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Abstract

Extended Dynamic Mode Decomposition (EDMD) is a data-driven tool for forecasting
and model reduction of dynamics, which has been extensively taken up in the physical
sciences. While the method is conceptually simple, in deterministic chaos it is unclear what
its properties are or even what it converges to. In particular, it is not clear how EDMD’s
least-squares approximation treats the classes of regular functions needed to make sense of
chaotic dynamics.

We develop for the first time a general, rigorous theory of EDMD on the simplest ex-
amples of chaotic maps: analytic expanding maps of the circle. To do this, we prove a
new, basic approximation result in the theory of orthogonal polynomials on the unit circle
(OPUC) and apply methods from transfer operator theory. We show that in the infinite-data
limit, the least-squares projection error is exponentially small for trigonometric polynomial
observable dictionaries. As a result, we show that the forecasts and Koopman spectral
data produced using EDMD in this setting converge to the physically meaningful limits,
exponentially fast with respect to the size of the dictionary. This demonstrates that with
only a relatively small polynomial dictionary, EDMD can be very effective, even when the
sampling measure is not uniform. Furthermore, our OPUC result suggests that data-based
least-squares projections may be a very effective approximation strategy.

1 Introduction
Nonlinear systems with complex dynamics are found across the physical and human sciences,
counting among them climate systems, fluid flows and economic systems [16, 6]. Unlike linear
systems, they rarely admit useful analytic solutions or have much obvious mathematical structure
that can be used to make sense of them. Furthermore, the information we may have on these
systems can often be very limited: for example, we may only have access to some empirical
observations of its evolution. General methods of studying nonlinear systems in terms of well-
understood mathematical objects, that can be performed using empirical data, are therefore an
important tool in scientific endeavour.

One approach to do this is to use a surrogate linear system to study the nonlinear system.
For example, one can study functions (“observables”) on the phase space, and construct a lin-
ear Koopman operator which maps observables to their forward expectations under the flow
[7]. Computationally, only a finite-dimensional vector space of observables is considered: the
Koopman operator may not preserve this space of observables, but can be projected onto the
finite-dimensional space, with good results if the observables are well-chosen. This projection
can be done by least-squares on the empirical data, making it widely applicable. The computa-
tional representation of the Koopman operator can then be studied in terms of its spectrum and
eignefunctions, which describe dynamical properties such mixing rates, almost-invariant sets in
phase space [15, 11, 10].

Many different numerical methods, usually described as Dynamic Mode Decomposition (DMD)
variants, employ this approach: for example, the classic DMD uses linear functions of delay co-
ordinates as its observables. The aim of Extended Dynamic Mode Decomposition (EDMD),
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however, is to choose a large “dictionary” of observables that can be effectively used to approx-
imate any function on the phase space [28]: commonly, polynomials rather than simply linear
functions are used. EDMD and its variants have recently been used to great success in a broad
variety of settings, including in airflow, molecular dynamics, industrial processes, and decision
networks [22, 9, 10, 27].

Given its applicability, there has been a lot of interest in the mathematical theory behind
EDMD, and in particular the interpretation of its spectral data. This theory has largely been
explored by considering the Koopman operator Kφ = φ ◦ f of the dynamics f as acting on
L2(µ), where µ is the (dynamically invariant) sampling measure of the empirical data points:
the unitary nature on the Koopman operator on this space is exploited to obtain various spectral
convergence results regarding the L2(µ) spectrum, which lies on the unit circle. However, the
actual spectra of Koopman matrices obtained using EDMD bear much closer resemblance to the
spectra of quasi-compact Markov operators [18], whose spectrum is mostly located inside the
unit circle (see Figure 1 for an example).

The explanation for this can be found in the fact that the Koopman operator is the dual of
the transfer operator [26], a typically quasi-compact Markov operator that tracks the movement
of probability densities under the dynamics. The transfer operator has been heavily studied in
dynamical systems, and has a strong and well-developed functional-analytic theory, including
numerical approximation of transfer operators [19, 13, 29, 4]. Nevertheless, with some excep-
tions [15, 26], cross-pollination between the separates transfer operator and Koopman operator
communities has been regrettably sparse.

Among the transfer operator discretisations, Extended DMD bears close resemblance to
Fourier methods for transfer operators [29, 12], which make a standard orthogonal projection
onto trigonometric polynomals with respect to Lebesgue measure. Proving the convergence
of discretisations with respect to these projections can be done by using the orthogonality of
derivatives of the basis functions, a property which has been used to prove convergence of EDMD
when the sampling measure µ is Lebesgue [26]. It is very rare, however, for a sampling measure
to hold this property: only a few, famous, families of measures have this property [21]. For
more general sampling measures µ, new approximation theory must be developed to carry over
transfer operator results to DMD variants: this is the achievement of this paper.

As systems become more structurally complex, rigorous study of chaotic systems very quickly
becomes impractical [5]. For this reason, we choose as an initial example uniformly expanding
maps of the torus T := R/2πZ: that is, maps f : T → T such that for all θ ∈ T, |f ′(θ)| ≥ γ > 1.
These are common first examples for understanding phenomena in chaotic dynamics [1, 29].
We note that they are sometimes studied as self-maps of the complex unit circle in coordinates
z = eiθ. Some additional smoothness is required to obtain good results: we will assume that f
is analytic. Since the physical invariant measures of such maps have analytic densities, we will
also assume that µ has analytic density.

