α

ζ1+αA′(ζ)

∣∣∣∣
γ

|n+m|δ

≤ Q̄|A′(z)|γ|ζ|β+(1+α)γ2|γ|hγ1 |n+m|δ,
by Lemma 3.12.
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We know from (3.29) and Lemma 3.12 that ζ ∈ RZ , and thus if β̄ = (β + (1 +
α)γ)/α ≥ 0,

|T[Q](n+m; z)| ≤ Q̄|A′(z)|γZ−β̄2|γ|hγ1(n+ ρ+ (1− ℵ)(n− n∗ρ)/2)δ.

By applying Proposition 3.11 we have that

|ζ|−α ≤ |T n∗ρ(z)|−α + 2h1(n+ |m| − n∗ρ) = |T n∗ρ(z)|−α + 2h1(3− ℵ)(n− n∗ρ)/2
and thus if β̄ ≤ 0,

|T[Q](n+m; z)| ≤ Q̄|A′(z)|γ2|γ|hγ1
(
|T n∗ρ(z)|−α + 2h1

3− ℵ
2

(n− n∗ρ)
)−β̄ (

n+ ρ+
1− ℵ

2
(n− n∗ρ)

)δ
.

We then have by Cauchy’s formula that∣∣∣∣
∂2K+1

∂n2K+1
T[Q](n; z)

∣∣∣∣ ≤ (2K + 1)!(ρ+ (1− ℵ)(n− n∗ρ)/2)−(2K+2)·

sup
{
|T[Q](n+m; z)| | m ∈ B(0, ρ+ (1− ℵ)(n− n∗ρ)/2)

}
;

thus, from (3.28) and with some simplification,

(3.30) |EK | ≤
(2K + 1)!

(2πρ)2K+1

4Q̄|A′(z)|γ
1− ℵ

(
1 + ρ−1n∗ρ

)δ
W,

where

(3.31) W =

{
ρδ

2K+1−δ2
|γ|hγ1Z

−β̄, β̄ ≥ 0,
ρδ−β̄

2K+1+β̄−δ2
|γ|hγ1 max

{
ρ−1|T n∗ρ(z)|, 2h1(1 + 2(1− ℵ)−1)

}−β̄
, β̄ < 0,

recalling that we defined β̄ := (β + (1 + α)γ)/α.
Finally, since the integrand in the integral in (3.27) is O(z−(α+1)(1−γ)+β+αδ), we

know that it will converge if β̄ + δ < 1. �

The following lemma, used in the proof of Theorem 3.10 bounds the derivative
of the Abel function:

Lemma 3.12. For any z ∈ RZ,

(2h1)−1 ≤ |zα+1A′(z)| ≤ 2h−1
1 .

Proof. It is possible to show from the definition of A in (3.7) that

z−2Â′(z) = lim
k→∞

z2(f̂k)′(z)

ĥ1(f̂k(z))2
= ĥ−1

1

∞∏

k=0

ξ(f̂k(z)),

where

ξ(z) :=
z2

f̂(z)2
f̂ ′(z).
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From the definition of g(z) we have that

ξ(z) = 1 + z2(zg)′

and so for z ∈ R̂R such that |z| ≤ (2G′)−1/2,

|log |ξ(z)|| ≤ log 2 2G′|z|2.

By Lemma 3.6 then, for z ∈ R̂min{R,(2G′)−1/2},

∣∣∣log ĥ1|z−2Â′(z)|
∣∣∣l ≤ log 2 2G′

∞∑

k=0

|f̂k(z)|2

≤ log 2 2G′2,0ג|z|
≤ log 2,

for z ∈ R̂Z as required. �

Remark 3.13. The choice of K which minimises the bound on EK for given ρ is
asymptotically K ≈ πρ− 1

2
, which gives an error log |EK | . −2πρ.

3.5. Numerical results

We have implemented numerics suggested by the preceding work, specifically
rigorously validated algorithms (c.f. Section 2.5.1) to compute acims and return
times. Our algorithm first estimates the coefficients of the Abel function’s asymptotic
expansion (3.8) by matching Taylor coefficients at zero of the Abel equation (3.6).
This immediately enables accurate evaluation of the Abel function for x near the fixed
point: away from the fixed point accurate estimates may be calculated by numerically
iterating backwards until for some k ∈ N an iterate f−kb (x) was sufficiently close to
0 is reached, and using that A(f−kb (x)) = A(x) + k. The algorithm computes a
Chebyshev Galerkin matrix as in Algorithm 1: the action of the transfer operator
on Chebyshev basis functions is evaluated pointwise by using Proposition 3.3 and
(3.27). By the Chebyshev method the acim of the induced map can be rigorously
estimated as in Algorithm 1. Estimates of the return time are obtained by a rigorous
computation of the return time formula in Remark 3.4(a) using the Euler-Maclaurin
formula (3.27); pointwise estimates of the full map’s acim are obtained similarly
using Remark 3.4(b).

We applied these methods to LSV maps (3.2) for various α. Plots of the acims
obtained using our method are given in Figure 3.4 with comparisons to estimates
obtained using long time series. An example of the rigorous estimate is given in the
following theorem:
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Theorem 3.14. For the LSV map with parameter α = 0.95, the expected return
time to the set [1

2
, 1] is

ρind(τ) = 14.073 323 220 001 939 529 241 549 699

610 756 609 803 3171± 10−43.

It is illustrative of the power of the method, particularly of the Abel function
numerics, to contrast this with an estimate of the expected return time obtained
via iterating the LSV map: the sample of 108 iterates used in Figure 3.4 furnished
an estimate ρind(ψ(τ)) ≈ 8.63, a 40% error. This large error arises because the
distribution of the return time τ |

[
1
2
,1]

, which the iterates sample, is for maps with

α = 0.95 very heavy-tailed: in fact it becomes non-integrable at the nearby value
α = 1. The Euler-Maclaurin summation however allows these tails to be summed
over very easily, regardless of their decay rates.

0.0 0.2 0.4 0.6 0.8 1.0

x

0

1

2

3

4

5

ρ
T

(x
)

Normalised to full set

α = 0.2

α = 0.6

α = 0.95

0.0 0.2 0.4 0.6 0.8 1.0

x

0

1

2

3

4

5

6

7

ρ
T

(x
)

Normalised to induced set

α = 0.2

α = 0.6

α = 0.95

α = 1.3

α = 1.8

Figure 3.4. Absolutely continuous invariant measures of the LSV
map for varying α, normalised to a probability measure: (left) on the
full domain when α < 1, i.e. for finite absolutely continuous invariant
measures, (right) for on the inducing domain. In semitransparency,
histograms of long time series of 108 iterates of LSV maps for various
α (see discussion of long time series estimates in Section 2.5).
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The results for different values of α were each obtained in 6 hours over 15 hyper-
threaded cores of a research server running 2 E5-2667v3 CPUs with 128GB of mem-
ory. The number of basis elements used in the Chebyshev Galerkin method was
N = 512, and 256-bit extended floating point arithmetic was used using the Valida-
tedNumerics library in Julia (Benet and Sanders, 2019).

Let us briefly note that at a preliminary stage in the development of these numer-
ical methods, we implemented adaptive algorithms to compute acims of the induced
and full systems using floating-point arithmetic. These algorithms were similar in
spirit to, and made use of, the Poltergeist package discussed in Section 2.5.2. In
place of the Euler-Maclaurin formula algorithms used, a poorly optimised version of
the already less numerically efficient Abel-Plana formula (Olver, 1997), the adaptive
method could obtain acim estimates accurate to 13 decimal places in around 20 sec-
onds. With good numerical optimisation and using the Euler-Maclaurin formula we
believe that it would be possible to obtain these estimates in around 2 seconds.

3.6. Discussion

We have presented, and partially demonstrated, a set of numerical methods to
compute statistical properties of intermittent maps. The methods are made up
of essentially three components: Abel functions to “solve” for the induced map
and orbits near the neutral fixed point; Chebyshev Galerkin methods to compute
statistics of the induced map; and the Euler-Maclaurin formula to resolve sums
over the neutral fixed point. All of these, in particular the Abel function, may be
used separately in the computation of statistical properties of these systems, but
each component harnesses and preserves smoothness, in fact analyticity, which is
what facilitates the exponential convergence of the methods. (To this end, it would
be useful for the Chebyshev Galerkin methods to be adapted to spaces of analytic
functions.)

The methods, as we have seen, are extremely accurate and work more or less
equally well for large α > 1 or near critical thresholds for statistics as for small
α. This is in great contrast to Birkhoff averaging or Ulam-style methods. We have
chiefly presented here a rigorously validated numerical algorithm which is necessarily
rather slow, as interval arithmetic and extended precision floating point arithmetic
are not integrated into computer architecture in the same way as double precision. A
user-friendly, adaptive implementation of these methods would open up intermittent
maps (and thus infinite ergodic dynamics) for numerical exploration.



Chapter 4

Linear response theory for macroscopic observables in
high-dimensional deterministic systems

4.1. Introduction

Since its introduction in the 1960s, linear response theory (LRT) has been widely
used across numerous disciplines to quantify the change of the mean behaviour of
observables in a perturbed environment. LRT is valid, in essence, provided the in-
variant measure varies differentiably with respect to the perturbation; consequently
LRT allows for a Taylor expansion of the perturbed invariant measure around the
unperturbed invariant measure. Hence, when valid, LRT provides an expression of
the average of some observable when subjected to small perturbations from an un-
perturbed state – the system’s so called response – entirely in terms of statistical
information from the unperturbed system.

The development of the theory occured in statistical mechanics in the context
of thermostatted Hamiltonian systems (Kubo, 1966; Balescu, 1975; Zwanzig, 2001;
Marconi et al., 2008) but found applications far beyond this realm; recent years
have seen an increased interest in LRT and its applications. Climate scientists in
particular have successfully applied LRT to eke out valuable information about the
change of certain atmospheric and oceanic observables under changed climatic con-
ditions. Applications include atmospheric toy models (Majda et al., 2010; Lucarini
and Sarno, 2011; Abramov and Majda, 2007, 2008; Cooper and Haynes, 2011; Cooper
et al., 2013), barotropic models (Bell, 1980; Gritsun and Dymnikov, 1999; Abramov
and Majda, 2009), quasi-geostrophic models (Dymnikov and Gritsoun, 2001), atmo-
spheric models (North et al., 1993; Cionni et al., 2004; Gritsun et al., 2002; Gritsun
and Branstator, 2007; Gritsun et al., 2008; Ring and Plumb, 2008; Gritsun, 2010)
and coupled climate models (Langen and Alexeev, 2005; Kirk-Davidoff, 2009; Fuchs
et al., 2014; Ragone et al., 2016).

Linear response theory is well-known to be theoretically justified in stochastic
systems (Hänggi, 1978; Hairer and Majda, 2010), however in deterministic systems
the picture is more complicated. The seminal work by Ruelle (Ruelle, 1997, 1998,
2009a,b) rigorously established that LRT is valid in uniformly hyperbolic Axiom A
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systems. Success in reliably estimating the response of a physical system, as ex-
emplified by the above applications in the climate sciences, prompted scientists to
believe that general chaotic dynamical systems obeyed LRT. This belief was proven
wrong by Baladi and co-workers (Baladi and Smania, 2008, 2010; Baladi, 2014; Bal-
adi et al., 2015; De Lima and Smania, 2018) who showed that simple dynamical
systems such as the logistic map violate LRT and support an invariant measure that
changes non-smoothly with respect to the perturbation. This raises the question of
how a high-dimensional dynamical system, despite its constituent subsystems typi-
cally individually violating LRT, may exhibit linear response.

The majority of the scientific community believes that the interaction between the
microscopic constituents in typical high-dimensional systems leads to an emergence
of LRT at the macroscopic level. How exactly this is achieved and what the condi-
tions are for the dynamical systems for which LRT is guaranteed, however, remains
an open question. In the literature the validity of LRT in high-dimensional deter-
ministic systems is often justified by appealing to the chaotic hypothesis of Gallavotti
and Cohen (Gallavotti and Cohen, 1995a,b; Gallavotti, 2019), which is as stated in
Gallavotti (2008):

Conjecture 4.1 (Chaotic hypothesis). The macroscopic dynamics of a chaotic sys-
tem on its attractor can be regarded for all practical purposes as an Anosov evolution.

However, even under this hypothesis one cannot relate the equivalent Anosov
systems for different perturbations, which is the focus of LRT. In particular, for
dissipative systems the response of the attracting dynamics to perturbations depends
on the properties of the flow outside the attractor as well as on it: off the attractor
the flow may be non-hyperbolic, and hence leading to a breakdown of linear response.

In a recent paper (Gottwald et al., 2016) we showed that breakdown of LRT
might not be detectable using uncertainty quantification when analyzing time series
unless the time series is very long (exceeding 1 million data points even for simple
one-dimensional systems such as the logistic map, for example) and/or the observ-
ables are sensitive to the non-smooth change of the invariant measure. Consequently,
the apparent observed validity of LRT in climate science might be a finite size effect
of the time series used.

Here we follow a different avenue, drawing on the existence of linear response the-
ory for stochastic dynamical systems. We argue that certain deterministic chaotic
systems have stochastic limits for macroscopic observables and in various circum-
stances these limits imply they are amenable to LRT. Statistical limit laws of de-
terministic dynamical systems have recently been proven for slow variables in multi-
scale systems (Melbourne and Stuart, 2011; Gottwald and Melbourne, 2013; Kelly
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and Melbourne, 2014) and (Dolgopyat, 2004; De Simoi and Liverani, 2015, 2016). In
both cases the diffusive limit of the macroscopic observables relies on the central limit
theorem via a summation of infinitely many weakly dependent variables. We con-
sider here high-dimensional dynamical systems whose microscopic constituents may
violate LRT, and “macroscopic” observables which are either mean-fields, or distin-
guished degrees of freedom driven by mean-fields. Distinguished degrees of freedom
in high-dimensional weakly coupled systems have been studied extensively in the sta-
tistical mechanics literature (Ford et al., 1965; Zwanzig, 1973; Ford and Kac, 1987;
Stuart and Warren, 1999; Kupferman et al., 2002; Givon et al., 2004). We consider
a variety of microscopic subsystems with different linear response properties, and as
well as treating cases where the microscopic variables evolve independently, study
the more realistic case when the microscopic dynamics are globally coupled via a
mean field. The dynamics of the latter case have been given a significant amount of
study, particularly in the case where the coupling is strictly attractive, and complex
emergent dynamics at the level of the mean-field have been observed (Kaneko, 1990;
Pikovsky and Kurths, 1994; Ershov and Potapov, 1995, 1997; Shibata et al., 1999;
Sélley and Bálint, 2016). We shall provide a systematic macroscopic reduction using
statistical limit theorems for the mean-field coupled dynamics, and use this reduction
to study a range of interesting dynamical scenarios in the context of linear response.
To validate our findings, we will use a statistical test that we recently developed,
which allows one to probe for the validity of LRT in a given time series (Gottwald
et al., 2016). We provide a comprehensive picture of the linear response behaviour
of macroscopic observables, for uncoupled, for distinguished-variable driven and for
mean field coupled systems, which we summarise in Table 4.1. We find that the
existence of LRT depends in an intricate way on the combination of effective sto-
chastic behaviour of the macroscopic observable, the macroscopic dynamics of the
thermodynamic limit, the scaling of the coupling, and on the smoothing property
of heterogeneously distributed dynamical parameters of the microscopic subsystems.
Indeed, we will present a case when all individual microscopic subsystems violate
LRT, but the collective macroscopic dynamics obeys LRT, and cases where all the
all individual microscopic subsystems obey LRT when uncoupled, but the collective
coupled macroscopic dynamics violates LRT.

In Section 4.8 we will make a deeper investigation of the case where we find a
violation of LRT from hyperbolic (in fact uniformly expanding) components. We
will use the spectral methods from Chapter 2 and numerical continuation techniques
to uncover a so-called homoclinic tangency in the reduced macroscopic dynamics.
This is a tangency between stable and unstable directions in the dynamics (i.e. a
violation of hyperbolicity): as a result of this tangency the system is in violation of
the Gallavotti-Cohen chaotic hypothesis.
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The chapter is organized as follows. Section 4.2 briefly reviews LRT. We intro-
duce the high-dimensional systems under consideration in Section 4.3 and summarise
our results in Section 4.4. Sections 4.5-4.7 provide numerical evidence and an an-
alytical treatment corroborating the results summarized in Table 4.1 respectively
for uncoupled mean field, distinguished particle and mean field coupled systems. In
Section 4.8, we present a numerical example of a homoclinic tangency in the macro-
scopic dynamics of a mean field coupled system. We conclude with a discussion and
an outlook in Section 2.6.

4.2. Linear response theory

We briefly review some basic notation of linear response theory. Consider a family
of dynamical systems fε : D → D on some space D where the map fε depends
smoothly on the parameter ε and where for each ε the dynamical system admits a
unique invariant physical measure µε. We recall from Chapter 1 that an invariant
measure is called physical if for a set of initial conditions of nonzero Lebesgue measure
the temporal average of a typical observable converges to the spatial average over
this measure. LRT is concerned with the change of the average of an observable
φ : D → R,

Eε[φ] =

∫

D

φ dµε

upon varying ε. A system exhibits linear response at ε = ε0, if the derivative

Eε0 [φ]′ :=
∂

∂ε
Eε[φ]|ε0

exists. A sufficient condition for this is that the invariant measure µε is differentiable
with respect to ε. This derivative can be expressed entirely in terms of the invari-
ant measure µε0 of the unperturbed system using so-called linear response formulae
(Ruelle, 2009a, 1998; Baladi, 2014). The average of an observable of the perturbed
state is then expressed to first order as

Eε[φ] ≈ Eε0 [φ] + (ε− ε0)Eε0 [φ]′.

If the derivative exists, then this expansion expresses the remarkable result that the
average of the perturbed state is determined up to o(ε − ε0) by the properties of
the unperturbed system. If however it does not exist, we say there is a breakdown
of linear response, which manifests itself in a rough dependency of averages of the
observable on the perturbation ε.
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Figure 4.1. General set-up of high-dimensional systems in this chap-
ter. We consider the behaviour of macroscopic observables Ψ which
are constructed either from: (a) a large system of M uncoupled micro-
scopic units q(j); (b) a large system in which the M microscopic units
drive a macroscopic distinguished variable Q via a mean field variable
Φ; or (c) a large system in which the M microscopic units are coupled
via a mean field variable Φ. Perturbations ε are applied globally to
the dynamics of all heat bath variables q(j).
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4.3. Model

We consider here three model scenarios, which are illustrated in Figure 4.1. These
are high-dimensional systems composed ofM � 1 chaotic microscopic degrees of free-
dom q(j), j = 1, . . . ,M , which evolve in discrete time n according to their individual
parameters a(j).

In the first scenario (Figure 4.1(a)) these degrees of freedom are uncoupled, with

q
(j)
n+1 = f(q(j)

n ; a(j), ε).(4.1)

We observe their dynamics via a mean-field Ψ:

Ψn = Ψ(q(1)
n , q(2)

n , · · · , q(M)
n ) =

1

Mγ

M∑

j=1

ψ(q(j)
n ),(4.2)

where ψ is some observable of microscopic variables. In this work we will always con-
sider smooth observables (at least Hölder continuous), ensuring that the statistical
limit laws we later invoke exist.

In the second scenario (Figure 4.1(b)), we consider additionally a macroscopic
distinguished variable Q. The microscopic dynamics evolve as in (4.1); the distin-
guished variable is driven by a mean field Φn given by

Φn =
1

Mγ

M∑

j=1

φ(q(j)
n ; a, ε),(4.3)

for some microscopic observable φ, where either γ = 1
2
, a diffusive scaling limit, or

γ = 1, a deterministic scaling limit. Except in Section 4.6.1, we choose φ(q; a, ε) ≡
φ(q) to be independent of a and ε. The dynamics of the distinguished variable are
given by

Qn+1 = f̃(Qn,Φn),(4.4)

and we observe the distinguished variable

Ψn = Ψ(Qn).(4.5)

In the third scenario (Figure 4.1(c)), the dynamics of the q
(j)
n are coupled by a

mean field Φ with

q
(j)
n+1 = f(q(j)

n ,Φn; a(j), ε),(4.6)

and the mean field is defined as in (4.3) with γ = 1. We observe a mean-field Ψ
given by (4.2). (Note that in this scenario Ψ and Φ are structurally identical.)

To study the effect of the structure of the microscopic variables on the macro-
scopic dynamics we will consider three different types of microscopic dynamics f .



74 4. Linear response theory in high-dimensional systems

0.0 0.2 0.4 0.6 0.8 1.0

q

0.0

0.2

0.4

0.6

0.8

1.0

f
(q

;·
··

)

(a)

f
∂f
∂ε

∂f
∂Φ

∂f
∂a

0.0 0.2 0.4 0.6 0.8 1.0

q

0

5

φ
(q

)

(b)

Figure 4.2. (a) Plot of q
(j)
n+1 under logistic dynamics (4.7) as a func-

tion of q
(j)
n for r

(j)
n > 1/2, a(j) = 3.75, Φn = 0 and ε = 0. Effects of

perturbations in ε, Φ and a on the map are indicated by arrows. (b)
Plot of coupling function φ(q).

We will consider the case of microscopic dynamics which when viewed in isolation
obeys LRT, such as uniformly expanding maps (the specific maps we will study are
described in Section 4.7.2.1). We will also consider the case when the microscopic dy-
namics when viewed in isolation does not obey LRT. The simplest such system is the
logistic map as established by Baladi and co-workers (Baladi and Smania, 2008, 2010;
Baladi, 2014; Baladi et al., 2015; De Lima and Smania, 2018). We shall distinguish
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Figure 4.3. Probability density function ν(a) of the raised cosine
distribution (4.8) with compact support on the interval [3.7, 3.8].

two subcases here: one where the parameters of the logistic map are drawn from a
smooth heterogeneous distribution and one where they are drawn from a non-smooth
distribution. For concreteness, we consider perturbations of the following modified
logistic map,

(
q

(j)
n+1, r

(j)
n+1

)
=

{(
q

(j)
n , 2r

(j)
n

)
r

(j)
n < 1

2(
a(j) q

(j)
n (1− q(j)

n ) + h(q
(j)
n ,Φn) + εg(q

(j)
n ), 2r

(j)
n − 1

)
r

(j)
n ≥ 1

2

,(4.7)

where the logistic map parameters a(j) are sampled from a distribution ν(a)da. The
action of this map on q is plotted in Figure 4.2(a). We will introduce the external
and coupling perturbation functions g and h in the respective following subsections,
as well as the mean field observable φ.

The inclusion of the mixing doubling map dynamics rn ensures that the overall
dynamics is mixing even when the logistic parameters a(j) correspond to regular
dynamics. The inclusion of the cocycle rn, however, does not alter the invariant
measure of the logistic map for constant Φn and the marginal invariant measure of
q(j) the invariant measure of a logistic map at parameter a(j). Hence, notwithstanding
any dynamics of Φn, the microscopic dynamics (4.7) violates LRT while being mixing.

In Section 4.5.2.2 we will see that the regularity of ν(a) is crucial in establish-
ing LRT. We therefore consider here two cases: the case when ν(a) is smooth, in
particular at least once-differentiable with respect to a, and the case when ν(a) is
non-smooth, for example when ν(a)da is a linear combination of delta functions.
We choose as a smooth distribution the raised cosine distribution supported on the
interval [3.7, 3.8], which is given by

ν(a) = 1[3.7,3.8]
1

0.1

(
1 + cos

(
a− 3.75

0.05
π

))
.(4.8)
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We have chosen this distribution as it is both compactly supported and resembles a
Gaussian distribution (see Figure 4.3). Furthermore, a large proportion of logistic
parameters between [3.7, 3.8] give chaotic dynamics (Galias, 2017). For a non-smooth
distribution we choose the discrete distribution

νda =
1

3
(δ3.72 + δ3.75 + δ3.78),(4.9)

which has a similar distribution of moments.

4.4. Summary of results

Our main results for these different dynamical scenarios and cases are summarised
in Table 4.1. We differentiate between the thermodynamic limit M = ∞ and the
case of a large, finite heat bath size M (which may not necessarily approach a smooth
limit as M → ∞). We summarise the dynamical mechanisms leading to the com-
prehensive picture provided in Table 4.1, which are to the best of our knowledge
hitherto unknown. The following sections will establish these findings in detail.

• Macroscopic mean field observables generated by an appropriate heteroge-
neous set of microscopic chaotic systems may exhibit linear response, even
if the individual members of those systems may not individually have LRT
(Section 4.5.2.2).
• In the thermodynamic limit, macroscopic observables obey a law of large

numbers. If the microscopic dynamics is mixing, this leads in the case of no
back-coupling to trivial macroscopic dynamics (Section 4.5.1); if the micro-
scopic dynamics is coupled via its mean field and provided the microscopic
dynamics collectively obeys LRT, one can derive a smooth non-Markovian
closure for macroscopic variables (Section 4.7.1). In the latter case, if the
macroscopic dynamics converges to a fixed point or to a limit cycle, the
macroscopic mean field observables satisfy LRT in the thermodynamic limit
(Section 4.7.2).
• However, the reduced macroscopic dynamics may also converge to a chaotic

dynamical system which is demonstrably non-hyperbolic (Section 4.8) and
which violates LRT (Section 4.7.3). This is possible even if the individual
microscopic dynamics is uniformly hyperbolic.
• In finite ensembles with M <∞ the mean field involves an O(1/

√
M) correc-

tion to the thermodynamic mean field dynamics, which may not obey LRT
(Section 4.5.1). The possible violation of LRT of macroscopic observables,
however, is not detectable for practical purposes, and the observed linear re-
sponse is determined by the linear response property of the thermodynamic
limit. We call this behaviour approximate LRT.
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macroscopic observable
microscopic
subsystem

uncoupled distinguished var. self-coupled
mean field γ = 1

2
γ = 1 mean field

f satisfies LRT
finite M 3 3 3 3
M →∞ 3 3 7 O

f violates LRT with
smooth ν(a)da

finite M (3) (3) (3) (3)
M →∞ 3 3 7 O

f violates LRT with
non-smooth ν(a)da

finite M 7 7 7 (3)
M →∞ 7 7 7 7

Table 4.1. Summary of our main LRT results. The checkmarks 3
denote cases when the macroscopic observable Ψ enjoys LRT. The
bracketed checkmarks (3) denote cases of approximate LRT, when
LRT is satisfied for practical purposes. The cross-marks 7 denote
cases when LRT is violated for the macroscopic observable. The star
O denotes cases when LRT may or may not be satisfied depending
on the linear response of the limiting dynamics of the macroscopic
observable (see Section 4.7).

• In finite mean-field coupled systems such as (4.6), macroscopic mean fields
typically satisfy a central limit theorem. As a result, the back-coupling of
the mean field introduces a small “noise” into the microscopic systems, which
can induce linear response. The statistical properties of this dynamic self-
generated noise and its linear response properties are determined by the linear
response property of the thermodynamic limit. In the case of failure of linear
response in the thermodynamic limit, the convergence to the thermodynamic
limit is approached for finite large M through the creation of saddle-node
bifurcations (with associated multistability) which become increasingly dense
in ε (Section 4.7.2.3).
• When the mean-field is used to drive a distinguished variable, it induces the

same LRT properties as the noise/deterministic signal it approximates in a
central limit theorem. Thus, for finite M the mean-field will induce LRT
in the distinguished variable, provided its parameters vary smoothly with
the perturbation (Section 4.6.2); furthermore if the mean-field has a diffusive
coupling (i.e. normalised by M−1/2 instead of M−1) then the central limit
theorem will continue to hold in the thermodynamic limit under the same
conditions (Section 4.6.1).

In the following we provide numerical evidence and theoretical arguments cor-
roborating these results. We first consider the case of macroscopic observables of an
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uncoupled heat bath; we then extend our study first to observables of distinguished
variables driven by such a heat bath, and then to the case of macroscopic observables
of a mean field coupled heat bath.

4.5. Macroscopic observables of uncoupled microscopic subsystems

We are concerned with the behaviour of averages of the macroscopic observable
Ψ. We distinguish here two averages; the average with respect to initial conditions
of q(j), which we denote by E, and the average over the independently chosen logistic
map parameters distributed according to ν(a) which we denote by angular brackets
〈·〉. In real systems (for which the parameters a(j) are selected once only), the average
relevant for linear response is E, the expectation with respect to initial conditions.

We describe a stochastic reduction of the mean field dynamics in Section 4.5.1
and then in Section 4.5.2 discuss the linear response properties for each of the three
kinds of microscopic subsystems that we outlined in Section 4.3: in Table 4.1 these
are covered in the rows corresponding to the uncoupled macroscopic observables.

4.5.1. Stochastic reduction of mean field dynamics. The average with
respect to initial conditions is written as

Eψ(q(j)) =

∫
ψ(q) dµa

(j)

(q),

where µa
(j)

(q(j)) is the invariant measure of q(j). The Law of Large Numbers then
reads as

〈EΨ〉 =

∫∫
ψ(q) dµa(q)dν(a).(4.10)

(In view of Section 4.7 where the mean field coupling is considered and the q(j)

depend on a time-varying driver, we remark that in that case averages are computed
with a time dependent measure µa

(j)

n (q(j)).)
We first establish the case of LRT for a finite heat bath. For large but finite

system size M , both averages are equipped with their own finite size correction, de-

scribed by the central limit theorem. In equilibrium each ensemble member q
(j)
n , at

a given time n, is an independent sample from the invariant measure µa
(j)

. Macro-
scopic observables Ψ, as defined in (4.2), can be approximated using the central limit
theorem and the independence of the q(j) by

Ψn = EΨ +
1√
M
ζn + o(1/

√
M),(4.11)
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where the expectation value

EΨ =
1

M

M∑

j=1

∫
ψ(q) dµa

(j)

(q)

is over initial conditions q(j) at fixed a(j). The random mean-zero Gaussian process
ζn has autocovariance function Cζ(m) with

Cζ(m) = cov(ζn, ζn+m) = lim
M→∞

1

M

M∑

j=1

E[ψ
(j)
0 ψ(j)

m ]

= 〈E[ψ0ψm]〉.(4.12)

The stochastic process ζn can be thought of as a moving average process of infinite
order, which is uniquely defined by its mean and its covariance R(m).

The existence of a central limit theorem is guaranteed for unimodal maps using
results of Lyubich (2002) who proved that almost every non-regular logistic param-
eter satisfies the so-called Collet-Eckmann condition (Collet and Eckmann, 1983),
which then implies the existence of good statistical properties including the central
limit theorem (Alves et al., 2004; Melbourne and Nicol, 2008). We remark that the
parameters determining the process ζn in the finite-M case, such as the covariance
(4.12), have the same LRT properties as the associated thermodynamic limit 〈EεΨ〉.

The independent sampling of the a(j) allows for a further application of the central
limit theorem, and we can write

EΨn = 〈EΨn〉+
1√
M
η + o(1/

√
M),(4.13)

where the random variable η is, for fixed ε, a mean-zero Gaussian variable. As a
function of ε, η is a Gaussian process with covariance

〈ηεηε′〉 = 〈Eε[ψ]Eε′ [ψ]〉 − 〈Eε[ψ]〉〈Eε′ [ψ]〉,(4.14)

and typically is no more differentiable with respect to ε than Eε[ψ], which implies
that LRT is violated for finite M if the microscopic subsystems do not individually
satisfy LRT. However, for finite M � 1 the response term 〈EΨn〉 dominates over
the contribution of η and the violation of LRT can only be detected for vanishingly
small values of ε. We call this instance of LRT for all practical purposes approximate
LRT.

We remark that, notwithstanding the rough parameter selection error discussed
above, and recalling that the linear response of the process ζn is determined by the
linear response property of the associated thermodynamic limit, the overall linear
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response of Ψn depends entirely on whether the thermodynamic limit 〈EΨn〉 satisfies
LRT or not. We discuss this question in the next section.

4.5.2. LRT of thermodynamic limit mean field observables of uncou-
pled microscopic subsystems. We now investigate the response of 〈EΨn〉, i.e. the
thermodynamic limit. We distinguish between three cases: when the microscopic dy-
namics satisfies LRT, and when the the microscopic dynamics does not satisfy LRT
and has a distribution ν(a) of the parameters which is either smooth or non-smooth.

4.5.2.1. The microscopic subsystems satisfy LRT. If the microscopic dynamics
obeys LRT, as is the case for uniformly expanding maps such as (4.43), which will
be considered in Section 4.7.2.1, it is clear that LRT also holds for macroscopic
observables defined in (4.2). For finite heat bath sizes M , we have

d

dε
EεΨn =

1

M

M∑

j=1

d

dε
Eψ(q(j)

n )

and the macroscopic observable Ψ obeys LRT since the M subsystems individually
satisfy LRT with uniformly bounded d

dε
dµ(aj ,ε). The validity of LRT carries over to

the thermodynamic limit with

d

dε
〈EεΨn〉 =

∫∫
ψε(q)

d

dε
dµ(a,ε)(q)ν(a)da.

Note that we may allow for a ν-measure zero subset of subsystems at any given ε to
individually violate LRT, and still obtain LRT for the macroscopic observable Ψ in
the M →∞ limit. In this case, however, the η correction may not be differentiable,
and we observe approximate LRT.

4.5.2.2. The microscopic subsystems do not satisfy LRT but are appropriately
heterogeneous. To model microscopic dynamics that violate LRT we consider the
modified logistic map (4.7). We will perturb the map in ε by the function (see (4.7))

g(q) = 4(q(1− q))2,(4.15)

and set h ≡ 0. The effect of g is plotted in Figure 4.2(a). We will draw parameters
from the smooth raised cosine distribution on [3.8, 3.9] (4.8), which is three-times
continuously differentiable (i.e. ν(a) is C3). We use ψ(q, r) = q for our mean-field
observable Ψ.

Figure 4.4 provides numerical evidence that, for these maps, the macroscopic ob-
servable Ψ with ψ(x) = x has linear response for a wide range in ε. To determine the
smoothness of 〈EεΨ〉, we determine its Chebyshev coefficients on a Chebyshev roots
grid of 1000 points, using the Chebyshev transform routines in the Julia package
ApproxFun (Olver, 2019). It is well known that any smooth function f(x) can be ex-
pressed as an infinite series of Chebyshev polynomials Tk(x) as f(x) =

∑∞
k=0 fkTk(x)
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and the degree of differentiability of the function is given by the decay of its Cheby-
shev coefficients fk (Trefethen, 2013). We find that the Chebyshev coefficients of
〈EεΨ〉 decay as O(k−4), which is indicative of 〈EεΨ〉 being between C3− and C4 dif-
ferentiable over a large interval: this level of differentiability, as we will discuss below,
is connected to the smoothness of the raised-cosine distribution (4.8), which is C3.
We have also employed the test statistics for higher-order linear response developed in
Gottwald et al. (2016) to test the null-hypothesis of 〈EεΨ〉 being well-approximated
by a linear combination of Tk(0.1

−1(ε + 0.1)), k = 0, . . . , 60 for ε ∈ [−0.2, 0], i.e.
that the response is in fact a smooth function. This test is summarised in Appen-
dix C. We used the aforementioned Chebyshev grid simulating 1, 000, 000 different
randomly selected parameters with 50 runs of 3000 timesteps each, and quantified
Birkhoff variance both within parameters and between parameters (i.e. arising from
the random parameter selection), using standard ANOVA methods (Rice, 2006). We
obtain a p-value of 0.26, consistent with the null-hypothesis of a smooth response.

We note that in Figure 4.4 the response of EεΨ for systems with finite M have
(barely) noticeable rough deviations from the M → ∞ limit: these non-smooth de-
viations arise from the finite sampling of parameters a(j) from ν(a), approximated
by the random variable η defined in (4.13), as discussed above.

We now provide a heuristic argument how averaging over a smooth distribution
such as the raised cosine distribution (4.8) can lead to LRT for the macroscopic
observable Ψ. Let us first recall the dynamic reason of why LRT is violated in
the logistic map. We follow here Ruelle (2009b) in our exposition. The critical
point q = c with f ′(c) = 0 leads to a non-uniform compression of the phase space
around q = c: an initially smooth initial density which contains the critical point
in its support is pushed forward under the dynamics to a non-smooth density with
a spike with an inverse square-root singularity at q = f(c). This compression is
repeated to produce further inverse square-root singularities at locations qn = fn(c)
of amplitudes asymptotically proportional to α−n/2 (and thus contain a probability
mass of order αn/2), where 1 < α denotes the Lyapunov multiplier of the logistic
map. The result is that the invariant density contains an infinite number of spikes
of decreasing amplitude. The effect of the perturbation, by modifying the forward
orbit of the critical point (fn(c))n∈N, is to displace these spikes. Because the map
f is chaotic and thus exponentially sensitive to perturbations, spikes move with an
instantaneous speed of the order of αn per unit change of the perturbation. This
scenario is illustrated in Figure 4.5(a) where we show the absolutely continuous
invariant measure (acim), averaged over the heat bath, of an perturbed and of a
slightly perturbed dynamics. The high speed of the small spikes (i.e. those with
large n) in conjunction with their relatively large probability mass implies that the
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Figure 4.4. Response term EεΨ for a perturbation of the form (4.15)
for an uncoupled heat bath scenario in the case when the microscopic
dynamics is given by the logistic map (4.7), which does not satisfy
LRT, and the logistic map parameters are sampled from the raised co-
sine distribution (4.8). For different values of ε we employ a total of 105

iterates to estimate EεΨ as a temporal average. (a) Plots for finite M :
95% confidence intervals were estimated from 10 realisations differing
in the initial conditions of the heat bath, and are not visible. Thermo-
dynamic limit curve (black), confidence intervals also not visible, was
estimated from 50 realisations of 3000 iterates for 106 parameters a(j)

independently selected for each ε. (b) Thermodynamic limit of EεΨ
(black), with LRT-violating response of microscopic variables Eεψ(q(j))
(coloured lines), estimated from 10 realisations of 106 iterates each. (c)
Estimate of Chebyshev coefficients

∑∞
k=0 Ψ̌kTk(0.1

−1(x + 0.1)) :=
〈EεΨ〉.
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Figure 4.5. Histogram of the averaged acim of the q(j) for the lo-
gistic map system (4.7) with (a) ν = δ3.75 and (b) ν the raised-cosine
distribution (4.8), for ε = −5× 10−4 (orange dashes) and ε = 0 (blue
line).

sum of their (distributional) derivatives diverges, leading to breakdown of linear
response. The reader is referred to Ruelle (2009b) for details and to Gottwald et al.
(2016) for a numerical illustration. For comparison we also depict in Figure 4.5(b)
the averaged invariant measure for the case when the parameters are heterogeneously
drawn from a raised-cosine distribution and for which we showed above that LRT
is valid. The averaging over the heterogenously drawn parameters clearly implies a
smoothed invariant measure of the logistic map.