The crux of the dynamical systems theory is the following: given observable functions φ in
a Banach space of analytic functions H2

t ⊂ C∞(T) (defined in Section 2) and ψ ∈ L1(T), we can
write their lag correlations as a sum of exponentially decaying functions:

∫
T
φψ ◦ fn dµ ∼

∞∑
j=0

Mj∑
m=1

α
(m)
j (φ)β

(m)
j (ψ)nmλnj (1)

where β(m)
j : H2

t → R is bounded and α
(m)
j (φ); =

∫
a
(m)
j φdµ for some function a

(m)
j ∈ H2

t . The
multiplicities Mj are generically 1, in which case we drop the superscripts.

The complex λj , which have modulus no greater than one, are known as Ruelle-Pollicott
resonances. These resonances and associated linear operators determine many important prop-
erties of the dynamical system: for example, for λj close to 1, the sets {x : aj(x) > 0} denote
almost-invariant sets with respect to the dynamics, as equivalently do regions where βj is posi-
tive on average [14, 15].
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Figure 1: Top left: graph of the circle map f(x) = 4x−0.4 sin 6x+0.08 cos 3x mod 2π. Bottom
left: Ruelle-Pollicott resonances of f with certain resonances marked in colour. Top right: mod-
ulus of EDMD eigenvalues, with colours corresponding to resonances in the bottom left. Bottom
right: exponential convergence with respect to dictionary size of the errors between EDMD
eigenvalues and Ruelle-Pollicott responances, with corresponding colours. Ruelle-Pollicott reso-
nances estimated using a Fourier transfer operator discretisation [29].

The aim of EDMD is to make a least-squares best approximation to the Koopman operator
K in L2(µN ) where µN is the empirical measure of the data points {xn}n=1,...,N restricted to
act on the span of one’s function dictionary Ψ = {ψk}|k|≤K . This can be computed in the Ψ
basis as the Koopman matrix

((Ψ(0))∗Ψ(0))−1(Ψ(0))∗Ψ(1)

where (Ψ(0))nk = ψk(xn) and (Ψ(1))nk = Kψk(xn) = ψk(f(xn)). As the number of points
N → ∞ this converges (in any norm) to the continuum limit operator KK , which is the least-
squares best approximation in L2(µ), and is therefore still finite-rank [20]. As a result, the
Koopman matrix’s spectral data also converge to those of the continuum limit operator KK .

The contribution of this paper is as follows. Let λj,K be the eigenvalues of the EDMD
estimate of the Koopman operator KK obtained using the function dictionary

ΨK = {e−i(K−1)x, e−i(K−2)x, . . . , e−ix, 1, eix, . . . , ei(K−1)x}, (2)

in the limit of infinite data points. Each of these eigenvalues, which will be simple for K large
enough if the corresponding λj is simple, have left and right eigenvectors aj,K , bj,K ∈ C0, which
we can consider in the observable basis. Let βj,K(w) =

∫
bj,K(x)w(x)dµ(x).

Theorem 1.1. Suppose f is analytic and µ has analytic density. Then for some c > 0

dHausdorff(σ(KK), {λj : j ∈ N}) = O(e−c
√
K) as K → ∞.

Furthermore, if λj has multiplicity 1 (see Theorem 2.1 for a more general result), then there
exist constants h, ζ > 0 depending on f, µ such that for t ∈ [0, ζ],

|λj,K − λj |, ∥aj,K − aj∥H2
t
, ∥bj,K − bj∥H2

−t
= O(e−htK).
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An illustration of this theorem is given in Figure 1, with eigenvalue estimates converging
exponentially with the dictionary size K as predicted: note that the leading constants generally
increase as the modulus of the eigenvalue decreases.

The consequence of Theorem 1.1 is that, in this setting, EDMD gives very accurate esti-
mates about the system’s rates of mixing, encoded through the Ruelle-Pollicott resonances. It
also means that the so-called “Koopman modes” obtained as eigenvectors of the Koopman ma-
trix give very accurate information about the long-term dynamical properties of the system: the
functions bj , βj encode structures that persist under the dynamics, including almost-invariant
sets [15, 13]. Notwithstanding that the maps we consider are extremely structurally simple, this
may go some way to explaining the success of DMD with small dictionaries.

The overarching proof idea parallels that sketched in [26]. The first component is a study
the transfer operator acting on a Hilbert space H2

t of analytic functions: we have improved
previous results by showing that the norm of the transfer operator in H2

t is independent of the
analyticity parameter t. The second component, in which we make the most interesting advances
on previous work, is a study of the effect of discretisation onto the finite observable space (2) as
a projection PK : H2

t ⟲ in that space.
To understand this operator PK we borrow ideas from the distant theory of orthogonal

polynomials on the unit circle (OPUC) [25]. This theory formulates a basis of trigonometric
polynomials in which PK is diagonal, and allows one to relate this basis quite effectively to the
usual monomial basis. We obtain the following fundamental result, which suggests that PK is
as good as the Dirichlet kernel in certain Hardy spaces under some fairly weak stipulations.

Aiming to be as general as possible, we study the Hilbert spaces Wσ := F−1[σℓ2(Z)] weighted
by so-called Beurling weights: even functions σ : Z → R+ that increase on the natural numbers,
and obey σ(j)σ(k) ≤ σ(|j| + |k|). Among these spaces include the usual fractional Sobolev
Hilbert spaces (up to norm equivalence), as well as our Hardy-Hilbert spaces H2

t .

Theorem 1.2. Suppose that σ, τ : Z → R+ are Beurling weights with τ/σ decreasing on N.
Suppose furthermore that µ = hdx is a positive measure on T with M−1 ≤ h(x) ≤ M on T

and ∥σF [(log h)′]∥ℓq ≤ A for some q <∞.
Then there is a constant CP increasing in and dependent only on q,A,M such that

∥I − PK∥Wσ→W τ ≤ CP∥I −DK∥Wσ→W τ = CP
τ(K)

σ(K)
.

where PK is the L2(µ)-orthogonal projection onto trigonometric polynomials of degree less than
K, and DK is the Dirichlet kernel.

Note that this implies that the error of PK from our Hardy spaces H2
t → H2

s is O(e−(t−s))
for small enough t, s when the measure density h is analytic.

This is, as far as we know, a new kind of approximation result even in the theory of OPUC. It
suggests that if µ is smooth then approximation of smooth functions in L2(µ) is very powerful:
we should therefore be eager to make use of this kind of polynomial approximation where it
arises, for example in least squares approximation from data. We believe also that the result
would generalise to higher dimensions, retaining O(e−cK) convergence for a dictionary of degree
< K trigonometric polynomials.

We have taken great pains to optimise our results, but there are places where the results could
be meaningfully improved. In particular, we bounded the operator norms of certain operators
in Lemma 4.8 via the trace norm, which would scale poorly into higher dimensions, and even in
one dimension requires µ to be at least half an order more differentiable than the functions it
is approximating. This would make it difficult to apply our methods for less regular densities—
which naturally occur even for expanding chaotic systems. For example, the chaotic logistic
map f(x) = ax(1− x), which models non-hyperbolic dynamics which are standard in fluid flow,
typically has a physical measure with density in W s,p only for certain p+ s < 1/2 [24]. Further
work, perhaps building on OPUC theory in [17], might show a path through, and establish how
well DMD works with the kinds of irregular sampling measures typical of most chaotic dynamics.
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2 Setup
In this section we will state the precise condition on the map f and sampling density µ that we
require, and state our Koopman operator approximation theorems in generality.

The function spaces we will use are extensions of the standard Lp spaces on the torus:

∥φ∥Lp(T) =


(∫ 2π

0
|φ(x)|p dx

)1/p
, p ∈ [1,∞)

ess-supx∈T |φ(x)|, p = ∞.

However, we will need to construct stronger function spaces to obtain effective results. In
particular, we will look at on certain open complex strips in phase space around T, which we
will parametrise by their half-thickness ζ:

Tζ := {z ∈ C/2πZ : |ℑz| < ζ}

On these sets we will define so-called Hardy spaces Hp
ζ : the space Hp

ζ is the set of holomorphic
functions φ : Tζ → C such that

∥φ∥Hp
ζ
:=

{
supβ∈[0,ζ)

(
1
4π

∫
T |φ(θ + iβ)|p + |φ(θ − iβ)|p dθ

)1/p
, p ∈ [1,∞)

supz∈Tζ
|φ|, p = ∞

is finite (in this case the supremum is attained in the limit as β → ζ, and φ is continuous onto
∂Tζ almost everywhere). The Lp(T) norms emerge as a limiting case as ζ → 0. (For concision,
we will define ∥ · ∥Hp

0
= ∥ · ∥Lp(T).

The spaces H2
ζ are Hilbert spaces, and we can characterise these norms in Fourier space. Let

F : L2(T) → ℓ2(Z) be the Fourier series operator:

(Fφ)(k) = 1

2π

∫
T
e−ikxφ(x) dx

and for σ a Beurling weight let us define the Hilbert spaces Wσ(T) = F−1[σℓ2(Z)] with

∥φ∥Wσ = ∥σFφ∥ℓ2(Z).

It is a classic result that the standard L2(T) is such a space with σ(n) ≡ 1; Sobolev spaces
Hr are isometric to those with σ(n) = (1 + n2)r/2. Similarly, if we define the Beurling weight

σζ(k) :=
√

cosh 2kζ,

then we can write our Hardy space H2
ζ(T) =Wσζ .

We can also define adjoints of these spaces: for a Beurling weight σ let Wσ−1

be the comple-
tion of L2(T) with respect to the following norm:

∥φ∥Wσ−1 = sup
∥ψ∥Wσ=1

1

2π

∫
T
φψ dθ.

This Hilbert space Wσ−1

is therefore isometric to σ−1ℓ2 under the Fourier series operator F .
We can of course therefore define H2

−ζ =Wσ−1
ζ as the dual of H2

ζ .

Our basic assumptions will be that map f is uniformly expanding and real-analytic and the
sampling measure µ has real-analytic density h(x) with respect to Lebesgue. Note that if µ is
the absolutely continuous invariant measure of f , then the first part implies the second.

To better understand rates of convergence, we will make the following quantitative assump-
tions on f for some ζ > 0:

• The lift of f onto R has an inverse v : R → R that extends analytically to Rζ := R+i[−ζ, ζ].