This may be seen as analogous to a recent heuristic argument for linear response in
general non-hyperbolic systems (Ruelle, 2018): rough contributions to the response
caused by singularities in the physical measures that arise from stable manifold-
unstable manifold tangencies average out if these singularities distribute themselves
suitably evenly.

We may understand more concretely the differentiability of the response, and in
particular its relationship with the differentiability of the parameter distribution ν,
by considering the simplified, more specific case where ε is an additive perturbation
of the inhomogeneous microscopic map parameters a(j), i.e. f(q; a, ε) can be written
as f(q; a + ε), for example as in the system we will consider in Section 4.6 in the
distiguished variable scenario. When ε is an additive perturbation of the parameters
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a(j), it is possible to apply a change of variables and write

〈EεΨ〉 =

∫∫
ψ(q) dµa+ε(q)ν(a) da

=

∫∫
ψ(q) dµa(q)ν(a− ε) da.(4.16)

The linear response term is then readily evaluated as

d

dε
〈EεΨ〉 = −

∫∫
ψ(q) dµan(q)

d

da
ν(a) da,

which implies that LRT is valid provided that the system is appropriately heteroge-
neous with integrable density dν(a)/da, i.e. ν(a) is of bounded variation. Further-
more, from the integral formulation of the expectation in (4.16) it is clear that the
regularity of the response depends on the regularity of ν: indeed, to achieve higher-
order response, say of order `, ν must have (weak) derivatives of order `. This can be
achieved if a is drawn from a distribution ν in Sobolev space W `,1. Thus, we would
expect to see three-times differentiable response of Ψ with a distribution ν ∈ W 3,1

such as the raised-cosine distribution.
This particular argument is completely independent of the actual microscopic

dynamics, and it generalises to systems beyond logistic maps—provided the maps
can be written f(·; a, ε) = f(·; a+ ε).

In the specific case where the microscopic dynamics evolves under unimodal maps
such as those studied here, we can make a more concrete argument for the effect of
the smearing out of the fast displacement of the small spikes upon perturbation.
It is conjectured by Avila et al. (2003) that there exists an ε-dependent analytic
function α(a, ε) of the invariant measures, such that the map with parameters (a, ε)
is topologically conjugate to the map with parameters (α(a, ε), 0). Unimodal maps,
at least those of Benedicks-Carleson type, have linear response within topological
conjugacy classes (Baladi and Smania, 2012), and as a result we can say

〈EεΨ〉 =

∫∫
ψ(q) dµa,εn ν(a) da

=

∫∫
ψ(q) dµα(a,ε),0

n ν(a) da+ h.o.t.

=

∫∫
ψ(q) dµα,0n ν(a(α, ε))

da

dα
dα + h.o.t.,(4.17)

where the higher order terms capture the response of the µn under the topological
conjugacy-preserving parameter change from (α(a, ε), 0) to (a, ε), and are thus sim-
ilarly smooth. Hence the existence of linear response d〈EεΨ〉/dε (and by a similar
argument higher-order response) is guaranteed, provided that the distribution of the
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parameters of the logistic map ν(a) is at least once continuously differentiable (and
provided α(a, ε) is analytic in a sufficiently uniform way (Avila et al., 2003)). The
linear response of 〈EεΨ〉 was numerically confirmed in Figure 4.4. Since in at least
one-dimensional systems topological conjugacy classes form manifolds of finite codi-
mension, we believe this argument will generalise to more general maps, provided
the space of parameters a(j) is sufficiently high-dimensional.

However, we caution that our smearing argument may not generalise to other sys-
tems, at least when the support of the parameters a is one-dimensional. In Figure 4.6
we present numerical evidence demonstrating that mean-field averaging fails to im-
prove the linear response of a unimodal map of the torus (R/Z)2 for heterogeneously
distributed parameters, given by

x
(j)
n+1 = x(j)

n + a(j)y sin πx(j)
n mod 1(4.18)

y
(j)
n+1 = y(j)

n + a(j) sin π(x(j)
n + y(j)

n ) + ε mod 1,(4.19)

for j = 1, . . . ,M . The parameters a(j) are again distributed according to a raised
cosine distribution with support on [3.7, 4.3]

(4.20) ν(a) = 1[3.7,4.3]
1

0.1

(
1 + cos

(
a− 3

0.3
π

))
,

and the mean-field observable is given by Ψ = 1
M

∑M
j=1 ψ(x(j), y(j)) where ψ(x, y) = x,

as before. We tested the null-hypothesis of 〈EεΨ〉 being well-approximated by a linear
combination of Tk(0.05−1(ε− 0.05)), k = 0, . . . , 100 for ε ∈ [0, 0.1], and obtained a p-
value p = 0.49, consistent with the null hypothesis. However in Figure 4.6 we see that
the estimated Chebyshev coefficients decay approximately asO(k−1.5) which is slower
than O(k−4) seen in the one-dimensional unimodal example, indicating a rather low-
order differentiability. This level corresponds quite closely to that obtained for the
expectation value Eεψ(x(j), y(j)) of a single microscopic systems, as illustrated in
Figure 4.7; hence the averaging over parameters appears only to be smoothing out
the large jumps arising from periodic windows but does not improve the degree of
differentiability.

4.5.2.3. The microscopic subsystems do not satisfy LRT and are not appropriately
heterogeneous. If the microscopic dynamics does not obey LRT and the logistic map
parameters are non-smoothly distributed, then LRT fails for macroscopic observables
(4.2), independent of whether the heat bath is finite or infinite. In this case the
averaging over the heat bath variables does not provide the necessary smearing of
the non-smoothness of the perturbed invariant measures µa,ε. To illustrate this,
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Figure 4.6. Response EεΨ for an uncoupled heat bath scenario for
the map (4.19) where the parameters are sampled from a raised co-
sine distribution (4.20). (a) Infinite M limit with confidence inter-
vals (black) and 21-point moving average with confidence intervals
(white) from 15 realisations of 6000 iterates for 106 parameters a(j)

independently selected for each ε. (b) Estimate of Chebyshev coeffi-
cients

∑∞
k=0 Ψ̌kTk(0.05−1(x− 0.05)) := 〈EεΨ〉.

consider the following non-smooth parameter distribution

ν(a) =

p∑

k=1

wkδ(a− ak),(4.21)
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Figure 4.7. Individual response terms Eεψ(x(j), y(j)) with confidence
intervals for the map (4.19) where the parameters selected from the
raised cosine distribution (4.20). (a) Response for five randomly se-
lected microscopic variables. The large jumps of the response outside
the figure correspond to regions of regular dynamics. (b) Estimate
of Chebyshev coefficients

∑∞
k=0 Ψ̌kTk(0.05−1(x+−0.05)) := 〈EεΨ〉 for

one of the variables in (a).

where at least one of the logistic map parameters ak corresponds to chaotic dynamics.
The invariant measures µak,ε for fixed parameters ak are not differentiable with re-
spect to the perturbation size ε per assumption. The averaging over the independent
heat bath variables only involves finitely many logistic parameter values, and hence
in this situation averaging is not able to smear the effect of the non-smoothness of
the finite number of associated invariant measures µaj . In Figure 4.8 we show the
response EεΨ for microscopic logistic variables as in Section 4.5.2.2 with ν a discrete
distribution. As expected, the response exhibits non-smooth behaviour upon vary-
ing the strength of the perturbation ε. The response term EεΨ quickly converges
as M → ∞, and for M = 300 is almost indistinguishable by eye from the response
〈EεΨ〉 in the thermodynamic limit.
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Figure 4.8. Response EεΨ for a perturbation of the form (4.15) for
an uncoupled heat bath scenario in the case when the microscopic
dynamics is given by the logistic map (4.7), which does not satisfy
LRT, and the logistic map parameters are distributed as in (4.21) with
ν = 1

3
(δ3.72+δ3.75+δ3.78). Error bars were estimated from 10 realisations

differing in the initial conditions of the heat bath, and are not visible.

4.6. Linear response of macroscopic observables of distinguished
variables driven by microscopic subsystems

We now extend the uncoupled case by considering a distinguished particle Q
driven by a mean-field Φ as in (4.3). This mean-field may either have a diffusive
scaling (where γ = 1

2
in (4.3)), or a deterministic scaling (where γ = 1). In this

section we in turn derive reductions to macroscopic dynamics for these two different
scalings. As we have made a comprehensive study of the LRT of the driving mean-
field in the previous section, we will here explicitly study LRT properties only for
most unfavourable situation where both microscopic and macroscopic variables have
logistic dynamics: for other microscopic variables the situation is given in Table 4.1.
We find that the different scalings lead to qualitatively different dynamics of the
distinguished variables, and consequently the outlook for LRT is different.
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We recall that the dynamics of the microscopic heat bath are given from (4.1,4.3,4.4)
by

q
(j)
n+1 = f(q(j)

n ; a(j), ε),(4.22)

Φn =
1

Mγ

M∑

j=1

φ(q(j)
n ; a, ε),(4.23)

Qn+1 = f̃(Qn,Φn).(4.24)

We choose f to be the modified logistic maps (4.7), this time with g(q) = q(1 − q).
Note that this means that we can write

f(q, r; a, ε) = f(q, r; a+ ε).

We will select the parameter distribution ν(a) to be the raised cosine distribution as
in Figure 4.3, this time supported on a ∈ [3.8, 3.9].

Furthermore, so as to consider the LRT “worst case” for the macroscopic dynam-
ics, we will choose the macroscopic variable also to be a logistic map:

(4.25) f̃(Q; Φ) = (A0 + A1Φ)Q(1−Q).

where A0, A1 are constants that will be specified in the presentation of each numerical
experiment. We will in our numerical simulations use the macroscopic observable
Ψ(Q) = Q.

4.6.1. γ = 1
2
: Weak coupling with diffusive limit. We begin by showing

that for each ε the macroscopic variable Q asymptotically satisfies a stochastic limit
system in the thermodynamic limit M → ∞ when γ = 1

2
. We consider driving

terms Φn with mean-zero functions φ(·; a), Eε[φ(·; a)] = 0 for all a, where the E
average, as in the previous section, is with respect to the invariant measure of the
unresolved microscopic variable for a single value of a. The driving term Φn (4.23)
again contains a sum over independent identically distributed random variables for
each time n, which are mean-zero by stipulation. Hence, for γ = 1

2
, the central limit

theorem assures that the driving term Φn converges to a random Gaussian variable
ζn ∼ N (0, σ2) with σ2 = 〈Eε[φ(q(j))2]〉, where the angular brackets again denote the
average over the measure of the logistic map parameters ν(a)da. As in Section 4.5.1,
the ζn define a stationary mean-zero Gaussian stochastic process, whose covariance
is readily determined, similarly to (4.12), as

R(m) = cov(ζn, ζn+m) = 〈E[φ0φm]〉.(4.26)

The process Qn hence converges weakly to the stochastic process defined by

Qn+1 = f̃(Qn; ζn)(4.27)
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Figure 4.9. Empirical probability density ρQ(x) (orange) of the dis-
tinguished variable Q for γ = 1

2
as estimated from simulations of the

original deterministic system (4.22-4.24) for different values of the size
M of the microscopic sub-system. Top: M = 4. Bottom: M = 16.
The continuous black line depicts the invariant density of the stochastic
limit system (4.27). We used A0 = 3.91, A1 = 0.05 and ε = 0.

which for the logistic dynamics we consider (4.25) are

Qn+1 = (A0 + A1ζn)Qn(1−Qn).(4.28)

Figure 4.9 illustrates the convergence of the full dynamics (4.22)-(4.24) to the
stochastic limit system (4.27) in distribution by comparing the respective empirical
measures for several values M of the size of the microscopic sub-system. The mi-
croscopic dynamics is run unperturbed with ε = 0. Here we chose the mean-zero
(conditional on the parameter a) functions φ(x; a, ε) = x2 − f(x; a, ε)2 to generate
the driving sum Φn. We used a time series of N = 4× 107 and determined the em-
pirical measure of the full system (4.22)-(4.24) by binning using 1000 bins. Details
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Figure 4.10. First four centred moments µi, i = 1, · · · , 4 (not to be
confused with measures µ discussed elsewhere), of the distinguished
variable Q for γ = 1

2
as estimated from simulations of the original

deterministic system (4.22-4.24) for fixed time n = 6 for several val-
ues of the size of the microscopic sub-system: M = 4 (blue triangles),
M = 16 (orange diamonds) and M = 1024 (green dots). We depict
the moments scaled by the respective moments of the stochastic limit
system (4.27) so that the asymptotic limit is 1 for all moments. Pa-
rameters as in Figure 4.9.

on how to determine the statistics of the limiting diffusive system (4.28) are given in
Appendix D1. It is remarkable that with only M = 16 microscopic variables the eye
can barely distinguish the empirical density from the density of the diffusive limit
equation (4.27). We further show convergence of the first four moments of Q when
increasing M in Figure 4.10. It is seen that for accurate convergence of higher order
moments to the values of their stochastic limiting equation (4.27) larger system sizes
M are required.

We present in Figure 4.11 results of the linear response for an observable Ψ(Q) =

Q. The microscopic sub-system is perturbed homogeneously with a
(j)
1 = 1 for all j. It

is clearly seen that the perturbation ε induces a smooth change in the observable for
large M , indicative of the validity of LRT. We employ here the test for linear response
developed in Gottwald et al. (2016), which we describe in Appendix C and report
the p-values testing the null hypothesis of linear response. We compute averages for
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Figure 4.11. Top row: Linear fit of response of an observable Ψ(Q) =
Q for the deterministic system (4.22-4.24) for γ = 1

2
for different values

of the size M of the microscopic sub-system. (a): M = 16. (b):
M = 1024. (c) M = 32768. (d): Stochastic limit system (4.27).
Bottom row: Cubic fit of the same. All experiments used a time series
of length N = 2 × 105. The error bars were estimated from K = 200
realizations differing in the initial conditions. We used A0 = 3.91,
A1 = 0.05.

several values of ε from long simulations of length N = 5 × 106. The error bars
shown in Figure 4.11 are estimated from K = 200 realizations differing in the initial
conditions of the microscopic variables. For small values of M = 16 the p-value is
O(10−5), rejecting the null hypothesis of linear response, whereas for M = 210 the
p-value is 0.27, consistent with linear response. We also show results of the linear
response for the stochastic limit system (4.27), illustrating that the thermodynamic
limit implies linear response with a p-value of p = 0.54. Note that although the
invariant density of the resolved degree of freedom Q has sufficiently converged to
the invariant density of the stochastic limit system (4.27) for M = 16 (cf. Figure 4.9),
this size is not sufficiently large to assure linear response. However, as the sample
size increases, we see convergence to a curve that from statistical tests is consistent
with a C3 response (see Figure 4.11): from the discussion in Section 4.5.2.2, this is
because the raised cosine distribution ν lies in W 3,1. The induced linear response
here can be understood as arising from the convergence to the stochastic system
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(4.28): dynamical systems driven by Gaussian noise are known to have LRT (Hairer
and Majda, 2010).

4.6.2. γ = 1: Weak coupling with deterministic limit. We begin again for
the γ = 1 deterministic scaling case by considering the stochastic reduction of the
distinguished variable dynamics in the large M limit. We will let the driving term
Φn be generated by a function φ with non-vanishing mean: for concreteness, we will
consider φ(q) = q2. Since each unresolved degree of freedom generates an invariant
measure, for γ = 1 the driving variable Φn converges to a constant according to the
law of large numbers with Φn → Φ̄ = 〈E[φ]〉. In the thermodynamic limit therefore
the limiting equation of (4.24) is a deterministic map

Qn+1 = F (Q; Φ̄)(4.29)

which, for the macroscopic dynamics we consider, is

Qn+1 = (A0 + A1Φ̄)Qn(1−Qn).(4.30)

Figure 4.12 illustrates the convergence of the invariant measure of the determinis-
tic map (4.22)-(4.24) to the averaged deterministic limit system (4.29) in distribution
upon increasing the size M of the microscopic sub-system. We used again a time
series of N = 4 × 107 and determined the empirical measure by binning using 1000
bins. We see that for M = 1024 convergence to the rough limiting invariant measure
of the deterministic logistic map (4.30) with its narrow peaks has not been fully
achieved. This is due to finite sample size M . From Section 4.5 we have up to
O(1/

√
M) that

Φn = 〈E[φ]〉+
1√
M
ηε +

1√
M
ζn,(4.31)

where ζn is the mean-zero Gaussian process with covariance matrix (4.26), and ηε

is a mean-zero Gaussian random variable which, as in Section 4.5.1, is a Gaussian
process in ε with covariance function

〈ηεηε′〉 = 〈Eε[φ]Eε′ [φ]〉 − 〈Eε[φ]〉〈Eε′ [φ]〉.
In general, ηε is non-differentiable in ε, which implies that LRT is violated for

macroscopic observables Ψ(Q), even for the random finite-size driver Φn given by
(4.31). However, if the variation in E[φ] over the parameter values sampled by ν
is small by comparison with the typical variance R(0) = E[(φ − E[φ])2] for these
parameters (e.g. if the support of ν is sufficiently small), then the small, rough
contribution of 1√

M
ηε to the response of Ψ(Q) is dominated by the (linear) response

generated by 〈E[φ]〉 + 1√
M
ζn. We remark, however, that if the support of ν is too

small and the parameters are therefore less heterogeneous, LRT is only valid for a
small range of perturbation sizes ε.
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Figure 4.12. Empirical probability density ρQ(x) (orange line) of
the macroscopic variable Q for γ = 1 as estimated from simulations
of the original deterministic system (4.22-4.24) for different values of
the size M of the microscopic sub-system. Top: M = 16. Bottom:
M = 1024. The continuous black line depicts the invariant density of
the deterministic logistic map limit system (4.27); the thin dotted lines,
which are indistinguishable from ρQ(x), represent invariant densities of
the logistic map (4.24) with the stochastic driving Φn given by (4.31)
for various realisations of ηε. We used A0 = 3.847, A1 = 0.147 and
ε = 0.



4.6. Linear response of distinguished variables 95

To illustrate the role of finite size effects, we present in Figure 4.12 also re-
sults of simulations of the logistic map (4.25) with Φn stochastically generated by
(4.31), mimicking random finite size effects in approximating the deterministic limit
Φn = 〈E[φ]〉. It is seen that for finite M the peaks are smoothed by sampling
noise, and the random logistic map reproduces the invariant density of the macro-
scopic variable Q of the full deterministic model driven by the microscopic dynamics.
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Figure 4.13. Linear fit of response of an observable Ψ(Q) = Q for the
deterministic system (4.22-4.24) for γ = 1 for different values of the size
M of the microscopic sub-system. (a): M = 16. (b): M = 1024. (c)
M = 32768. (d): Deterministic limit system (4.29). All experiments
used a time series of length N = 2×105. The error bars were estimated
from K = 200 realizations differing in the initial conditions. We used
A0 = 3.847 and A1 = 0.147.

Given that the thermodynamic limit system is deterministic, one might be tempted
to conclude that linear response is not valid. Figure 4.13 shows the linear response as
a function of perturbation ε for several values of the microscopic sub-system size M .
For small values of M LRT is clearly violated with a p-value of O(10−3), as expected.
For very large values of M = 215 LRT is violated with a p-value of O(10−40), con-
sistent with the LRT-violating deterministic limit system (4.29). Remarkably and
maybe surprisingly, decreasing the size M from these very large values to interme-
diate values of M = 1024 we observe that the numerical results are consistent with
LRT and the p-value increases dramatically to around 0.16. This can be explained by
the finite size corrections (4.31) to the deterministic limit Φn = 〈E[φ]〉 provided by
the central limit theorem. We note that the p-value for M = 1024 indicates marginal
evidence in favour of breakdown of LRT associated with the (small) contribution of
the non-differentiable ηε term. Just as in the γ = 1

2
case it is necessary for LRT to

hold in the case of finite sample size, that the parameters a(j) are inhomogeneously
distributed with a sufficiently smooth distribution ν(a).
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Figure 4.14. Linear response of an observable Ψ(Q) = Q for the
deterministic system (4.22-4.24) for γ = 1 with M = 16 estimated
from a time series of length N = 2×104. The error bars were estimated
from K = 200 realizations differing in the initial conditions. We used
A0 = 3.847 and A1 = 0.147.

In Gottwald et al. (2016) it was found that even if a system does not obey linear
response one might not be able to reject the null hypothesis of linear response with
sufficient statistical significance when the data length N of the time series is not
sufficiently long. In Figure 4.14 we show the linear response as a function of ε for
a microscopic sub-system of size M = 16 for N = 2 × 104. While for N = 2 × 105

linear response was rejected with p = 7.2 × 10−3, linear response is now consistent
with the given data with a p-value of p = 0.21. It is found that decreasing the length
of the time series allows for a larger range in the perturbation size ε for which linear
response is consistent with the data.

4.7. Linear response of macroscopic observables of microscopic
subsystems with mean field coupling

In the two previous sections we considered microscopic subsystems that were
uncoupled. We now consider linear response when the heat bath variables q(j) couple
via the mean field Φn. In Section 4.7.1 we derive a non-Markovian closure of the
mean-field dynamics, along the lines of the reduction derived in Section 4.5, that is
deterministic in the thermodynamic limit and stochastic for finite M ; in Sections
4.7.2 and 4.7.3 we study the mean-field dynamics and its linear response using this
macroscopic closure.

4.7.1. Surrogate approximation of the mean field dynamics. Before we
can study the response of the mean field coupled system to external perturbations εg,
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we need to understand the implied macroscopic dynamics Φn generated by the system
for the externally unperturbed system with ε = 0. To do so we view the system as
driven by a prescribed time-dependent external driver dn rather than the mean field
Φn, as illustrated in Figure 4.15 (which should be compared with Figure 4.1(b)).
Hence we replace the mean field coupled dynamics (4.6) by

q
(j)
n+1 = f(q(j)

n , dn; a(j), ε)(4.32)

for a prescribed external driver dn. In the thermodynamic limit of the mean field
coupled system (4.6) we will see that the macroscopic mean field dynamics is deter-
ministic (see (4.40) further down), and the driver dn = Φn is indeed prescribed by
the initial conditions, which is simply the initial distribution of the q(j). For large

but finite M , the q
(j)
n conditioned on the history of the mean field (Φn−1, . . .) can

be considered as independently distributed and one can again view the mean field
Φn as an externally prescribed noisy driver dn with specified statistical properties.
The surrogate system (4.32) with the external driver dn chosen as a random draw of
the Gaussian process (defined below in (4.33)) provides an accurate representation
of the statistical behaviour of the original mean field coupled system (4.6). We have
checked that both yield the same linear response EεΨ, and now set out to study the
linear response of the original mean field coupled system via the surrogate system.

Let us now determine the statistical properties of a macroscopic mean field ob-
servable for the driven surrogate system (4.32). The mean fields Φn and Ψn are
again Gaussian process with (now time-dependent) statistical properties given again
by statistical limit laws, and we write in particular

Φn = 〈Ed[Φn]〉+
1√
M
ζn +

1√
M
ηn + o

(
1√
M

)
,(4.33)

where

Ed[Φn] = E[Φn|dk; k < n](4.34)

denotes the conditional expectation over the past history of the driver and averages
now involve time-dependent measures µa

(j)

n . The autocovariances of the mean-zero
Gaussian process ζn are given by a central limit theorem approximation of Φn−Ed[Φn]
with

cov[ζn, ζn−k] = 〈cov[φ(q(j)
n ), φ(q

(j)
n−k)]〉,(4.35)

where the covariance is defined using the conditional average over the history of the
driver (cf. (4.12)). Note that the autocovariance is not a function of n − m due
to the non-Markovian nature of the dynamics. Similarly, a central limit theorem
approximation of Ed[Φn]−〈Ed[Φn]〉, defines the mean-zero Gaussian process ηn with



98 4. Linear response theory in high-dimensional systems

autocovariance

〈ηεn, ηε
′
m〉 = 〈Ed,ε[φ(q(j)

n )]Ed,ε′ [φ(q(j)
m )]〉 − 〈Ed,ε[φ(q(j)

n )]〉〈Ed,ε′ [φ(q(j)
m )]〉,(4.36)

where again the conditional expectation values E are used (cf. (4.14)). Note that
the Gaussian processes ζn and ηn are independent.

The impulsive response of Φn at a given time to a perturbation of the driving
process dn 7→ dn + θn, where |θn| � 1, can be, at least formally, captured by the
susceptibility function

Rn(z) =
∞∑

k=1

χn,k z
k,(4.37)

defined for complex z with |z| ≤ 1 (Ruelle, 2004). The fluctuation coefficients χn,k
describe the change of the mean field induced by the drivers θn as

〈Ed+θ[Φn]〉 − 〈Ed[Φn]〉 =
∞∑

k=1

χn,k θn−k.(4.38)

The fluctuation coefficients χn,k of Φn are given as an average over the microscopic

fluctuation coefficients χan,k of φ(q
(j)
n ) as

χn,k =

∫
χan,k ν(a)da.(4.39)

A necessary condition for LRT with respect to a bounded driver θn is the summability
of the coefficients χk. Once LRT with respect to the driver dn can be shown, we can
proceed to study the linear response with respect to the external perturbation with
ε 6= 0 (recall that dn = Φn (cf. Figure 4.1)). Note that if 〈Ed[Φn]〉 does not satisfy
LRT with respect to a perturbation of the driver dn, then it cannot be expected to
satisfy LRT with respect to external perturbation.

In the thermodynamic limit, provided the microscopic dynamics is mixing, we
can use that the measures µan are the physical invariant measures generated by the
cocycle f(·,Φn; a, ε) to create a closure of the dynamics of Φn as a deterministic
recurrence relation:

Φn = 〈Ed=Φ[Φn]〉 =: F (Φn−1,Φn−2, . . . ; ε).(4.40)

If the mixing times of the q(j) are much shorter than a delay k∗, then the effect of
the driving Φn−k for k > k∗ is minimal and the mean field dynamics is effectively
Markovian in a space of dimension k∗ or less. The linear response with respect
to perturbations, EεΦn, is now determined by the properties of the deterministic
macroscopic dynamics (4.40). In the following sections we shall consider cases and
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Figure 4.15. Sketch of the macroscopic dynamics Φn mediated by
the microscopic reservoir.

conditions on the deterministic macroscopic dynamics (4.40) when EεΦn enjoys linear
response and when it does not.

For finite size M the response approximates that of the thermodynamic limit, as
in the case of an uncoupled heat bath discussed in Section 4.5. However, the central
limit theorem approximation (4.33) assures that the microscopic dynamics (4.32),
which is driven by dn = Φn, is essentially stochastic with a noise process ζn that
has decay of temporal correlations (since the q(j) exhibit decay of correlations). This
self-generated dynamic noise induces linear response for finite size mean field cou-
pled heat baths: this is similar to the results for finite M and in the diffusive-scaled
coupling seen in Section 4.6, and can again be understood as a consequence of results
by Hairer and Majda (Hairer and Majda, 2010).

In Section 4.7.2-4.7.3 we will consider the dynamics of the system in the thermo-
dynamic limit. The first case is when Φn = 〈EΦn〉 approaches a fixed point Φ̄ for
M →∞, the second case is when the mean field Φn itself exhibits nontrivial dynam-
ics. Whereas in the first case the linear response of the macroscopic observable Ψ
is determined by the properties of the microscopic dynamics, in the latter case it is
entirely determined by the response of the macroscopic dynamics.

4.7.2. Trivial dynamics of the mean field observable. Let us first look at
the case of the mean field at a stable fixed point Φ̄, in the sense that the mean field
remains bounded when perturbed from Φ̄ and, when the collective dynamics has
LRT, Φ̄ is a stable fixed point of Φn in the thermodynamic limit.
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To understand the stability, we can apply the external driving framework ex-
pounded in the previous section to the dynamics of our system about the equilibrium
dn ≡ Φ̄. Stability is in fact assured provided that the complex susceptibility func-
tion R(z) does not have any roots inside the unit disk. This follows by considering
θn = 〈EΦn〉 − Φ̄ =

∑∞
k=0 χn,kθn−k with θn ∼ λn in (4.38) which leads to

R(λ−1)− 1 = 0,

and hence, for unstable |λ| > 1, to the above condition for instability for the suscep-
tibility function R(z).

If stability is ensured, the linear response of the fixed point Φ̄ with respect to
external perturbations εg is established by the implicit function theorem from the
deterministic macroscopic dynamics (4.40). Once an external perturbation εg is
applied, the fixed point depends on ε, and we write

0 = F (Φ̄ε, Φ̄ε, Φ̄ε, · · · ; ε)− Φ̄ε.(4.41)

In the following numerical experiments the M →∞ limit is computed by estimating
a solution to this algebraic equation.

Differentiation with respect to the external perturbation yields

0 =
dΦ̄ε

dε

(
∂

∂Φ̄ε
F (Φ̄ε, Φ̄ε, Φ̄ε, · · · ; ε)− 1

)

+
∂

∂ε
F (Φ̄ε, Φ̄ε, Φ̄ε, · · · ; ε)

=
dΦ̄ε

dε

(
∞∑

k=1

χk − 1

)
+

∂

∂ε
F (Φ̄ε, Φ̄ε, Φ̄ε, · · · ; ε).

This immediately yields that

dΦ̄ε

dε
=

∂
∂ε
F

1−R(1)
,(4.42)

and hence the existence of linear response, provided R(1)− 1 6= 0.
As for the uncoupled scenario, we shall now discuss the linear response behaviour

for the three different cases of the microscopic dynamics, which are covered by the
rows in Table 4.1 corresponding to the coupled macroscopic observables.

4.7.2.1. The microscopic subsystems satisfy LRT. We consider here the case of
uniformly expanding dynamics of the microscopic systems, such that each subsystem
individually satisfies LRT. In particular, we choose the following uniformly expanding
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map

qn+1 =
d(qn) +Kn

(
1−

√
0.03(1− 0.97K2

n) + 0.97(d(qn) +Kn)2
)

1− 0.97K2
n

,(4.43)

where Kn = tanh(εΦn−2), qn ∈ [−1, 1] and d(q) = 2q−sign q is the doubling map on
[−1, 1]. All microscopic degrees of freedom q(j) evolve according to the same map but
with randomly distributed initial conditions. (Note that having identical microscopic
subsystems implies that 〈EεΦ〉 = EεΦ.) This map is full-branch uniformly expanding
for fixed Kn. It is carefully constructed to allow for nontrivial mean field dynamics
for larger values of ε which will be discussed in Section 4.7.3. We choose the coupling
function φ(q) = −23

30
+ 7

2
q2 − 2q4 to generate the mean field Φn. For simplicity, we

choose the mean field observable Ψ = Φ. The dynamics in the thermodynamic limit
M =∞ was computed in Poltergeist (Wormell, 2017) using the Chebyshev methods
in Chapter 4 (see Appendix D2 for more details). For small values of ε the mean
field Φn converges to a stable fixed point, and the macroscopic observable Ψ = Φ
satisfies LRT as shown in Figure 4.16. The variation about Φ = Φ̄ can be shown
to converge to the limiting distribution of the mean zero stochastic process ζn with
autocovariance (4.36). We will see later in Section 4.7.3 that for larger values of ε,
the mean field exhibits nontrivial chaotic dynamics, violating LRT.

4.7.2.2. The microscopic subsystems do not satisfy LRT but are appropriately
heterogeneous. We consider a mean field coupled system of LRT-violating modified
logistic maps (4.7). We choose the external perturbation g(q) = 4(q(1 − q))2 as in
(4.15), and mean-field coupling

h(q,Φ) = (1− 2q)q(1− q) tanh Φ.(4.44)

The effect of g and h on the map are plotted in Figure 4.2. We remark that a
naive choice of mean field coupling with h(q,Φ) = Φn would just lead back to the

standard logistic map for some p
(j)
n = αq

(j)
n +β with a modified logistic map parameter

a(j) = a(j)(Φn). The mean field Φn is given by (4.3) and is constructed using

φ(q) = 4T5(2q − 1) + 1,

where T5(x) = 16x5 − 20x3 + 5x is the 5th Chebyshev polynomial, which oscillates
between ±1 in the domain (see Figure 4.2(b)).

We draw the parameters a(j) of the logistic map from the smooth raised-cosine
distribution on [3.7, 3.8] (4.8). In this case, the macroscopic dynamics Φn converges
to a stable fixed point Φn → Φ̄ for ε < −0.075. The associated linear response
is clearly visible in Figure 4.17. In fact, as discussed in Section 4.5.2.2, nonlinear
third order response holds for the three times continuously differentiable raised cosine
distribution (4.8). We remark that for ε > −0.075 the mean field exhibits nontrivial
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Figure 4.16. (a) Response term EεΦ for the uniformly expanding
map (4.43) with mean field coupling under trivial dynamics; (b) Dif-
ference |EεΦ− Φ̄ε| for ε = 15, exhibiting O(1/M) convergence.

dynamics in the thermodynamic limit, and we observe a breakdown of LRT to be
discussed in Section 4.7.3.

In Figure 4.18 we see very slow convergence of the mean EεΨ to its limiting value:
in particular, it is slower than the O(1/M) rate for uniformly expanding dynamics
leading to trivial dynamics (cf Figure 4.16), and seemingly slower still than the

O(1/
√
M) rate that we might expect from sampling errors of η. Although smooth

families of microscopic logistic maps allow for linear response of macroscopic observ-
ables to constant-in-time perturbations as discussed in Section 4.5.2.2, and in fact
numerical experiments (not shown) suggest that the susceptibility function χ has
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Figure 4.17. Response EεΨ for the modified logistic map (4.7) with
mean field coupling (4.44). The parameters a(j) are drawn from the
raised-cosine distribution (4.8). Error bars were estimated from 10
realisations of 105 iterates, differing in the initial conditions of the
heat bath, and are not visible.

summable decay, they do not appear to have linear response with respect to stochas-
tic perturbations. We argue that this counter-intuitive lack of linear response with
respect to the (self-generated) stochastic perturbations arises from the noise-induced
destruction of narrow periodic windows that have “extreme” values of Ea,εψ(q) com-
pared with the neighbouring, more stochastically stable chaotic parameters. Thus at
these periodic parameter values the macroscopic dynamics exhibits a disproportion-
ately large response to the introduction of noise. We illustrate this in Figure 4.19,
where we plot the response of a single logistic map with additive noise of variance
σ2. Here the noise models the finite size effects of the heat bath with σ ∼ 1/

√
M .

One sees clearly that periodic windows can be destroyed by very small amounts of
noise (σ = 10−6). One also sees that associated with the destruction of these periodic
windows is a very large response in the average Eaψ.
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The statistical properties of the macroscopic observable for dynamics of a finite
size heat bath can be modelled again by a surrogate system. Writing

Φn = Φ̄ε,M +
1√
M
ζn,

where ζn is the Gaussian central limit theorem correction term to Φn ≡ Φ̄ε,∞ with
covariance given by (4.35). The macroscopic dynamics (4.41) then becomes

0 = EF (Φ̄ε,M +
1√
M
ζn−1, Φ̄

ε,M +
1√
M
ζn−2, . . .)− Φ̄ε,M .

The response EεΨ for this surrogate macroscopic dynamics is shown in Figure 4.18,
labelled CLT approximation, and is barely distinguishable from the response of the
original macroscopic dynamics.

−0.200 −0.175 −0.150 −0.125 −0.100

ε

0.000

0.001

0.002

0.003

0.004

Eε
Ψ
−
〈E
ε
Ψ
〉 M

=
∞

M =∞
CLT approximations
M = 30,000

M = 300,000

M = 10,000,000

Figure 4.18. Difference between the response EεΨ for finite M and
for the thermodynamic limit for the modified logistic map (4.7) with
mean field coupling (4.44). The parameters a(j) of the logistic map
are drawn from the raised-cosine distribution (4.8). For each value
of M the response of the corresponding central limit theorem (CLT)
approximation using noise estimated from M = 106 was used. Error
bars were estimated from 10 realisations of 105 iterates, differing in the
initial conditions of the heat bath, and are not visible.
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Figure 4.19. Response Eaψ for a single stochastically driven logistic
map qn+1 = aqn(1 − qn) + σξn, where ξn is i.i.d. Gaussian noise and
the observable ψ(q) = q. The response is recorded at increments of
da = 10−8, thus for small σ only a subset of narrow periodic windows
are captured.

4.7.2.3. The microscopic subsystems do not satisfy LRT and are not appropriately
heterogeneous. For a non-smooth distribution of the logistic map parameters a(j),
namely the discrete distribution (4.9), the dynamics of Section 4.7.2.2 also converges
to a stable fixed point Φ̄ε,M for ε < −0.075. The mean field Φ̄ε,M varies smoothly
with respect to ε for almost all ε, but EεΨ experiences saddle node bifurcations on
increasingly dense sets as M approaches the thermodynamic limit M →∞. This is
illustrated in Figure 4.20. Looking at (4.42), we see that linear response is violated
where the fixed point loses stability and ∂F (Φ̄ε, Φ̄ε, · · · )/∂Φ̄ε = R(1) = 1.

For finite M , the macroscopic equation can be modelled as Φε,M
n = Φ̄ε,M+ζn/

√
M

where

Φ̄ε,M = EεF (Φε,M
n ,Φε,M

n , · · · ).
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The derivatives ∂EεF (Φε
n,Φ

ε
n, · · · )/∂Φ̄ε are well defined and thus for appropriate bath

sizes M we observe again approximate LRT for all practical purposes. However, as
M → ∞, saddle-node bifurcations become visible as a result of the diminishing
effect of stability-providing noise, and in the thermodynamic limit we observe failure
of LRT (see inset in Figure 4.20). The failure of linear response through saddle-
node bifurcations is accompanied by EεΨ experiencing multistability, with multiple
very close stable equilibria, demonstrated in Figure 4.201 . This can be understood
as coming from the fact that EεF (Φε,M

n ,Φε,M
n , · · · ) is essentially a smoothed out

version of the rough logistic map response EεF (Φ̄, Φ̄, · · · ): as M →∞ the smoothing
decreases, leading to increasing numbers of roots of the equation.

4.7.3. Nontrivial dynamics of the mean field observable. The mean field
Φ or any macroscopic observable Ψ may itself exhibit non-trivial dynamics of varying
complexity in the thermodynamic limit M = ∞. The overall response behaviour is
then determined by the macroscopic dynamics rather than by the properties of the
microscopic subsystems. We show the emergence of non-trivial chaotic macroscopic
dynamics which violates LRT. The first one, surprisingly, involves a heat bath which
evolves under uniformly expanding dynamics when uncoupled, and the second one
involves microscopic dynamics that individually violate LRT.