5



• For z ∈ Rζ , |v′(z)| ≤ γ−1 for some γ < 1.

• ∥ log(v′)∥Cα(Tζ) ≤ D for some constants α > 0 and D ≤ π
3 ζ

−α.

The last bound can always be achieved by making ζ smaller.
When studying the convergence of extended dynamical mode decomposition, we will also

make the following quantitative assumptions on h:

• h extends analytically to Tζ .

• For z ∈ Tζ , M−1 ≤ |h(z)| ≤M for some constant M .

• ∥σF [(log h)′]∥ℓq ≤ A for some constants A and q < ∞. (Note this occurs if (log h)′ ∈
Lp(∂Tζ) where 1/p+ 1/q = 1.)

The key to our results on spectral convergence is the following strong operator convergence
result:

Theorem 2.1. For all t ∈ (0, ζ] the Koopman operator K : H2
−t ⟲ is compact, the sequence of

operators {KK : H2
−t ⟲}K∈N is collectively compact, and there exists a constant C depending

only on M,A,D, ζ such that

∥KK −K∥H2
−t

≤ Ce−(1−γ−1)tK .

This allows us to estimate all the eigenmodes and Ruelle-Pollicott resonances of the system
in (1):

Corollary 2.2. For all K’s eigenvalues λ of multiplicity m, the error in the KK estimate as
K → ∞ is O(e−(1−γ−1)ζK/m) for the eigenvalues, and O(e−(1−γ−1)tK) in H2

−t (resp. H2
γ−1t) for

the right (resp. left) generalised eigenspaces.

3 Orthogonal trigonometric polynomial theory
To understand the µ-orthogonal projection onto our dictionary of complex exponential basis
functions {ek}|k|≤K , it will be natural to understand the transformation between the complete,
infinite basis {ek}k∈Z and an orthogonal polynomial basis of L2(µ) (in which the L2(µ) projection
is therefore diagonal). In the correct ordering it is known that the basis change matrices are
triangular and asymptotically banded [25]: we will prove some quantitative results on the rate
of convergence to bandedness as the order of the polynomial grows.

Recalling that the complex exponential basis on C/2πZ ⊃ T is

ek(z) := eikz, k ∈ Z,

let us order the index set Z

0 ≤b −1 <b 1 <b −2 <b 2 <b . . . .

We will sometimes group the indices into “blocks” {0}, {−1, 1}, {−2, 2}, . . ..
We will always assume that A† refers to the adjoint of A in L2(T,Leb/2π); we will call an

operator A : L2(T) ⟲ lower-triangular (resp. upper-triangular) if e†jAek = 0 for all j <b k (resp.
j >b k).

For any positive probability density h : T → R+, define the Fourier space multiplication
operator M : L2(T) → L2(T):

Mhφ = hφ. (3)

The operator M is positive-definite and Hermitian in L2(T). (In fact, in Fourier space it is
near-block-Toeplitz with respect to <b.) It turns out we can make a Cholesky decomposition of
M that is very nicely and uniformly bounded in our Hardy or Beurling-weighted Hilbert spaces,
under our analyticity assumptions on h:
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Theorem 3.1. Under the assumptions on µ in Theorem 1.2,

a. There exists a unique lower triangular operator V acting on L2(T) such that

M = VV†.

Furthermore, V is invertible. If we let V−1 =: U†, the operator U is upper-triangular with

M−1 = U†U .

b. There exists a constant C△ increasing in q,M,A such that

∥U∥Wσ , ∥V∥Wσ , ∥U†∥Wσ , ∥V†∥Wσ ≤ C△.

Now, define the functions
pk = Uek.

From the theorem above, it turns out that these are a complete family of (complex) trigonometric
polynomials orthonormal with respect to h:

Proposition 3.2. The pk are each trigonometric polynomials of order exactly |k|, and form a
complete orthonormal basis in L2(µ).

The pk as described here are complex, but they can be transformed via a unitary map into a
real orthonormal family (see the proof of Theorem 3.1 part a): we have only chosen a complex
exponential basis for ease of presentation.

The corollary of Theorem 3.1(a) is that L2(µ)-orthogonal projection is conjugate to the usual
L2(Leb) projection (i.e. the Dirichlet kernel, whose properties are very well known):

Proposition 3.3. Let PK : L2(µ) ⟲ be the orthogonal projection onto trigonometric polynomials
of order < K. Then

PK = U−1DKU = V†DKU

where DK = F−11(−K+1,...,K−1)F is convolution by the Dirichlet kernel.

Proof. By Theorem 3.1(b) and the fact that {ek}k∈Z are a complete basis ofWσ, our polynomials
{pk}k∈Z form a complete basis of Wσ (and therefore also L2(Leb) = L2(µ) setting σ ≡ 1).

The action of PK on our basis is PKpk = 1|k|<Kpk. Using from Proposition 3.2 that pk = Uek,
we have

PKUek = 1|k|≤KUek
so

U−1PKUek = 1|k|≤Kek.

The action of U−1PKU is precisely the action of DK , so

PK = U−1DKU = V†DKU .

Thus motivated to study Cholesky decompositions of multiplication operators, we embark
on proving that such things exist and their constituents are bounded in Wσ.

4 Proof of orthogonal polynomial results
We begin by proving the existence of the Cholesky decompositions.
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Proof of Theorem 3.1a. Let us consider M as an infinite matrix acting on the basis

1, sin z, cos z, sin 2z, cos 2z, . . .

This is a real, positive-definite matrix. By [8, Lemma 3.1], there exists a unique lower-triangular
operator VR such that M = VRV†

R. Now, for any function φ ∈ L2(T),

φ†Mφ = φ†VRV†
Rφ = ∥V†

Rφ∥
2
L2 (4)

so since Mφ = hφ,
M−1∥φ∥2L2 ≤ ∥V†

Rφ∥
2
L2 ≤M∥φ∥L2 . (5)

Since, V†
R is bounded in L2(T), so too is its adjoint VR and its inverse UR. Now, V†

R is block-
lower triangular in the complex exponential basis ek, the blocks consisting of {ek, e−k}. We can
perform a LQ decomposition on each block to obtain a block-diagonal unitary matrix Q such that
V = VRQ is lower-triangular in the complex exponential basis, and U = QUR is upper-triangular
in this basis with VV† = M and U†U = M−1.

Following the same argument in (4)–(5) yields that ∥V∥L2(T), ∥U∥L2(T) ≤
√
M .

Let θ+, θ− be real-analytic functions T → C such that θ−(z̄) = θ+(z), θ+θ− = 1/h and θ+ is
holomorphic in the upper half-plane. We can specify them explicitly:

(F log θ+)(k) =
(
1
2δ0k + 1(k > 0)

)
F(− log h)(k). (6)

and similarly for θ− with k < 0 replacing k > 0. In the language of orthogonal polynomials on
the unit circle (where one studies the variable z = eix), the function θ+(log z) is known as the
Szegő function of dµ(log z) [25]. We will also define their reciprocals η± = 1/θ±. The following
result states some of its basic properties of θ±, η± (c.f. [25, Theorem 2.4.1]).

Proposition 4.1. Under our assumptions on h:

a. For all x ∈ T we have
|θ+(x)| = |θ−(x)| =

√
h(x).

b. Considering functions as multiplication operators,

∥θ±∥Wσ→Wσ , ∥η±∥Wσ→Wσ ≤M1/2eqA.

c. If θ̂+l are the Fourier coefficients of θ+, then

∞∑
l=0

lσ(l)2|θ̂+l |
2 ≤ qA2Me2qA.

We will find it briefly useful to notate some norms associated to the Beurling weight. For
q ∈ [1,∞] let ∥φ∥σ;q = ∥σFφ∥ℓq .

Lemma 4.2. Suppose σ is a Beurling weight. Then for any q ∈ [1,∞],

∥φψ∥σ;q ≤ ∥φ∥σ;q∥ψ∥σ;1

whenever ∥φ∥σ;r, ∥ψ∥σ;1 <∞.

Proof. All we need to prove is that

∥σ(φ̂ ∗ ψ̂)∥ℓq ≤ ∥σφ̂∥ℓq∥σψ̂∥ℓq .
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By the definition of the Beurling weight, σ(k) ≤ σ(|j|+ |k − j|) ≤ σ(j)σ(k − j), so

|σ(k)(φ̂ ∗ ψ̂)(k)| =
∑
j∈Z

σ(k)|φ̂(j)||φ̂(k − j)|

≤
∑
j∈Z

|σ(j)φ̂(j)||σ(k − j)φ̂(k − j)|

≤ (|σφ̂| ∗ |σψ̂|)(k)

As a result,
∥σ(φ̂ ∗ ψ̂)∥ℓq ≤ ∥|σφ̂| ∗ |σψ̂|∥ℓq ≤ ∥σφ̂∥ℓq∥σψ̂∥ℓ1

as required.

Proof of Proposition 4.1. We only need to prove the results for θ+, as log θ+(z̄) = log θ−(z).
The first part directly uses this fact: |θ+(x)|2 = θ−(x)θ+(x) = h(x)−1.
To prove the second part, we separate k = 0 and apply Hölder’s inequality to get

∥ log h∥σ;1 ≤ σ(0)

∣∣∣∣∫ log hdx

∣∣∣∣+ ∥σ(k)kF [log h](k)∥ℓq∥1k ̸=0k
−1∥ℓp

where 1/p+ 1/q = 1. Noting that by submultiplicativity σ(0) ≤ 1, this gives us

∥ log h∥σ;1 ≤ logM + ∥(log h)′∥σ;q(2ζ(p))1/p ≤ logM +A(2q)1/p ≤ logM + 2qA.

Noting that log h is real on T, (6) gives us that

∥ log θ+∥σ;1 = 1
2∥ log h∥σ;1 = logM1/2 + qA.

Now, θ+, η+ = 1/θ+ are respectively the t = 1,−1 solutions of

∂

∂t
Et(x) = log θ+ Et(x), E0(x) = 1

so Gronwall’s Lemma combined with Lemma 4.2 gives

∥θ+∥σ;1, ∥η+∥σ;1 ≤ e∥ log θ+∥σ;1∥1∥σ;1 ≤ eqAM1/2.

The bounds on θ+, η+ considered as multipliers on Wσ (which has the ∥ · ∥σ;2 norm) follows
from Lemma 4.2.