To generate emergent nontrivial macroscopic dynamics of the mean field, we
again use the uniformly expanding map (4.43) with the even Lebesgue-measure zero
coupling function φ(q) = −23

30
+ 7

2
q2 − 2q4 to generate the mean field Φn. We show

in Figure 4.21 the map and its invariant measure, where the dynamics in the ther-
modynamic limit M = ∞ was computed using the spectral method presented in
Chapter 2, and specifically with the numerical package Poltergeist (see Appendix D2
for more details). The map and coupling function Kn are judiciously chosen to yield
nontrivial dynamics for the mean field Φn, mediating dynamics akin to a unimodal
map for Φn.

The map is constructed such that when the q(j) are approximately evenly dis-
tributed, Φn ≈ 0, causing an extreme value Kn ≈ tanh(−2) ≈ −0.96: this pushes
the q(j) strongly towards q = −1 which leads to a larger value Φn+1, concentrating
around Φ = 2/ε. For these values of Φn+1, Kn+1 ≈ 0, and thus in the next step
the q(j) are spread more evenly over the interval [−1, 1], mapping Φn+1 back around
zero. The concentration in the first step provides the folding and the sensitivity of
Kn to small changes in Φn for large ε provides the stretching necessary for chaotic
dynamics.

1When randomly searching for equilibria it is important to make sure that, as well as randomly

initialising the q
(j)
0 , the distribution from which the q

(j)
0 are sampled is also randomly initialised,

as up to an error term of O(M−1/2) the macroscopic dynamics are deterministic functions of the
initial measures of the microscopic variables µa

0 .
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Figure 4.20. Response EεΨ, including multistability, for the modi-
fied logistic map (4.7) with mean field coupling (4.44). The parameters
a(j) are drawn from the discrete distribution (4.9). Error bars were
estimated from 200 realisations differing in the initial conditions (in-
cluding initialising distributions) of the heat bath, and are not visible.
The inset illustrates the occurrence of saddle-node bifurcations in the
infinite-dimensional limit.

In Figure 4.22 we show the map Φn+1 = F (Φn,Φn−1, . . .) generated by the dy-
namical system (4.43) in the thermodynamic limit M =∞ for ε = 30. The dynamics
is clearly chaotic with the leading Lyapunov exponent λ1 = 0.18 > 0 (λ2 = −0.43 and
λ3 = −0.81). The dynamics of the macroscopic observable Ψn = Φn exhibits a com-
plex bifurcation cascade upon varying ε, depicted in Figure 4.22. For ε ≤ 18.4159,
the macroscopic dynamics has a stable fixed point; upon increasing the perturbation
ε a period-doubling cascade leads to chaotic, apparently unimodal-like, dynamics
intermingled with periodic windows for values of ε > 26.1649. One can clearly see
dark scars in the bifurcation diagram in the chaotic region of ε > 26.1649. This is
reminiscent of the logistic map (Collet and Eckmann, 2007) where the scars denote
narrow intervals of 〈Φn〉 with increased probability, corresponding to large spikes in
the invariant measure, which (unlike small spikes) vary smoothly with respect to
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Figure 4.21. (a) Plot of the uniformly expanding map (4.43) and (b)
its invariant measure for various values of Kn ≡ K.

perturbations ε.
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Figure 4.22. (a): 2D projection of the attractor onto delay coordi-
nates of the macroscopic map Φn+1 = F (Φn,Φn−1, . . .) generated by
the uniformly expanding map (4.43) for ε = 30. The system has two
periodic components separated by a gap around the unstable fixed
point Φn−k ≡ 0.51258. (b): Bifurcation diagram of the map (4.43)
showing period doubling bifurcations and chaotic dynamics.
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Figure 4.23. Response EεΨ of the uniformly expanding map (4.43)
for finite M response, showing convergence to the thermodynamic limit
M → ∞. The black box shows the region which is magnified on the
right. Error bars were estimated from 10 realisations differing in the
initial conditions of the heat bath, and are not visible.

In Figure 4.23 we show the linear response term EεΨ of the uniformly expanding
map (4.43) for several finite M heat bath sizes and for the thermodynamic limit
M =∞ for ε ∈ [27.5, 30], clearly illustrating the breakdown of LRT. We recall that
the same map exhibits LRT for small values of ε, where the macroscopic mean field
converges to a stable fixed point, for the same parameters (cf. Figure 4.16).

For curiosity and to further study the effect of the self-generated noise on the
LRT behaviour of macroscopic observables in the mean field coupled case, we pro-
vide another example of nontrivial chaotic mean field dynamics which violates LRT.
We revisit the mean field coupled dynamics of microscopic subsystems which do
not satisfy LRT discussed in Section 4.7.2.2, and consider the modified logistic
map (4.7) with mean field coupling (4.44) where the parameters a(j) of the logis-
tic map are drawn from the smooth raised-cosine distribution (4.8). We recall that
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Figure 4.24. Top: Time series of the macroscopic map Φn+1 =
F (Φn,Φn−1, . . .) generated by the modified logistic map (4.7) with
mean field coupling (4.44) for ε = 0, approximated by a finite en-
semble of size M = 107. The red dotted line shows an unstable fixed
point of the system. The parameters a(j) are drawn from the raised-
cosine distribution (4.8). Bottom: Projection onto delay coordinates
of the attractor and dynamics of the same map. The red dot near the
centre of the attractor denotes an unstable fixed point of the system.
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for ε ≈ [−0.2,−0.075] the macroscopic dynamics (4.40) was trivial and Eεψ satis-
fies LRT (cf. Figure 4.17). The stable fixed point loses stability at ε ≈ −0.075
through a saddle-node bifurcation (not shown), from which emanates a stable limit
cycle centred around an unstable fixed point with EΨ ≈ 0.615: as ε increases, this
bifurcates to chaos and for a wide range of values ε > −0.075 nontrivial chaotic
macroscopic dynamics of (4.40) is observed. Figure 4.24 illustrates the macroscopic
dynamics for ε = 0, which exhibit Shilnikov-type chaos. The associated response
term EεΨ was shown in Figure 4.17 for several finite heat bath sizes M and for the
thermodynamic limit M = ∞ for ε ∈ [−0.2, 0], clearly illustrating the transition to
LRT violating macroscopic dynamics around ε = −0.075. Note that the finite size
response is smoothed due to the self-generated noise process ζn.

The above examples of high-dimensional systems, which appear to exhibit non-
uniformly hyperbolic chaotic collective behaviour, are in disagreement with the of-
ten invoked assumption that macroscopic observables of high-dimensional systems
obey linear response. This is the more surprising as the non-uniformly hyperbolic
chaotic behaviour is robust (modulo periodic windows) with respect to the external
perturbation, different choices of the coupling function, different weightings in the
coupling, etc. In the next section, we establish directly that the system is indeed
non-hyperbolic, and that the non-hyperbolicity persists under generic perturbations,
through finding a homoclinic tangency.

4.8. A homoclinic tangency in the macroscopic dynamics of a mean-field
coupled system

In this section we show that, unlike Anosov systems, there are families of mean-
field coupled systems that do not obey linear response theory. While the chaotic
hypothesis cannot be applied to linear response (as discussed in Section 4.1), we
will demonstrate in this section an actual violation of the chaotic hypothesis itself
in one of these systems, in the sense that the limiting macroscopic dynamics are
non-Anosov (i.e. non-uniformly hyperbolic). In particular we show, numerically,
that the dynamics involve a homoclinic tangency (see Section 4.8.1). The aim of this
is to show that the system defined in Section 4.7.2.1 is a high-dimensional example
of a system with non-hyperbolic macroscopic dynamics, thus violating the chaotic
hypothesis of Gallavotti and Cohen (1995a,b) (see Section 4.1).

This section is structured as follows. In Section 4.8.1 we will properly define
relevant geometrical objects, including homoclinic tangencies; in Section 4.8.2 we
describe the thermodynamic limit of the mean-field coupled system; in Section 4.8.3
we outline the numerical methods used to find the homoclinic tangency, which finally
we present in Section 4.8.4.
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4.8.1. Anosov maps and homoclinic tangencies. Suppose that for M a
subset of a Banach space, one has a map H : M → M with x ∈ M . The stable
manifold of x is the set of points whose forward orbits converge to the forward orbit
of x:

Vsx = {y ∈M : lim
n→∞

dM(Hnx,Hny) = 0},
where dM is the metric on M .

Similarly, the unstable manifold of x is the set of points with backward orbits
converging to that of x:

Vux = {y ∈M : lim
n→∞

dM(H−nx,H−ny) = 0}.

We can extend these notions of stable and unstable manifolds onto the tangent
bundles. The stable subspace at x, Es

x, is the set of tangent vectors at x which
converge to zero under the action of T :

Es
x = {v ∈ TxM : lim

n→∞
DxH

n v = 0},

where DxH is the Jacobian of H. Similarly the unstable subspace at x is given as

Eu
x = {v ∈ TxM : lim

n→∞
DxH

−n v = 0}.

These are respectively tangent to stable and unstable manifolds (Bowen, 2008).
If, as in our situation, H is not a diffeomorphism, then unstable manifolds and

subspaces are ill-defined. However, it is possible to define the unstable manifold (resp.
subspace) of a backward orbit (x−n)n∈N. If x∗ is a fixed point then for convenience
we will define Vux∗ (resp. Eux∗) to be the unstable manifold (resp. subspace) of the
orbit x−n ≡ x∗.

If x is a fixed point, then Vsx are the set of points with orbits converging to x,
and Vux are the set of points with orbits emanating from x; furthermore, provided
that the Jacobian DxH is hyperbolic, Es

x is the span of the stable eigenspaces and
Eu
x the span of the unstable eigenspaces.

A separation between unstable and stable subspaces are key properties of most
well-behaved chaotic systems. A system is uniformly hyperbolic if at every point the
tangent space allows for a splitting TxM = Es

x ⊕ Eu
x , and there are constants c > 0,

λ < 1 such that for all x ∈M ,

‖DxH
n
|Esx‖ ≤ cλn,

‖DxH
−n
|Eux‖ ≤ cλn.

Uniformly hyperbolic diffeomorphisms with compact, transitive attractors are known
as Anosov diffeomorphisms; systems that are Anosov on the attractor are known as
Axiom A diffeomorphisms (Bowen, 2008).
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While Axiom A diffeomorphisms form a fairly restricted subclass of chaotic dy-
namical systems,they are widely cited as being representative of the large-scale dy-
namics of many physical chaotic systems Gritsun (2010); Lucarini and Sarno (2011);
Nijsse et al. (2019) under the so-called chaotic hypothesis of Gallavotti and Cohen
(see Section 4.1).

One generic mechanism to generate non-hyperbolic dynamics is via homoclinic
tangencies. A homoclinic tangency in a map H : M 	 is a fixed point p of H together
with a different point q ∈ Vsp ∩ Vup such that Vsp = Vsq and Vup = Vuq are tangent at q.
This property means that the tangent spaces Es

q and Eu
q have non-trivial intersection,

implying non-hyperbolicity of the given map H.

4.8.2. Mean-field system. We will consider the mean-field limit system whose
microscopic variables are uniformly expanding maps, which was introduced in Sec-
tion 4.7.2.1. Recall that the system is defined on q ∈ [−1, 1]M as

qn+1 =
d(qn) +Kn

(
1−

√
0.03(1− 0.97K2

n) + 0.97(d(qn) +Kn)2
)

1− 0.97K2
n

,

Φn =
1

M

M∑

j=1

φ(q(j)
n ),

where Kn = tanh(εΦn − 2), d(q) = 2q − sign q and

φ(q) := −23
30

+ 7
2
q2 − 2q4.

The maps f and the coupling function φ are plotted in Figure 4.21.
In the thermodynamic limit we may reduce to macroscopic dynamics (c.f. Sec-

tion 4.7.1): here instead of writing this as a delay system in the coupling variable
Φn as in (4.40)), we write explicitly the dynamics of the microscopic variable distri-
butions µn

µn+1 = Lε;Φnµn,

Φn =

∫ 1

−1

φµn dq,

where Lε;Φ is the transfer operator of fε,Φ and we interpret the µn as densities with
respect to Lebesgue. In particular, we can write the macroscopic dynamics as a map
on probability distributions

(4.45) µn+1 = Gε[µn] := Lε;ϕ[µn]µn,

where the functional ϕ[µ] =
∫
φµ dq. We will restrict the domain of G to be (appro-

priately smooth) functions of total integral equal to one, i.e. the µ must be densities
of probablility measures.
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The transfer operators Lε;Φn are well-defined as endomorphisms on a range of
Banach spaces, including BV ([−1, 1]) and Hardy spaces (Lasota and Yorke, 1973;
Bandtlow and Jenkinson, 2008). Because these systems have uniformly bounded
uniform expansion and distortion bounds, many relevant quantities of these maps
and their cocycles, including the norm, spectral gap and the gap between Lyapunov
exponents of the cocycle are uniformly bounded (Baladi et al., 1996; Bandtlow and
Jenkinson, 2008; Korepanov, 2015).

4.8.3. Finding the homoclinic tangency in the mean-field coupled sys-
tem. To find the homoclinic tangency we will need to compute stable and unstable
directions in the system, which entails computing Jacobians. Our macroscopic sys-
tem (4.45) has Jacobian

(4.46) DµGε = Lε;ϕ[µ] −
d

dq
(Xε;ϕ[µ]Gε(µ))ϕ,

where

Xε;Φ ◦ fε;Φ :=
∂

∂Φ
fε;Φ.

Thus, the Jacobian is the sum of the transfer operator Lε;ϕ[µ] and a rank-one operator.
Since the fε,Φ are in class UNP with uniform distortion bound (ADδ) as defined in

Section 2.2.1, we know from Chapter 2 that we can use an exponentially convergent
Chebyshev Galerkin method to approximate the transfer operator. If µ is analytic,
then the rank-one operator is bounded for any reasonable choices of function space,
and its image lies in a space of analytic functions. Hence, we will be able to approxi-
mate the rank-one operator exponentially closely too, and so we can obtain not only
a close approximation of the dynamics of Gε but also those of its Jacobian. The
same arguments imply that we can closely approximate most other relevant smooth
properties such as response to perturbations and so on, although we do not give any
formal proof.

To find a homoclinic tangency, we first need to find a fixed point µ∗ε of the
macroscopic dynamics Gε for given ε. If we define µstatic

ε,Φ to be the acim of fε,Φ, then

µ∗ε = µstatic
ε,Φ∗ε

where Φ∗ε solves

ϕ[µstatic
ε,Φ∗ε

]− Φ∗ε = 0.

For ε ≈ 30 there is a robust fixed point around Φ∗ε ≈ 0.051, which can be accurately
estimated using Chebyshev transfer operator methods, for example in Poltergeist
(Wormell, 2017).

We can then determine the stable and unstable directions of the fixed point by
numerically estimating the spectrum of the fixed point’s Jacobian Dµ∗εGε using the
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Figure 4.25. Spectrum of the Jacobian of Gε at the fixed point for
ε = 30, obtained using Poltergeist.jl (Wormell, 2017).

Chebyshev Galerkin methods. For ε around 30 we find that when we restrict to
perturbations of zero total integral (as the ) the Jacobian is hyperbolic, with one
negative unstable eigenvalue λuε and the leading stable eigenvalues being a complex
pair (see Figure 4.25).

The unstable subspace is therefore the span of the leading right eigenvector vuε
of Dµ∗εGε, and the stable subspace is the kernel of the left eigendistribution wsε of
Dµ∗εGε. Both of these objects can be accurately estimated by Chebyshev Galerkin
transfer operator methods, with the convergence of wsε occuring in a dual space.

We can use this to compute a local parametrisation of the unstable manifold
Vuε := Vuµ∗ε via a parameter a ∈ R:

(4.47) Vuε (a) = µ∗ε + vuε a+
1

2
hεa

2 +O(a3),

where

hε = ((λuε )
2 id−Dµ∗εGε)

−1Hessµ∗εGε[v
u
ε , v

u
ε ],

such that

Vuε (λuεa) = Gε(Vuε (a)).

Thus, for any a ∈ R, {Vuε ((λuε )
ma) : m ∈ Z} is an orbit originating from µ∗ε.
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We now describe how to find a homoclinic tangency. If our orbit is to be a
homoclinic orbit, then we need that

(4.48) lim
m→∞

Vuε ((λuε )
ma)− µ∗ε = 0.

If this homoclinic orbit is also to have a tangency between stable and unstable di-
rections, we need additionally (since Vuε is also the unstable manifold of Vuε (a)’s
backward orbit out of the fixed point) that

(4.49) lim
m→∞

d

da
Vuε ((λuε )

ma) = 0.

which means for the homoclinic orbit that d
da
Vuε ((λuε )

ma) must become parallel with
the stable subspace at the fixed point, and so

lim
m→∞

wsεVuε ((λuε )
ma) = 0.

There are two parameters to vary to find a homoclinic tangency: the element
of the orbit a and the parameter value ε. While it may seem natural to find points
Vuε (ahomoclinic(ε)) on homoclinic orbits for each ε and vary ε to obtain a stable-unstable
manifold tangency, this is problematic as ahomoclinic(ε) has a fold singularity at the
homoclinic tangency. Instead, we first found values a(ε) such that d

da
Vuε ((λuε )

ma) lies
in the kernel of wsε for some large m (i.e. find a “tangency”), and then varied ε to
obtain a homoclinic orbit.

4.8.4. Results. We estimated an external parameter ε = εht that manifested a
homoclinic tangency and a point on the homoclinic orbit Vuε (aht) to be

εht = 30.06183139229653

aht = 7.027598895378105× 10−5,

where the fixed point’s Jacobian’s unstable eigenfunction vuε is normalised so that its
first Chebyshev coefficient is positive and the `2 norm of its Chebyshev coefficients
is 1. We obtained a good guess of a homoclinic orbit via random search, and then
applied a bisection algorithm to obtain the values (aht, εht). Again, we used our
implementation of the Chebyshev Galerkin transfer operator methods in Poltergeist.jl
for computation (Wormell, 2017).

The homoclinic orbit is plotted in a projection to mean-field delay coordinates in
Figure 4.26. In Figure 4.27 are plotted norms of the distance from the homoclinic
orbit and of unstable tangent vector under the action of the Jacobian, confirming
the limits (4.48-4.49) constitutive of a homoclinic tangency. In our numerical results
these norms decay over the orbit by around seven decimal digits from their maximum
value: this is around half of the number of digits of accuracy (≈ 13) available using
the Chebyshev methods at double floating point accuracy, a result of the rather
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Figure 4.26. Plot of the homoclinic tangency (red to blue) for ε = εht

at two different scales. The attractor is plotted in black and the fixed
point in green. At bottom, the unstable manifold Vuε is locally plotted
around each point.
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Figure 4.27. In dots, the H1 norm of the distance from the homo-
clinic orbit to the fixed point, as in (4.48). In crosses, the H1 norm of
the unstable tangent vector iterated under G, as in (4.49).

primitive shooting continuation method used. This method of continuation attempts
to choose the parameter a so as to “hit” the saddle fixed point µ∗ε; numerical round-off
errors are then magnified by expansion in the unstable direction, leading to reduced
accuracy. However, because the relevant parameters and geometry in the system
are O(1) (c.f. Figures 4.22(b) and 4.26), our results are clear-cut evidence for a
homoclinic tangency at this parameter value. This accuracy could be improved
through the use of extended precision floating point arithmetic and/or through a
continuation method based on boundary-value solutions.