For the third part we proceed in the same vein as the second part. From (6) we have
F(log θ+)

′ = 1(k > 0)F(− log h)(k), so ∥σF [(log θ+)
′]∥ℓq ≤ A. Then,

∥(θ+)′∥σ;q = ∥(log θ+)′∥σ;q∥θ+∥σ;1 ≤ AM1/2eqA.

Applying Hölder’s inequality gives that

∥k1/2σF [θ+]∥2ℓ2 = ∥(1(k ̸= 0)k−1/2)σF [(θ+)′]∥2ℓ2
≤ ∥1(k ̸= 0)k−1∥ℓq/(q−2)∥(θ+)′∥2σ;q
≤ qA2Me2qA,

which is what needed to be proven.

With these properties in hand we can now quantitatively characterise the Cholesky decom-
position.

Define the projections

P+ = F−11Z+F

P◦ = F−11{0}F = e0e
†
0

P− = F−11Z−F .

9



Let’s also define operators
Mφ = hφ

being multiplication by h, our limiting Cholesky factors

Ū = c̄P◦ + P+θ− + P−θ+.

V̄ = c̄−1P◦ + η+P+ + η−P−

where c̄ =
√

1
2π

∫
h−1 dx.

These obey the same relation as their equivalents V,U do:

Proposition 4.3. V̄−1 = Ū†.

Proof. If ψ+ contains only non-negative Fourier modes, then ψ+P+ = P+ψ+P+, with the
corresponding result for functions with non-positive modes.

We have that Ū† = c̄P◦ + θ+P+ + θ−P−, and the result follows by expanding out Ū†V̄ and
V̄Ū†.

These operators are uniformly bounded:

Lemma 4.4. For all t ∈ [0, ζ],

∥Ū∥Wσ , ∥Ū†∥Wσ , ∥V̄∥Wσ , ∥V̄†∥Wσ ≤ (1 + 2eqA)M1/2.

Proof. Since the projections P+,P−,P◦ have norm 1 in Wσ,

∥Ū∥Wσ ≤ c̄+ ∥θ+∥Wσ→Wσ + ∥θ−∥Wσ→Wσ ≤ (1 + 2eqA)M1/2.

The same argument goes for the other operators.

Proposition 4.5. If P+w = 0, then P+w−wP+ = (P−+P◦)wP+. The same statement holds
when P+ and P− are swapped.

Proof. For k ≤ 0 the operator P+e−ik·P+ reduces to P+eik·. Since we have that w(z) =∑∞
k=0 ŵ−ke

−ikz so P+wP+ = P+w. Then,

P+w − wP+ = (I − P+)wP+ = P◦wP+ + P−wP+.

We will want to show that in some sense V̄ is a good approximation of V, the Cholesky factor
of M, and similarly Ū is a good approximation of U . We can understand this by attempting
to “strip” M down to the identity, by considering V̄†M−1V̄ and Ū†MŪ . (It is important to
study both at the same time.) It will turn out in Lemma 4.8 that all we need to know are the
diagonal entries of these operators. In the following two propositions, we will show that these
entries converge to those of the identity (c.f. [25, Proposition 2.4.7, Theorem 7.2.1]).

Proposition 4.6. For all k ∈ Z,

s′k = e†kV̄
†M−1V̄ek − 1 = 0.

Proof. We have
1 + s′k = (V̄ek)†M−1(V̄ek).

When k = 0,
V̄e0 = c̄−1e0 = (e†0h

−1)−1/2e0

so
1 + s′0 = (e†0h

−1)−1e†0h
−1e0 = 1.

On the other hand, when k > 0 (the k < 0 case follows by the same argument), V̄ek = η+P+ek =
η+ek so

1 + s′k = e†kη−η−η+η
+ek = e†kek = 1,

as required.
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Proposition 4.7. Let
sk = e†kŪ

†MŪek − 1.

Then sk > −1 and there exists a constant C increasing in M,A, q such that∑
k∈Z

σ(k)2|sk| ≤ C. (7)

Proof. In this case we find that

1 + sk = (Ūek)†M(Ūek),

but the situation is more complicated because, when compared with the previous proposition,
the order of projection and multiplication have reversed.

For k = 0 we have that

Ūe0 = P+θ−e0 + P−θ+e0 + c̄P◦e0 = c̄e0

so
s0 = 1− c̄2e†0he0 = 1− 1

2π

∫
T

h−1 dx
1

2π

∫
T
hdx

from which one may extract that |s0| ≤ (M − 1)2.
For k > 0 we have that

Ūek = P+θ−ek + P−θ+ek + c̄P◦ek = P+θ−ek,

and since M = η+η− = η−η−,

(Ūek)†M(Ūek) = (η−P+θ−ek)
†η−P+θ−ek.

Now, we have that

η−P+θ−ek − ek = η−(P+θ− − θ−P+)ek = −η−(P◦ + P−)θ−P+ek

with the last equality by Proposition 4.5. Now,

(η−P+θ−ek − ek)
†ek = −(θ−ek)

†(P◦ + P−)η+P+ek = 0,

so

(Ūek)†M(Ūek) = e†kek + (η−P+θ−ek − ek)
†(η−P+θ−ek − ek)

= 1 + ∥ − η−(P◦ + P−)θ−P+ek∥2L2(T)

≤ 1 + ∥η−∥2L∞(T)∥(P
◦ + P−)θ−ek∥2L2(T).

Now,

∥(P◦ + P−)θ−ek∥2L2(T) =

∞∑
j=0

|F(θ−ek)(−j)2| =
∞∑
j=0

|θ̂−−j−k|
2 =

∞∑
l=k

|θ̂+l |
2.

Consequently, and using the first part of Proposition 4.1 to bound η− = 1/θ+, we have

sk = |(Ūek)†M(Ūek)− 1| ≤M

∞∑
l=k

|θ̂+l |
2.

Combining the cases k = 0, k < 0, k > 0 we find that for all k ∈ Z\{0},

sk ≤M

∞∑
l=|k|

|θ̂+l |
2,

11



which we can use to bound (7). In particular,

∑
k∈Z

σ(k)2|sk| ≤ (M − 1)2 + 2M

∞∑
k=1

σ(k)2
∞∑
l=k

|θ̂+l |
2

= (M − 1)2 + 2M

∞∑
l=1

(
l∑

k=1

σ(k)2

)
|θ̂+l |

2

≤ (M − 1)2 + 2M

∞∑
l=1

lσ(l)2|θ̂+l |
2 ≤M2(1 + qA2e2qA),

using the last part of Proposition 4.1 in the last part.

Lemma 4.8. Let VV̄−1 = I + Ṽ and UŪ−1 = I + Ũ . Then there exists C increasing in M,A, q
such that

∥Ṽ∥, ∥Ṽ†∥, ∥Ũ∥, ∥Ũ†∥ ≤ C

in the L2(T) →Wσ operator norm.

Proof of Lemma 4.8. Firstly, this is well-posed since by Proposition 4.3, V̄−1 = Ū† and U−1 =
V̄†.

Let’s notate the diagonal entries of Ṽ as αk = e†kṼek. Because V and V̄ have positive diagonal
entries, so does I + Ṽ, and hence the αk > −1.

Then for all k ∈ Z,

e†k(I + Ṽ)(I + Ṽ)†ek = ∥Ṽ†ek∥2L2 + 1 + 2αk.

But we also know that

e†k(I + Ṽ)(I + Ṽ)†ek = e†kŪ
†MŪek = 1 + sk

so
2αk ≤ ∥Ṽ†ek∥2L2 + 2αk = sk. (8)

On the other hand let
V̄†M−1V̄ = (I + Ũ)(I + Ũ)†.

Because (Ū†MŪ)−1 = V̄M−1V̄, we have that I + Ũ = (I + Ṽ)−1 and so the diagonal elements
of Ũ are (1 + αk)

−1 − 1 = − αk

1+αk
. Hence

1 + s′k = e†kV̄
†M−1V̄ek = e†k(I + Ũ)(I + Ũ)†ek = ∥Ũ†ek∥2L2 + 1− 2 αk

1+αk
,

so
2 αk

1+αk
= ∥Ũ†ek∥2L2 − s′k ≥ −s′k. (9)

As a result,

2αk ≥ − 2s′k
2 + s′k

≥ −s′k.

Applying this to (8) means we can extract a bound on V̄†ek:

∥Ṽ†ek∥2L2 ≤ sk + s′k.

Similarly, applying the inequality in (8) to (9) gives us that

∥Ũ†ek∥2L2 = s′k + 2 αk

1+αk
≤ s′k + αk ≤ s′k + sk.
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This is nice for us because the sk, s′k decay very quickly (from earlier propositions). Applying
V̄† to some function φ ∈ L2 gives that

∥Ṽ†φ∥L2 ≤
∑
k∈Z

∥Ṽ†ek∥L2Fφ(k)

≤

(∑
k∈Z

σ(k)2∥Ṽ†ek∥2L2

)1/2(∑
k∈Z

σ(k)−2|Fφ(k)|2
)1/2

≤

(∑
k∈Z

σ(k)2(s′k + sk)

)1/2

∥φ∥Wσ−1

≤ C∥φ∥Wσ−1 ,

with the last line coming from Propositions 4.6–4.7.
Similarly,

∥Ũ†φ∥L2 ≤ C∥φ∥Wσ−1 .

By the duality of the Wσ−1

and Wσ norms,

∥Ũψ∥Wσ , ∥Ṽψ∥Wσ ≤ C∥ψ∥L2

for all ψ ∈ L2, as required. On the other hand,

Ṽ† = (I + Ṽ†)−1 − I = −Ṽ†(I + Ṽ†)−1 = −(I + Ṽ†)

which gives

∥Ṽ†ψ∥Wσ ≤ ∥I + Ṽ†∥L2∥ψ∥L2 ≤ ∥Ū†MŪ∥1/2L2 C∥ψ∥L2 ≤ C∥ψ∥L2 .

and similarly for Ũ†.

Proof of Theorem 3.1b. For all four operators this result is a simple application of Lemmas 4.4
and 4.8. For example, let us consider

U = (I + Ũ)Ū .

We have that

∥U∥Wσ ≤ (1 + ∥Ũ∥Wσ )∥Ū∥Wσ

≤ (1 + ∥Ũ∥L2→Wσ )∥Ū∥Wσ

≤ (1 + C) (1 + 2eqA)M1/2,

as required.