Finally, we give numerical evidence that the fixed point actually lies on the at-
tractor in Figure 4.28, and we note that the dynamics at εht are chaotic with leading
Lyapunov exponent λ1 ≈ 0.199 > 0. Because the attractor contains the fixed point
and the system is chaotic (so cannot be confined to the stable manifold of the fixed
point), the attractor must also contain the unstable manifold of the fixed point and
thus the homoclinic tangency. As a result, we can conclude that the system is
non-hyperbolic and thus not consistent with the chaotic hypothesis as introduced in
Section 4.1.

Furthermore, because non-hyperbolic maps are not guaranteed to have linear
response, and furthermore because homoclinic tangencies cause poor behaviour of
the map under perturbation—for example, structural instability and the emergence
of an infinite number of sinks under generic perturbations (Palis et al., 1995)—this
failure of non-hyperbolicity is likely behind the failure of linear response observed in
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Figure 4.28. In blue, a histogram of L2 distances from the fixed point
µ∗ε of a time series of iterates of Gε0ht. A time series was used containing
400, 000 iterates that had L2 distance from µ∗εht

of less than 0.003. The
observed density is consistent with a local correlation dimension of
around 1.6 at the fixed point (orange line).

Section 4.7.3 (c.f. Figure 4.17).

To make the computation of the homoclinic tangency strictly rigorous, two clear
theoretical challenges arise. The first is to rigorously validate the numerical findings:
while there is good reason to believe that our use of Chebyshev methods here is
justified, much of the theoretical work has yet to be done, in particular in bounding
convergence of the spectral data of the Jacobian DG (see 4.45-4.46) and obtaining
rigorous bounds on local approximations of the stable and unstable manifolds of
the fixed points. The second is to demonstrate that comparable behaviour holds
around a homoclinic tangency in this transfer operator setting as in finite dimensions.
Although transfer operators are non-invertible and highly non-normal, in appropriate
Hardy spaces the transfer operator is compact with good control of approximation
numbers (Bandtlow and Jenkinson, 2008): this may provide an opening for analysis.

4.9. Discussion

In this chapter, we have established conditions under which macroscopic mean
field observables enjoy linear response. We considered three scenarios: macroscopic
observables of an uncoupled collection of microscopic subunits, observables of macro-
scopic distinguished variables driven by an uncoupled microscopic collection,as well



4.9. Discussion 121

as macroscopic observables of microscopic subunits which are coupled via their mean
field. We found that linear response is possible even in the case when the microscopic
systems individually violate LRT, provided the microscopic dynamics is heteroge-
neous with parameters drawn from a sufficiently smooth distribution. We also found
that for back-coupled systems of finite size, LRT (for small enough perturbations)
is expected for any kind of microscopic dynamics, independent of the smoothness
of ν(a): this can be understood as the result of emergent, self-generated stochastic
effects. We further established that in the thermodynamic limit of infinite M , the
mean field dynamics of a self-coupled system can exhibit attracting dynamics that
appears non-uniformly hyperbolic and certainly fails to have LRT, even when the
microscopic subunits are individually uniformly expanding; this presents a counter
example to the widely believed hypothesis that macroscopic observables of high-
dimensional systems typically obey linear response.

Furthermore, we have found a numerical example of a chaotic system whose
macroscopic dynamics in the thermodynamic limit has homoclinic tangencies and
are thus non-hyperbolic. This violates the chaotic hypothesis of Gallavotti-Cohen
as formulated in Gallavotti (2019), which posits that macroscopic dynamics should
evolve as if they were hyperbolic. That said, what is more commonly claimed is that
“typical” dynamics are hyperbolic, and we do not claim that these mean-field coupled
systems (or any mean-field coupled systems) are necessarily typical complex systems.
Certainly many chaotic systems that naturally occur tend to be locally rather than
globally coupled, which would mean the kind of central limit theorem-type noise as
discussed in the previous section would persist in the thermodynamic limit, and thus
these systems should obey LRT and have many of the desirable statistical properties
associated with stochastic dynamics.

Our results rely on the existence of statistical limit laws such as the central
limit theorem. These are proved for strongly chaotic systems, and in particular for
uniformly expanding maps as well as for smooth unimodal maps. We follow here
Gottwald and Melbourne (2014) and assume that typical dynamical systems are
strongly chaotic and hence enjoy good statistical properties, so that our results carry
over to typical dynamical microscopic systems. To ensure the existence of the central
limit theorem and the convergence of the deviations ζn to a Gaussian process with
decay of correlations, we require the observables ψ(q) to be at least Hölder continuous
and the external forcing ε to be such that the perturbed system is mixing.

We presented here results for mean field observables Ψ of the form (4.2). We re-
mark that our results carry over for more general (e.g. weighted) mean field variables
provided those weights are sufficiently smoothly distributed, and indeed we expect
broadly similar results for more general “macroscopic” observables.
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To reduce the complexity of expression we have enforced mixing dynamics, with
no chaotic synchronisation, for example by including the hidden r-dynamics in (4.7).
It would be interesting to study the case when the microscopic dynamics is not re-
stricted in this way, for example if periodic dynamics were allowed. We have only
discussed the existence of LRT and have not considered fluctuation-dissipation for-
mulae to provide a compact analytical formula for the response term. This may
require treatment of the non-Markovian dynamics of the macroscopic variable as
well as the interplay of the perturbed microscopic dynamics and the macroscopic dy-
namics, the latter having been studied in the context of slow-fast systems (Abramov,
2010).

We have corroborated our findings with detailed numerical simulations and have
provided several heuristic arguments based on statistical limit laws: we hope these
arguments can be made rigorous. We remark that in the case of uncoupled systems,
rather than averaging over the heat bath, one may express the invariant measures µ(aj

as an infinite sum over the systems’ unstable periodic orbits (UPOs) (Ruelle, 2004;
Pollicott, 1986; Cvitanovic and Eckhardt, 1991; Eckhardt and Grossmann, 1994).
This approach may be more effective when trying to rigorously justify the conver-
gence of the deviations ζn to a Gaussian process. It seems likely also possible to apply
ideas from a recent argument by Ruelle for linear response in non-hyperbolic sys-
tems, based on the statistical smearing-out of singularities in the physical measures
(Ruelle, 2018).



Chapter 5

Conclusion

This thesis is concerned with the statistical behaviour of simple model systems. It
speaks to two fundamental questions: how we can study chaotic model systems nu-
merically, and to what extent we can use results from simple model systems to extend
our knowledge of general chaotic dynamics.

In the first part of the thesis, we applied ourselves to the former question through
the development of highly accurate numerics for Markovian uniformly expanding and
intermittent one-dimensional systems. The numerical methods were highly accurate
as well as being applicable to a variety of problems, while having low computa-
tional overhead. We accomplished this through discretisation of appropriate transfer
operators. Key to the fast convergence of the transfer operator method was the
discretisations used: we chose projections onto orthogonal spectral basis functions
(Fourier bases and Chebyshev polynomials). Using these discretisations we were
able to make use of the smooth structure of the underlying dynamical system, which
facilitated fast convergence of the numerical estimates. The spectral discretisation
also facilitates the estimation of statistical properties such as linear response where
higher regularity function spaces are required. At the point of these methods’ de-
velopment, transfer operator numerics using these bases were new in the literature,
although they have since been studied in two-dimensional systems Crimmins and
Froyland (2019a); Slipantschuk et al. (2019).

The efficiency of the spectral transfer operator methods are manifested in the
publically available software package Poltergeist: we have seen that it can compute
acims of analytic uniformly-expanding systems to 13 decimal places of accuracy, in
only a small fraction of a second. While implementations of Ulam’s method have
existed for a long time (Dellnitz et al., 2001) they are subject to the usual limitations
of Ulam’s method, in particular slow convergence. To obtain accuracy of up to 13
decimal places is impossible using Ulam’s method given current computational re-
sources. This level of accuracy allows one to effectively perform complex or difficult
numerical work: for example, numerical continuation without boundary value solvers
necessitates a loss of a large fraction of the number of digits of accuracy: to obtain a
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credible level of accuracy in the output it is therefore necessary to be able to numer-
ically evaluate the system to a high degree of accuracy. Poltergeist also incorporates
the user-friendliness of modern numerical function approximation packages (Driscoll
et al., 2014; Olver, 2019): optimised estimates of relevant statistical properties it is
necessary only to input the map and the domains of its branches.

Furthermore, because the conceptual basis of the spectral methods developed in
this thesis is simply the discretisation of linear-algebraic problems, the same ideas
that were treated rigorously in Chapter 2 may be applied to other questions that can
be posed in terms of transfer operators. A productive illustration of this was given in
Section 4.7, where we probed the dynamics and response theory of a high-dimensional
system that could be expressed in terms of the transfer operators of a 1D map,
and then in Section 4.8 where we calculated a homoclinic tangency via numerical
continuation. Continuation as applied in Section 4.8 is a difficult numerical problem
(Krauskopf et al., 2007), and it is due to the Chebyshev methods’ high accuracy and
good regularity properties that it was possible to obtain convincing evidence of a
homoclinic tangency in this system. So while the choice of a globally coupled system
allowed for the mean-field reduction, the finding of a provable violation of the chaotic
hypothesis was facilitated by our numerical techniques.

For intermittent maps, the other component, apart from transfer operator meth-
ods, that enabled fast convergence of estimates of statistical properties, was the
efficient numerical evaluation of induced maps and their associated transfer oper-
ators. Key to this was the Abel function, which allowed the induced maps to be
expressed in close form. Although Abel functions have been studied in the statistical
branching process literature, they have not hitherto been applied to the study of
intermittent maps. Previously existing numerics were only effective for small values
α . 0.4 (Murray, 2010; Galatolo and Nisoli, 2014), and failed completely in the
infinite ergodic setting α ≥ 1. Hence, in particular our numerics furnish the ability
to numerically explore infinite ergodic theory.

Thus, as illustrated by the homoclinic tangency, the methods we presented in
the first part of the thesis enable theoretical advances that would have been difficult
to come to or visualise by hand and to which previously existing numerics were not
appliable.

In Chapter 4 we then sought to understand the question of the relationship be-
tween the statistical properties of more complex, high-dimensional chaotic systems
and low-dimensional systems, largely in the field of linear response theory. Because
higher dimensional systems are complicated and very few things may be proved about
them, we took a less rigorous approach: our work was based on statistical reduc-
tions that were numerically justified rather then strictly rigorous. We started with
large collections of simple, well-understood microscopic systems and coupled them
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together in some structurally very basic ways: in all-to-one (Section 4.6) and all-to-
all (Section 4.7) networks. We then investigated the dynamics and LRT properties
of these systems: to explore the effect of the systems’ microscopic LRT properties
on the macroscopic response, we considered variations of the models with different
microscopic constituents.

In this investigation we uncovered several new phenomena. One of these was the
collective structural stability to perturbations: out of an appropriately inhomoge-
neous collection of microscopic systems that were structurally unstable and violated
LRT, linear response emerged for the mean field. We also observed that moder-
ately sized mean fields of deterministic chaotic variables approximated stochastic
processes, to the extent that driving another system with such a mean field induced
linear response in that system. This effect was particularly striking in the case where
a finite sized system was self-coupled via a mean-field: regardless of their microscopic
constituents these, the macroscopic observables obeyed LRT. This aligns with recent
results on LRT for stochastic systems (Hairer and Majda, 2010).

These phenomena are largely due to the network structure of the systems, relying
on the mean-field reduction (which was possible due to the all-to-all coupling) rather
than emerging organically from the dynamics. While this may be to some extent
an artefact of the method of enquiry, in some sense these phenomena are therefore
intrinsically high-dimensional, and we must conclude that certain different factors
are at play in high-dimensional chaotic dynamics than in low-dimensional ones.

However, while distinguished variables driven by heat baths and globally coupled
systems are both natural first steps in understanding high-dimensional dynamics,
they cannot be seen as representative of many natural dissipative systems such as
the climate system, which has multiple spatial and time scales and where a lot of
interactions are local rather than global (Hasselmann, 1976; Palmer and Williams,
2010; Dijkstra, 2005). While our mean-field coupled thermodynamic limit system
behaved like a low-dimensional deterministic chaotic system, it may be an atypical
example because of its global structure. Because of the propensity in real systems for
local (i.e. low network degree) interactions, most high-dimensional chaotic systems
are likely more like stochastic systems than simple deterministic chaotic systems.
Consequently, LRT in macroscopic systems such as turbulent fluids and the Earth’s
climate may largely arise as a result of emergent stochastic effects.

It would therefore be interesting to study high-dimensional coupled chaotic sys-
tems with different network structures that better model real world systems. We
imagine that the phenomena we have studied in this work could be influential in
determining whether these systems satisfy LRT. We remark that the fundamental
assumption of such a study is that coupled networks are an effective model for com-
plex high dimensional chaotic systems (Tsonis et al., 2006; Donges et al., 2009).



Appendix A

Some results relevant for Chapter 2

A1. The relationship between uniform expansion and uniform
C-expansion

In Chapter 2 we stipulated that maps on non-periodic domains satisfy a so-called
uniform C-expansion condition rather than the usual uniform expansion condition.
Neither of these conditions imply the other: in fact it is not hard to construct
non-pathological examples of uniformly-expanding maps which are not uniformly
C-expanding (see Figure A.1).
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Figure A.1. In black, an example of a map f ∈ Uu
NP (λ = 0.98−1)

which is not uniformly C-expanding (λ̌ ≈ 0.763). Non-C-expanding
parts of f marked in mid grey. In light grey, lines of unit C-expansion
(i.e. curves ψ(x) for which (cos−1 ◦ψ ◦ cos)′ = ±1).

However in practice, maps in Uu
NP are generally also in UNP . For example, all

piecewise linear maps in Uu
NP lie in UNP . (In particular, if f is the k-tupling map,

the uniform C-expansion parameter for f is λ̌ =
√
k.) A map in Uu

NP typically fails
to be in UNP if the tangent to the graph points towards the sides of the graph’s plot.
This necessitates a kink in the map, so as to preserve the Markov structure. An
example of the situation is illustrated in Figure A.1.

126



A1. The relationship between uniform expansion and uniform C-expansion 127

However, if we consider only maps that are Markov with bounded distortion,
we find close connections between C-expansion and classical expansion. In fact, a
positive lower bound on one implies a positive lower bound on the other, which may
be seen by an adaptation of the proof of Theorem A.1 below. Importantly, uniformly
C-expanding maps eventually become uniformly expanding under iteration and vice
versa, according to the following theorem.

Theorem A.1. Suppose f ∈ Uu
NP (resp. f ∈ UNP ). Then there exists n∗ ∈ N such

that fn ∈ UNP (resp. Uu
NP ) for all n ≥ n∗. Each fn satisfies the same distortion

conditions as f , with possibly different constants.

Remark A.2. Since iterates of a map have an exponentially growing number of
branches, for computational purposes it may be more effective to simply compute a
conjugacy of a map which is C-expanding.

It is in fact possible to construct, for a map f ∈ Uu
NP (resp. UNP ), an analytic

diffeomorphism ηf such that fc = ηf ◦ f ◦ η−1
f ∈ UNP (resp. Uu

NP ).
Furthermore, if f satisfies (DDr) then so will fc, and if f satisfies (ADδ) for

some δ > 0 then there exists δ′ > 0 for which fc satisfies (ADδ′).

Thus, maps in Uu
NP and in UNP have the same dynamical properties and can

additionally be converted from one class to the other. We emphasise that the crucial
assumption here is bounded distortion.

We now prove the results stated above, beginning with Theorem A.1.

Proof of Theorem A.1. Suppose f ∈ Uu
NP with |f ′| > λ and distortion constant

C1. Then fn ∈ Uu
NP with |(fn)′| > λn and distortion constant bounded by C1

1−λ−n−1

1−λ−1

(Gouëzel, 2004a). Let us use the notation fn = g with branches Pι, ι ∈ In.
Suppose x ∈ Pι for some ι ∈ In. Then

1− |x|
| sgn(xg′(x))− g(x)| ≥

vιx(sgn(xg′(x)))− x
|g(vιx(sgn(xg′(x))))− g(x)| ,

and by the intermediate value theorem there exists w ∈ Pι such that

vιx(sgn(xg′(x)))− x
|g(vιx(sgn(xg′(x))))− g(x)| =

1

|g′(w)| .

Using Lemma A.3(a) we find that

1

|g′(w)| >
e−2C1

|g′(x)| ,
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and so for all x ∈ ∪ι∈IOι,
√

1− x2

1− (g(x))2
|g′(x)| ≥

√
1 + |x|

| sgn(xg′(x)) + g(x)|e
−2C1|g′(x)| ≥

√
1

2
e−2C1λn > 1

for n sufficiently large.
The map fn is full-branch Markov with bounded distortion, by the above satisfies

(CE), and by Lemma A.5 satisfies (P). Consequently, fn ∈ UNP .
Now, suppose f ∈ UNP and let n ∈ N+. For the remainder of this proof, we will use
subscript notation for forward iterates: xn = fn(x). We additionally call two points
x, y ∈ Λ n-companions if there exists a sequence (ιj)j=1,...,n such that xj−1, yj−1 ∈ Oιj
for j ≤ n.

Given x ∈ Λ, choose y, z such that x, y and z are n-companions, yn = −1 and
zn = 1. Then by the mean value theorem, there exists w between y and z such that

(A.1) |(fn)′(w)| = |zn − yn||z − y| ≥
2

π
λ̌n.

Now, since w lies between y and z, it is an n-companion of x, y and z. We will
therefore relate |(fn)′(w)| to |(fn)′(x)| using bounded distortion. We expand their
quotient out using the chain rule and rewrite:

|(fn)′(x)|
|(fn)′(w)| =

n∏

j=1

|f ′(xj−1)|
|f ′(wj−1)|

=
n∏

j=1

|v′ιj(xj)−1|
|v′ιj(wj)−1|

= e
∑n
j=1

(
log |v′ιj (wj)|−log |v′ιj (xj)|

)

≥ e
−
∑n
j=1

∣∣∣log |v′ιj (wj)|−log |v′ιj (xj)|
∣∣∣
.(A.2)

We then bound the summands using (DD1) and the fact that v′′ι /v
′
ι = (log |v′ι|)′:∣∣∣log |v′ιj(wj)| − log |v′ιj(xj)|

∣∣∣ ≤ C1|wj − xj| ≤ C1λ̌
j−nπ.

The sum in (A.2) can thus be collapsed to give

|(fn)′(x)|
|(fn)′(w)| ≥ e−

∑n
j=1 C1λ̌j−nπ > e−C1π(1−λ̌)−1

.

Combining this with (A.1) gives us that

|(fn)′(x)| ≥ e−C1π(1−λ̌)−1 2

π
λ̌n,
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which implies that fn is uniformly expanding for sufficiently large n. Since as before
fn satisfies all the non-expansion conditions to be in Uu

NP , we have that fn ∈ Uu
NP .
�

A2. Results on conditions (DD1) and (P)

In this appendix, we prove some properties possessed by maps in UNP used in
Chapter 2. We first give some “non-local” properties of the bounded distortion
condition (DD1), and then prove that (P) is preserved under iteration.

We first prove a lemma relating bounded distortion constants to bounds on deriva-
tives of the map. The properties summarised in Lemma A.3 are mostly standard,
but we improve the upper bound in part (b) from the exponentially large e2C1 to a
computationally more useful 1 + 2C1.

Lemma A.3. Suppose f : [−1, 1] → [−1, 1] is full-branch Markov with bounded
distortion. Suppose the distortion constant of f is C1. Then for all ι ∈ I:

(a) For all x,w ∈ [−1, 1],

e−2C1 ≤ |v
′
ι(x)|
|v′ι(w)| ≤ e2C1 .

(b) For all x ∈ [−1, 1],

e−2C1
|Oι|

2
≤ |v′ι(x)| ≤ (1 + 2C1)

|Oι|
2
.

Proof of Lemma A.3. Part (a) is a standard result (Gouëzel, 2004a; Korepanov
et al., 2016).

To prove (b), we have that as a result of the intermediate value theorem there
exists some w ∈ [−1, 1] such that

v′ι(w) =
vι(1)− vι(−1)

2
=
|Oι|

2
.

By part (a), e−2C1 ≤ |v′ι(x)|
|v′ι(w)| . Additionally, the fundamental theorem of calculus

gives that

v′ι(x) = v′ι(w) +

∫ x

w

v′′ι (ξ)dξ,

and consequently

|v′ι(x)| ≤ |v′ι(w)|+
∫ w

x

C1|v′ι(ξ)||dξ|

≤ |Oι|
2

+ C1

∫ 1

−1

|v′ι(ξ)|dξ =

(
1

2
+ C1

)
|Oι|,

as required.



130 A. Some results relevant for Chapter 2

�

Remark A.4. Similarly, suppose that a map f ∈ ŪNP obeys analytic distortion
condition (ADδ) with constant C1,δ. Then for all x,w ∈ Λ̌δ,

e−2C1,δ cosh δ ≤ |v
′
ι(x)|
|v′ι(w)| ≤ e2C1,δ cosh δ.

We now prove that the partition spacing condition (P) is preserved under com-
position. Consequently, UNP and ŪNP are closed under composition.

Lemma A.5. Suppose f and g are Markov maps on [−1, 1] satisfying (P), and

that in addition f has bounded distortion with parameter C
(f)
1 and g has uniform

expansion parameter λ(g) > 0.
Then g ◦ f satisfies (P).

Proof. Let Oφγ = v
(f)
φ

(
v

(g)
γ (Λ)

)
be a branch set of g ◦ f . Let p ∈ ∂Λ, i.e. p = ±1.

Since Oφγ = v
(f)
φ

(
O(g)
γ

)
, by Lemma A.3(c) we have

|Oφγ|∣∣∣O(g)
γ

∣∣∣
≤
(

1 + 2C
(f)
1

)
∣∣∣O(f)

φ

∣∣∣
2

,

and thus a preliminary bound on our ratio of interest:

(A.3)
|Oφγ|

d(Oφγ, p)
≤

(
1 + 2C

(f)
1

)
1
2

∣∣∣O(g)
γ

∣∣∣
∣∣∣O(f)

φ

∣∣∣
d(Oφγ, p)

.

We are interested in intervals for which p /∈ Oφγ. If p ∈ Oφγ, then we need

p ∈ O(f)
φ and f̂φ(p) =: τ ∈ O(g)

γ . Note that since p ∈ ∂O(f)
φ , then τ ∈ ∂Λ. Therefore,

intervals Oφγ which do not contain p either have p /∈ O(f)
φ or τ /∈ O(f)

γ .

We split into cases accordingly. In the first case where p /∈ O(f)
φ , we have that

since O(g)
γ = v

(g)
γ ([−1, 1]), its length must be less than 2/λ(g). Since Oφγ ⊆ O(f)

φ , we

must have d (Oφγ, p) ≥ d
(
O(f)
φ , p

)
. Therefore from (A.3),

|Oφγ|
d(Oφγ, p)

≤ (1 + 2C
(f)
1 )

1

λ(g)
ξ(f),

where we used that |O(g)
γ | < |Λ|/λ(g) from the expansion assumption.

For the second case, let q ∈ ∂Λ be such that v
(f)
φ (q) lies in between Oφγ and p and

let r ∈ ∂O(f)
γ such that v

(f)
φ (r) is the nearest point in Oφγ to p (and thus, q). Then
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d(Oφγ, p) is the length of the interval [v
(f)
φ (r), p], which is bigger than the length of

the interval [v
(f)
φ (r), v

(f)
φ (q)] = v

(f)
φ ([r, q]). Using Lemma A.3 the length of this last

interval can be bounded:∣∣∣v(f)
φ ([r, q])

∣∣∣
|[r, q]| =

∫ q
r

∣∣∣(v(f)
φ )′(x)

∣∣∣ |dx|
|[r, q]| ≥ e−2C

(f)
1

1

2

∣∣∣O(f)
φ

∣∣∣ .

Furthermore, the distance between r and q is precisely d(O(g)
γ , q).

Combining these results with (A.3), we find that

|Oφγ|
d(Oφγ, p)

≤
(

1 + 2C
(f)
1

)
e2C

(f)
1

O(g)
γ

d(O(g), q)
≤
(

1 + 2C
(f)
1

)
e2C

(f)
1 ξ(g).

Combining the two cases, then, we find that

ξ(g◦f) ≤
(

1 + 2C
(f)
1

)
max

{
e2C

(f)
1 ξ(g),

1

λ(g)
ξ(f)

}
,

as required. �

A3. Proof of Lemma 2.12

In this appendix we will prove Lemma 2.12, which states that standard properties
of f (e.g. differentiability of the distortion) imply the properties of cos−1 ◦f ◦ cos
required to apply Lemma 2.11 in the proof of Theorem 2.3.

We remark that while the partition position condition (P) is crucial for the proof
in general, it is not necessary if one restricts to maps that only satisfy (DD1).

We also emphasise that this lemma gives very loose bounds for the Υn and Υ1,δ,
and that in practice one is best served by calculating these constants directly from
the νι.

We will first state and prove two lemmas upon which Lemma 2.12 relies, and
then prove the latter.

Lemma A.6. Suppose the map f ∈ ŪNP is piecewise Cn+1, choose σ ∈ ∂Λ = {±1}
and let τ = vι(σ). Define the gradient of the chord

Ŝι,σ(x) =
τ − vι(x)

σ − x .

Then

Ŝ(n)
ι,σ (w) =

1

n+ 1
v(n+1)(w)

for some w directly between σ and x.



132 A. Some results relevant for Chapter 2

Proof. We can show by induction that for all n ≥ 0

Ŝ(n)
ι,σ (x) = n!

τ −∑n
m=0

1
m!
v

(m)
ι (x)(σ − x)m

(σ − x)n+1
.

Since vι(σ) = τ , the lemma follows by Taylor’s theorem. �

Lemma A.7. Suppose f ∈ ŪNP , ι ∈ I and σ ∈ ∂Λ = {±1} such that vι(σ) /∈ ∂Λ.
Let τι,σ = σ sgn v′ι(0) and

Tι,σ(x) = 1− vι(x)/τι,σ.

Then for x ∈ [−1, 1], Tι,σ(x) ≥ ξ−1|Oι|. If f satisfies analytic distortion condition
(ADδ) then there exists ζ ∈ (0, δ] and Kζ > 0 such that for z ∈ Λ̌ζ |Tι,σ(z)| ≥ Kζ |Oι|.
Proof. Recalling that τ 2

ι,σ = 1 we can write

Tι,σ(x) = τι,σ(τι,σ − vι(σ)) + τι,σ(vι(σ)− vι(x)).

Since τι,σ− vι(σ) has the same sign as τι,σ, the first term can be written as a positive
quantity |τι,σ−vι(σ)| which is equal to d(τι,σ,Oι). By the partition spacing condition
(P), we have d(τι,σ,Oι) ≥ ξ−1|Oι|.

Furthermore, one can apply Taylor’s theorem to the second term to get that
τι,σ(vι(σ)− vι(x)) = τι,σ(σ− x)v′ι(w) for some w between x and σ. Since v′ι keeps its
sign on [−1, 1] and the sign of σ−x is simply the sign of σ, the definition of τι,σ means
that the second term is positive on [−1, 1]. Thus, for x ∈ [−1, 1], Tι,σ(x) ≥ ξ−1|Oι|.

On the analytic domain Λ̌ζ the situation is more complicated. We write that

(A.4) <Tι,σ(x) = d(τι,σ,Oι)− τι,σ< (vι(x)− vι(<x))− τι,σ (vι(<x)− vι(σ)) ,

and bound terms from below.
Set Cζ = e2C1,δ cosh ζ . We have that for any point x in Λ̌ζ , |v′(x)| ≤ Cζ

1
2
|Oι| as a

result of Remark A.4. We will use this fact in the following discussion.
The Bernstein ellipse Λ̌ζ has major axis cosh ζ · [−1, 1] and minor axis i sinh ζ ·

[−1, 1]. As a consequence every point w in Λ̌ζ has <w ≤ cosh ζ and |=w| ≤ sinh ζ.
We have by Taylor’s theorem that

τι,σ< (vι(x)− vι(<x)) = τι,σ<
(
v′ι(<x)i=x− v′′ι (w)

2
=x2

)

for w between x and <x (i.e. in Λ̌ζ). Thus,

|τι,σ< (vι(x)− vι(<x)) | ≤ C1,δCζ |Oι|
4

sinh2 ζ.

Furthermore,

τι,σ (vι(<x)− vι(σ)) = σ−1 sgn v′ι(0)(<x− σ)v′ι(w)
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for w between <x and σ, i.e. in Λ̌ζ ∩ R. Since v′ι 6= 0 on Λ̌ζ because of the bounded
distortion condition (ADδ), and v′ι must be real on Λ̌ζ ∩R as it is real on [−1, 1] and
analytic on the whole interval, we have sgn v′ι(w) = sgn v′ι(0) and so

τι,σ (vι(<x)− vι(σ)) = (<x/σ − 1)|v′ι(w)|
≤ (cosh ζ − 1)|v′ι(w)|

≤ (cosh ζ − 1)Cζ
|Oι|

2
.

As a result we have from (A.4)

|Tι,σ(x)| ≥ <Tι,σ(x) ≥
(
ξ−1 − Cζ

4

(
C1,δ sinh2 ζ + 2 cosh ζ − 2

))
|Oι|.

When ζ is small enough, the term multiplying |Oι| is positive. �

With these lemmas in hand, we can now prove Lemma 2.12.

Proof of Lemma 2.12. We begin with the first part of part (a), bounding deriva-
tives of the νι. We will do this by first proving a formula for the derivatives of νι and
then bounding terms in this formula to get overall bounds.

Let πn := n mod 2. We claim that

(A.5) ν(n+1)
ι (cos−1 x) =

∑

q+r+s≤n

aq,r,s,n(x)Y q,n
ι,1 (x)Y r,n

ι,−1(x)v(s+1)(x),

where aq,r,s,n are polynomials in x with coefficients independent of f , and

(A.6) Y m,n
ι,σ (x) =





(1− xσ−1)
πn
2

(
S
−1/2
ι,σ

)(m)

, vι(σ) ∈ {−1, 1},

(1− xσ−1)
πn
2

(
T
−1/2
ι,σ

)(m)

, vι(σ) /∈ {−1, 1}.

We prove this claim by induction. Suppose without loss of generality that sgn v′ι =
1.

When n = 0, we have that

ν ′ι(cos−1 x) =

√
1− x

1− vι(x)

√
1 + x

1 + vι(x)
v′ι(x).

From (A.6), we find that

Y 0,0
ι,σ (x) =

√
1− xσ−1

1− vι(x)σ−1
,

and thus (A.5) follows for n = 0.
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Suppose, then, that (A.5) is true for some n. Then

ν(n+2)
ι (cos−1(x)) =

√
1− x2(ν(n+1)

ι ◦ cos−1)′(x).

All we need to show is that
√

1− xσ−1Y m,n
ι,σ (x) and

√
1− xσ−1(Y m,n

ι,σ )′(x) can be

written as a product of Y m,n+1
ι,σ (x) (and for the derivative possibly also Y m+1,n+1

ι,σ (x)),
and polynomials in x. In the case where vι(σ) ∈ {−1, 1}, we have

√
1− xσ−1Y m,n

ι,σ (x) = (1− xσ−1)
πn+1

2

(
S−1/2
ι,σ

)(m)

= (1− xσ−1)πnY m,n+1
ι,σ (x)

and
√

1− xσ−1(Y m,n
ι,σ )′(x) = (1− xσ−1)

πn+1
2

(
S−1/2
ι,σ

)(m+1)

− πnσ−1(1− xσ−1)
πn−1

2

(
S−1/2
ι,σ

)(m+1)

= (1− xσ−1)πnY m+1,n+1
ι,σ (x)

− πnσ−1(1− xσ−1)πn−1Y m,n+1
ι,σ (x)

= (1− xσ−1)πnY m+1,n+1
ι,σ (x)− πnσ−1Y m,n+1

ι,σ (x),

where in the last line we removed the (1− xσ−1)πn−1 element from the last term by
using that the last term is zero unless πn = 1. The relation when vι(σ) /∈ {−1, 1} is
clearly analogous, from which the claim falls.

We now attempt to bound the expression in (A.5). To bound the Y m,n
ι,σ , we need

to bound derivatives of S
−1/2
ι,σ and T

−1/2
ι,σ . One may show by induction that for n ≥ 1

there exist multivariate polynomials qn such that for any function U ,

(A.7) (U−1/2)(n) = U−1/2qn

(
U ′

U
, . . . ,

U (n)

U

)
.

By Lemma A.6, we have that when vι(σ) ∈ {−1, 1}

|S(n)
ι,σ (x)| = 1

n+ 1
|v(n+1)(w)|

for some w ∈ [−1, 1]. Using distortion bound (DDn) and Lemma A.3 we can bound
this again to get that

|S(n)
ι,σ (x)| ≤ Cne

2C1

n+ 1
|v′(x)|.

We also have that |Sι,σ(x)| = |v′(w)| > e−2C1|v′(x)| for some w ∈ [−1, 1].
Substituting these bounds into (A.7) we find that

∣∣∣
(
S−1/2
ι,σ

)(n)
∣∣∣ ≤ eC1|v′|−1/2|qn|

(
C1e

4C1

2
, . . . ,

Cne
4C1

n+ 1

)
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when vι(σ) ∈ {−1, 1}.
Similarly, we have that |T (n)

ι,σ (x)| = |v(n)(x)| ≤ Cn|v′(x)| and, by Lemma A.7,
when vι(σ) /∈ {−1, 1} that |Tι,σ(x)| ≥ ξ−1|Oι| ≥ 2ξ−1e−2C1|v′(x)|. These bounds can
be substituted into (A.7) similarly to give

∣∣∣
(
T−1/2
ι,σ

)(n)
∣∣∣ ≤

√
ξ

2
eC1|v′|−1/2|qn|

(
C1ξe

2C1

2
, . . . ,

Cnξe
2C1

2

)

when vι(σ) /∈ {−1, 1}.
Thus, there exist constants km,n depending on the distortion constants and par-

tition spacing constant such that for all ι ∈ I and σ ∈ {−1, 1}, we have |Y m,n
ι,σ (x)| ≤

km,n|v′(x)|−1/2.
Returning to (A.5), we have that since |v(s+1)(x)| ≤ Cs|v′(x)|,

|ν(n+1)
ι (cos−1 x)| ≤

∑

q+r+s≤n

|aq,r,s,n|(1) kq,nkr,nCs,

for x ∈ [−1, 1], and thus |ν(n+1)
ι (θ)| is bounded by the same constant for θ ∈ [0, 2πβι′).

The proof of the first part of part (b) is essentially the same as the above with
n = 1. The major difference is that we apply Remark A.4 and the second bound in
Lemma A.7 instead of Lemma A.3 and the first bound, respectively. We also use that

cos−1 Λ̌ζ = Λ
βι′
ζ so bounds on ν(n)(θ) transfer directly to bounds on ν(n)(cos−1(x)).

The second parts of (a) and (b) are much more straightforward. In both cases
we seek to bound

(A.8)

∣∣∣∣∣
h

(n)
ι

hι

∣∣∣∣∣ =

∣∣(v′ι ◦ cos)(n)
∣∣

|v′ι ◦ cos|

on appropriate domains. The nth derivative of v′ι ◦ cos can be written as a linear

combination of v
(m+1)
ι ◦ cos,m ≤ n with coefficients of trignometric polynomials.

Trigonometric polynomials are bounded on [0, 2πβι′ ] and Λ
βι′
ζ ; on these respective

domains, the |v(m+1)
ι ◦ cos | are bounded by Cm|v′ι ◦ cos | and by C1,δ|v′ι ◦ cos | for

m = 1 respectively. Thus, we find that (A.8) are bounded by constants depending
on Cm, m ≤ n − 1, and in the analytic case on ζ (which parameterised Λ̌ζ) and
C1,ζ . �

A4. Explicit bounds on the norm of the solution operator in BV

In Korepanov et al. (2016), explicit a priori bounds on decay of correlations were
stated in the Lipschitz norm. Specifically, if a map on [0, 1] has expansion coefficient
λ and (DD1) distortion constant C1, then with V the space of zero-integral functions
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on [0, 1], the following bound holds:

R =
2C1

1− λ−1

D = 4eR(1 +R),

ξ =
1

2
e−R(1− λ−1),

‖Ln|V ‖Lip ≤ De−ξn.(A.9)

In this appendix we sketch how these explicit bounds work through to bound
‖S‖BV .

Let Lip([0, 1]) be the space of Lipschitz functions on the interval [0, 1] with the
usual norm.

Suppose that ‖Ln|V ‖Lip ≤ Kn < 1/2. Suppose that g ∈ BV ([0, 1]) ∩ V with
‖g‖BV = 1. Let ĝn be the piecewise linear interpolant to g at the points 0, 1

n
, 2
n
, . . . , 1.

It can be seen that Lip ĝn ≤ n and ‖ĝn − g‖1 ≤ 1
2n

.
Consequently,

‖Lng‖1 ≤ ‖Lnĝn‖1 + ‖Ln(g − ĝn)‖1

≤ 1

5
‖Lnĝn‖Lip + ‖g − ĝn‖1

≤ Kn

5
(Lip ĝn + ‖ĝn‖∞) + ‖g − ĝn‖1

≤ Kn

5
(n + 1) +

1

2n
,

where we used that ‖h‖Lip ≥ 5‖h‖1 and ‖h‖BV ≥ ‖h‖∞ for h ∈ V .

Setting n = dK−1/2
n e, we have

‖Lng‖1 ≤
√
Kn(7 + 4

√
Kn)

10
≤
√
Kn.

Hence, as a result of the standard BV Lasota-Yorke inequality (Galatolo and
Nisoli, 2014) we find that

(A.10) ‖Lm+ng‖BV ≤
5

4
|Lm+ng|BV ≤

5

4
(λ−mC1

√
Kn).
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Using that ‖Ln|V ‖Lip ≤ De−ξn from (A.9), and choosing

n =

⌈
4 + 2 log(max{C1, 1}

√
D))

ξ

⌉

m =

⌈
2

log λ

⌉
,

we have

‖Ln|V ‖ ≤
e−4

min{1, C−2
1 }D−1

=: Kn < 1/2.

Consequently from (A.10) we have that ‖Lm+n‖BV ≤ 5
2
e−2 ≤ 2

5
.

As a result,

(A.11)

∥∥∥∥∥
∞∑

k=0

Lk
∥∥∥∥∥
BV

≤
∥∥∥∥∥
∞∑

k=0

L(m+n)k

∥∥∥∥∥
BV

∥∥∥∥∥
m+n−1∑

k=0

Lk
∥∥∥∥∥
BV

≤ 5

3
(m+ n)C ′,

where C ′ := 1 + 1
3

C1

1−λ−1 ≥ supn∈N ‖Ln‖BV ≤ This bounding property of C ′ is the
result of the Lasota-Yorke inequality and the fact that ‖g‖BV ≥ 3‖g‖1 for g ∈ BV ∩V .

As a result of (2.19), we finally obtain the a priori bound on the solution operator

(A.12) ‖S‖BV ≤ 1 +
5

3
(m+ n)C ′(3 + C ′).



Appendix B

Proof of Lemmas 3.5-3.8

Proof of Lemma 3.5. Matching power series coefficients at z = 0, we have that

a−1 = ĥ−1
1(B.1)

a` = ĥ2ĥ
−2
1 − 1(B.2)

an =
1

nĥ1

D
(n+1)
n−1 (0)

(n+ 1)!
.(B.3)

Suppose

(B.4) rn = min{R, cn−1(ĥ1 +
√
Gc)−1}

for some c ∈ (0, 1) and let
Mn,r = sup

|z|≤r
|Dn(z)| .

We have as a result of (B.3) that for any r ≤ rn

|an| ≤
1

nĥ1

r−n−1Mn−1,r.

Consequently, for n ≥ 1 and r ≤ rn we have that

Mn,r ≤Mn−1,r + |an| sup
|z|≤r
|f̂(z)n − zn|

≤Mn−1,r +
r−n−1Mn−1,r

nĥ1

sup
|z|≤r

rn|(z−1f̂(z))n − 1|

≤Mn−1,r

(
1 +

en(z−1f̂(z)−1) − 1

nĥ1r

)
.

Now, by our stipulation on rn we have that

(B.5) |ĥ1z + g(z)z2| ≤ ĥ1rn +Gr2
n ≤ cn−1,

and so

|z−1f̂(z)− 1| =
∣∣∣∣∣−

ĥ1 + g(z)z

z−1 + ĥ1 + g(z)

∣∣∣∣∣ ≤
cn−1

1− c.

138
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Consequently,

Mn,rn ≤
(

1 +
ec/(1−c)

nĥ1rn

)
Mn−1,rn

≤
(

1 + c−1ec/(1−c)
(

1 +

√
Gĥ−2

1 c

))
Mn−1,rn

=: d2Mn−1,rn ≤ d2Mn−1,rn−1

and thus

(B.6) Mn,r ≤ dn2M0,r0 .

We now aim to bound

M0,r = sup
|z|≤r

∣∣∣a−1((f̂(z))−1 − z−1) + a` log(z−1f̂(z))
∣∣∣ .

From (B.2) it can be shown that a` = ĥ−2
1 g(0), and thus |a`| ≤ ĥ−1

1 G. Furthermore,
(B.5) gives that

|z−1f̂(z)| ≥ 1− n−1c ≥ 1− c,
giving that

M0,r0 ≤ ĥ−1
1 (ĥ1 +Gr0) + ĥ−2

1 G log((1− c)−1)

≤ 1 + ĥ−2
1 G(c− log(1− c)) := d1d

2
2

where in the last line we used (B.4).
Thus, since Dn(z) = O(zn+2) as z → 0, for all |z| smaller than r, where r is as

in (B.4),

|Dn(z)| ≤ (|z|/rn)n+2 sup
|w|=rn

|Dn(w)| ≤ d1d
2
2 d

n
2 |z|n+2r−(n+2)

n .

Choosing c = 0.4 we finally obtain the required bounds. �

Proof of Lemma 3.6. We proceed by induction on (3.21) and (3.22). The base

case clearly holds as f̂ 0(z) = z. Suppose that (3.21) and (3.22)hold for some k ∈ N.

Then |f̂k(z)| ≤ (Rf̂k(z)−1)−1 ≤ R1, where R1 := min{R,ℵG−1ĥ1}. Because R1 ≤ R
we can apply (3.17), giving

(B.7) |f̂k+1(z)−1 − f̂k(z)−1 − ĥ1| ≤ G|f̂k(z)| ≤ ℵG−1ĥ1.

Since ∣∣∣<f̂k+1(z)−1 −<f̂k(z)−1 − ĥ1

∣∣∣ ≤
∣∣∣f̂k+1(z)−1 − f̂k(z)−1 − ĥ1

∣∣∣ ,
we obtain from (B.7) that (3.21) must also hold for k + 1. Furthermore, since

|f̂k+1(z)−1 − f̂k(z)−1 − ĥ1| = (f̂k+1(z)−1 − (k + 1)ĥ1)− (f̂k(z)−1 − kĥ1),
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the inequality (B.7) implies (3.22) for k + 1. �

Proof of Lemma 3.7. From Lemma 3.6 we have
∞∑

k=0

|f̂k(z)|β̄kδ ≤
∞∑

k=0

(|z−1 + ĥ1k|−1 − ℵĥ1k)−β̄kδ

≤
∞∑

k=0

(
max{z−1, ĥ1k} − ℵĥ1k

)−β̄
kδ.

The summand is increasing for k ≤ ĥ−1
1 z−1 and decreasing for larger k. Thus we can

use an integral bound:
∞∑

k=0

|f̂k(z)|β̄kδ ≤
∫ ∞

0

(
max{z−1, ĥ1k} − ℵĥ1k

)−β̄
kδ dk + (1− ℵ)−β̄|z|β̄−δĥ−δ1

= |z|−β̄−δ−1ĥ−δ−1
1 (1− ℵ)−β̄

(
2F1(β̄, δ + 1, δ + 2,ℵ)

(δ − 1)(1− ℵ)−β̄

+
1

β̄ − δ − 1
+ ĥ1|z|

)
,

which using that 2F1(β̄, δ + 1, δ + 2,ℵ) ≤ (1− ℵ)−β̄ and |z| ≤ R−1
1 gives the desired

bound. �

Proof of Lemma 3.8. We know that g(z) is analytic for complex |z| ≤ R; as a
result, if we define g1 := g′(0) and g2(z) = z−1(g(z)− g1) we have that g2 is bounded
for |z| ≤ R by some constant G2 < ∞. Since g maps real inputs to real inputs, we
also know that g1 is real. Combining this with (3.17), we have for |z| ≤ R1 ≤ R that

f̂(z)−1 − z−1 = ĥ1 + g1z + g2(z)z2,

and so taking imaginary parts,

=f̂(z)−1 −=z−1 = g1=z + =(g2(z)z2) = −g1|z|2=z−1 + =(g2(z)z2).

We can then bound the growth in the imaginary part of z−1 under iteration by f̂ :

|=f̂(z)−1| ≤ (1 + g1|z|2)|=z−1|+G2|z|2.
Since for <z ≤ R1 we have from Lemma 3.6 that |f̂k(z)| ≤ R for all k ∈ N, we

obtain the linear recurrence relation

|=f̂k+1(z)−1| ≤ (1 + g1|z|2)|f̂k(z)−1|+G2|z|2.
Since by Lemma 3.6, |z|2 = O(k−2) for all <z ≤ R1, iterates of this equation are
bounded, as required. �



Appendix C

Statistical test for linear response given time series

A statistical test, developed by this author, to probe the linear or higher-order re-
sponse of a chaotic system from time series data at various parameter values was
proposed in Gottwald et al. (2016). In this appendix we summarise the principles of
this test, which we use in Chapter 4.

Suppose that a system has response EεΨ which has certain regularity properties
for ε ∈ [ε1, ε2] (or around some ε0), and suppose this regularity property means that
there exist functions ϕi(ε), i = 1, . . . , I and (unknown) coefficients βi ∈ R such that

(C.1) EεΨ ≈
I∑

i=1

βiϕi.

is a good approximation in L2([ε1, ε2]).
For example, if EεΨ is C1 and ε2− ε1 is sufficiently small, then EεΨ can be well-

approximated with a Taylor expansion about ε1: thus, ϕ0 ≡ 1 and ϕ1(ε) = ε−ε1 form
a good basis for approximation, and we would expect an L2 error of size o(ε1−ε2). If
instead EεΨ is smooth (e.g. Cr) on a larger interval, then we could choose Chebyshev
polynomials as a basis for approximation ϕi(ε) = Ti−1((2ε − ε1 − ε2)/(ε2 − ε1)) for
i = 1, . . . , I, with an L2 error of O(Ir).

Suppose that for perturbation values εj, j = 1, . . . , J we have time series of the
observable’s dynamics (Ψj,n)n=1,...,N where the time series length N is sufficiently
large. Supposing that (as is typical for many systems (Gottwald and Melbourne,
2013)) Ψn obeys a central limit theorem for each selected parameter, then for large
enough N the Birkhoff averages for each εj have Gaussian approximations

(C.2) Ψ̄N
j :=

1

N

N∑

j=1

Ψj,n = EεjΨ + σ(εj)ξj/
√
N,

where ξj are i.i.d. standard normal variables and the Birkhoff variance σ2(εj) can
be estimated by various means, including taking multiple time series for each εj, or
subsampling.
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If we define the vector with coefficients yj = Ψ̄N
j and the matrix with coefficients

Xji =
√
Nσ(εj)

−1ϕi(εj), then we can write (C.1-C.2) as the linear equation

y = Xβ + ξ,

where ξ ∼ N (0, IJ×J). This is of course just a standard linear statistical model, and
we can use the theory of these models (Rice, 2006) to test the null hypothesis that
the approximation of the response by the φi (C.1) is an equality, i.e. that EεΨ has
linear (or smooth) response.

Defining the least-squares projection matrix

H = X(XTX)−1XT

and the Pearson chi-square test statistic

χ2 = yT (I −H)y,

we have that if the approximate equality in (C.1) is exact, then χ2 has chi-squared
distribution χ2

J−I where I is the number of basis functions ϕi.
If χ2

obs is the observed value of the test statistic, the p-value for the test for linear
(or higher-order) response is then given by

p = P (χ2
J−I ≥ χ2

obs),

provided the error associated with the non-exact nature of the approximation (C.1)
is appropriately small. This error is small if

Eχ2 − Eχ2
J−I = N ‖(I −H)(EεjΨ/σ(εj))j=1,...,J‖`2 ,

which, supposing σ is a reasonably smooth function of ε and the εj are uniformly
spaced, estimates the minimum possible L2(σ2) error in approximations of the re-
sponse of the form in (C.1), multiplied by the sample sizes N .



Appendix D

Numerical methods used in Chapter 4

D1. Model reduction for chaotic microscopic sub-systems

This appendix describes how to compute the statistics of the several stochastic
limiting systems of the system comprised of a distinguished degree of freedom driven
by a heat bath (4.1-4.4). We consider the limiting system for large ensemble size M
(4.27) for γ = 1

2
, which we recall here as

Qn+1 = (A0 + A1ζn)Qn(1−Qn).(D.1)

We also consider the (deterministic) thermodynamic limit system (4.29) for γ = 1,
which we also recall here

Qn+1 = (A0 + 〈E[φ]〉A1)Qn(1−Qn).(D.2)

We finally also consider the (stochastic) finite-size system for γ = 1

Qn+1 = (A = A0 + ΦnA1)Qn(1−Qn),(D.3)

where Φn is given by (4.31), which is recalled here as

Φn = 〈E[φ]〉+
1√
M
η +

1√
M
ζn.(D.4)

The random variable η accounts for the random variation in the selection of the pa-
rameters a(j) and the random process ζn accounts for the dynamics of the microscopic
variables. (However, as can be seen from Figure 4.12, setting η ≡ 0, i.e. replacing it
with its expectation, gives a remarkably good approximation of the invariant mea-
sure, at least in the system we consider.)

In order to simulate these systems we need to estimate 〈E[φ]〉 and, for the sto-
chastic systems, also R(m) = 〈E[φ0φm]〉 − (E[φ])2,m ∈ N. We describe first how
we estimate these parameters from Monte Carlo simulations of the logistic map, and
then describe how we sample the stochastic process ζn with the covariance parameters
given by R(m).

D1.1. Estimating parameters. We need to estimate the expectation values
for K perturbation sizes εi with i = 1, · · · , K. Since we set here a(j) = 1 for all
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microscopic variables, at each εi we write the averages over the microscopic dynamics
as

(D.5) 〈Eεi [φ]〉 =

∫

R

∫
φ(x, a) dµα(x) ν(α− εi) dα,

and

(D.6) 〈E[φ0φm]〉εi =

∫

R

∫
φ(x0, α)φ(fm(x;α) dµα(x) ν(α− εi) dα

for i = 1, . . . , K and m = 1, . . . ,∞. Here, ν is the density function of the logistic
map parameters and is chosen here as the raised cosine distribution on [3.8, 3.9] (c.f.
(4.8)), and we used that in Section 4.6 we can write φ(q; a, ε) = φ(q; a + ε) and
f(q; a, ε) = f(q; a+ ε).

From now on it is understood that all observables, expectations with respect to
measures and so on are for a fixed parameter α: we therefore drop the α and (j)
superscripts for ease of exposition, and write for expectations over the microscopic
invariant measures E[χ] =

∫
χ(x) dµ(x).

We use a trapezoidal rule to estimate the integrals in (D.5) and (D.6), using a
grid of 30, 001 values of the logistic map parameters α evenly spaced on [3.7, 4.0] (to
allow for the support of ν as well as the range of the perturbation). This is used for
each εi.

The expectations (D.5) and (D.6) can be entirely determined by simulations of
a standard logistic map without coupling to the expanding r-dynamics (4.7). We
recall that the marginals in q of the physical measures of (4.7) and of a logistic map
with the same parameters are equal. Thus, if we denote by ϕn = φ(xn, a + εi) such
that xn+1 = (a+ εi)xn(1− xn) with x0 = q0, we have that E[φ] = E[ϕ].

To estimate the averages of the auto-correlations (D.6) we define N(m) as the
number of evolution steps of the q-dynamics up to physical time m which were done
according to the logistic map (i.e. discarding all those instances when the r-dynamics
forces q not to vary). Note that N(m) has a binomial distribution N(m) ∼ B(m, 1

2
).

Hence by definition we have

φ(qm) = ϕN(m),

and we can write

E[φ0φm] = E[ϕ0ϕN(m)]

=
m∑

i=0

2−i
(
m

i

)
E[ϕ0ϕi].

To estimate the autocorrelations of the logistic variables, we will distinguish be-
tween regular and chaotic parameter values. In almost all cases there is no way to
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determine that a given parameter value is chaotic: we therefore use the list of reg-
ular parameter values given in Galias (2017) and make the heuristically validated
assumption that the vast majority of the remaining parameter values are chaotic.

For regular values of α, when the logistic map xn with parameter α has a stable
periodic orbit, calculating the stable periodic orbit allows for an accurate evaluation
of the expectation. We use the database of periodic windows given in Galias (2017)
to identify both the values of α and the stable periodic orbits.

For chaotic values of α we estimate expectations and lag-correlations of the logis-
tic map with parameter α via Monte-Carlo simulation of the logistic map xn, using
10 separate initialisations with 399,168 time steps each. This number of time steps
was chosen as it has a large number of prime factors, and therefore will give more
accurate estimates for short periodic windows outside the database, or for chaotic
values where the acim has multiple connected components (i.e., f is not mixing but
fp is for some p > 1).

D1.2. Sampling the stochastic process ζn. The limiting process ζn is a sta-
tionary mean-zero Gaussian process given by lag-covariance function R(m). Assum-
ing sufficiently fast decay of the lag-covariance function, we can write this process as
a moving-average process of infinite order

ζn =
∞∑

m=0

βmXn−m

with a deterministic sequence (βm)m∈N ∈ `2 and i.i.d. standard normal random
variables Xn.

The moving average coefficients βm and the covariance function Rm are related
by

R(m) =
∞∑

k=0

βkβm+k.

The coefficients can be extracted from the covariance function via the generating
functions

B(z) :=
∞∑

m=0

βmz
m

and

R(z) :=
∞∑

m=−∞

R(|m|)zm,

for which the relation R(z) = B(z)B(z−1) holds. If we restrict to the complex unit
circle, setting z = eiθ, we find that R(eiθ) = B(eiθ)B(e−iθ) = |B(eiθ)|2 since βm ∈ R.
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Assuming that R(eiθ) 6= 0, we have that

1

2
logR(eiθ) = < logB(eiθ),

and hence, we can write, using that the βm are real,

logB(z) =
∞∑

m=0

bmz
m

with bm ∈ R. The bm may be calculated via Fourier cosine transform using that

1

2
logR(eiθ) =

∞∑

m=0

bm cosmθ.

The bm coefficients allow one to evaluate B(eiθ), from which the moving average
coefficients βm are obtained via an additional Fourier transform.

D2. Numerical method to compute the thermodynamic limit M →∞ for
uniformly expanding maps

In the thermodynamic limit of infinite M the strong law of large numbers holds
and

Φn = 〈EΦn〉 =

∫
φ(q) dµn(q),

where µn is the (time-varying) physical measure of the system, which evolves as

µn+1 = LKnµn,
where Kn = tanh(εΦn−2) and LKn is the transfer operator of the system (4.43): we
recall from Chapter 2 that the action of the transfer operator is given explicitly by
2.1.

Because for all fixed Kn = K the map (4.43) is uniformly expanding, the physical
measures µn are absolutely continuous with respect to Lebesgue, and we can write
them as µn(q)dq. Furthermore, because the map (4.43) is analytic and hence infin-
itely many times differentiable, it is possible to approximate the measure density and
transfer operator dynamics very accurately using the Chebyshev spectral Galerkin
methods proposed in Chapter 2. We have implemented an adaptive-order spectral
approximation of the measure density in the Julia package Poltergeist.jl (Wormell,
2017), which allows us to simulate the dynamics of µn. The core routine, which out-
puts µn+1 and Φn+1 given inputs µn, ε and the driving dn (by default Φn), is defined
as follows (note that Julia recognises Unicode characters):
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f unc t i on F( $\mu$ n , $\eps$ , d n = sum( $\phi$∗$\mu$ n ) )
K n = tanh ( d n∗$\eps$−2)
f n = f map (K n)

# c r e a t e MarkovMap ob j e c t
$\mu$ n1 = t r a n s f e r ( f n , $\mu$ n)

# compute $\mu {n+1}$
re turn $\mu$ n1 , sum( $\phi$∗$\mu$ n1 )

end

More details of the algorithm and some examples of its use may be found at https://
github.com/wormell/PoltergeistExamples/blob/master/WeakSelfCoupling-Li

mitingSystem.ipynb.
After the first time the routine is called (during which Julia compiles the code),

the algorithm takes around 8× 10−4 seconds on a standard laptop to compute each
µn+1 from µn, and has an approximation error of only around 10−13: by comparison,
if one aims to estimate µn as a Monte-Carlo approximation with a large ensemble of
M = O(108), a relatively large approximation error of 10−3 is incurred.

https://github.com/wormell/PoltergeistExamples/blob/master/WeakSelfCoupling-LimitingSystem.ipynb
https://github.com/wormell/PoltergeistExamples/blob/master/WeakSelfCoupling-LimitingSystem.ipynb
https://github.com/wormell/PoltergeistExamples/blob/master/WeakSelfCoupling-LimitingSystem.ipynb




Bibliography

Aaronson, J., 1997. An introduction to infinite ergodic theory. American Mathemat-
ical Soc.

Abel, N., 1826. Untersuchung der functionen zweier unabhängig veränderlichen
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