Proof of Proposition 3.2. Integrating two polynomials against each other,∫
T
pjpk dµ = (Uej)†hUek

= e†jU
†((U†)−1U−1)Uek

= e†jek = δjk,

as required for orthonormality. Because U is upper-triangular in the complex exponential basis
with non-zero diagonals, Uek is a combination of complex exponentials of order no greater than
|k|, so pk is a trigonometric polynomial of the right order.

On the other hand, the complex exponentials {ek}k∈Z form a complete basis of L2(Leb) and
hence of L2(µ), as the spaces are equivalent. But each ek can be written as a linear combination
of pj ’s:

|k|∑
j=−|k|

(e†kV
†ej)pj = V†Uek = ek.

Hence, {pk}k∈Z are a complete orthonormal basis of L2(µ).
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The following result arises from the diagonal structure of the Dirichlet kernel in the (orthog-
onal) Fourier basis:

Proposition 4.9. For all K ∈ N and τ/σ decreasing, the Dirichlet kernel approximates the
identity as

∥I −DK∥Wσ→W τ = sup
|k|≤K

τ

σ
≤ τ(K)

σ(K)
.

We can now prove the main theorem on polynomial approximation:

Proof of Theorem 1.2. From Proposition 3.3 we have that

I − PK = U−1(I −DK)U = V†(I −DK)U

and so using Theorem 3.1b,

∥I − PK∥Wσ→W τ ≤ ∥V†∥W τ ∥I −DK∥Wσ→W τ ∥U∥W τ ≤ CP∥I −DK∥Wσ→W τ ,

where CP = C2
△. Combining this with Proposition 4.9 gives the required result. as required.

5 Transfer operator results

Let v = f̂−1 be the inverse lift of f . We know f is w-to-one for some w ≥ 2, so we expect v to
be 2πw-periodic.

Let ±f = sign f ′(0), and define the operator Lµ : H2
ζ ⟲ as follows:

(Lµφ)(z) =
w−1∑
j=0

Jµ(z + 2πj)φ(v(z + 2πj)), (10)

where
Jµ(z) = ±f

v′(z)h(v(z))

h(z)
. (11)

Note that all Lµ are conjugate to L1 as Lµφ = h−1L1(hφ). We will prove a uniform bound on
Lµ in H2 spaces:

Theorem 5.1. Suppose | log f ′|Cα(Tζ) ≤ D. Then there exists CH2 depending only on D, ζ, α
such that for t ∈ [0, ζ] and u > γ−1t,

∥Lµ∥H2
u→H2

t
≤ CH2M2.

This tightens the bounds in the one-dimensional case of [3, Lemma 5.3].
As part of proving this, we will prove a standard uniform bound in H∞ spaces à la [26], and

a uniform bound in H1 spaces:

Proposition 5.2. There exists C depending only on D, ζ, α such that for t ∈ [0, ζ] and u ≥ γ−1t,

∥Lµ∥H∞
u →H∞

t
≤ CM2.

Proposition 5.3. There exists C depending only on D, ζ, α such that for t ∈ [0, ζ] and u > γ−1t,

∥Lµ∥H1
u→H1

t
≤ CM2

The proofs of these three results are given in the Appendix.
The transfer operator Lµ is in fact just the adjoint of the Koopman operator:

Proposition 5.4. For all φ,ψ ∈ L2(µ),∫
T
Kψ φdµ =

∫
T
ψLµφdµ

14



Proof. Suppose ψ,φ ∈ L2. Then ∫
T
Kψ φ dµ =

∫
T
ψ ◦ f φ dµ.

With a w-to-one change of variables f(x) = y we find∫
T
ψ ◦ f φ dµ =

∫
T

w−1∑
j=0

ψ(y)φ(v(y + 2πj))µ(v(y + 2πj))|v′(y + 2πj)|dy

from which, since sign v′ = ±f , the required identity follows.

Proposition 5.5. For all t ∈ (0, ζ] and u ∈ (γ−1t, ζ], K extends to a bounded operator on
H2

−t → H2
−u, and for all φ ∈ H2

u, ψ ∈ H2
−t,∫

T
Kψ φdµ =

∫
T
ψLµφdµ

Proof. Suppose ψ,φ ∈ L2(µ) = L2(Leb,T). Then the same adjoint relationship is obeyed as in
Proposition 5.4, and

∥Kψ∥H2
−u

= sup
∥χ∥H2

u
=1

∣∣∣∣∫
T
Kψ χdx

∣∣∣∣
= sup

∥χ∥H2
u
=1

∣∣∣∣∫
T
ψL1χdx

∣∣∣∣
≤ ∥L1φ∥H2

t→H2
u
∥ψ∥H2

−t
.

Now from Theorem 5.1, and recalling that the uniform distribution satisfies all the assumptions
on µ,

∥L1φ∥H2
t→H2

u
≤ CH2 <∞

so by completion, K : H2
−t → H2

−u is bounded in norm. Since by considering the Fourier duality,
L2(µ) = L2(Leb /2π) is dense in H2

−t, the adjoint relation is preserved.

Proof of Theorem 2.1. We first show that K : H2
−t ⟲ is compact. For all u ∈ [0, t), inclusion

I : H2
t → H2

u is compact since from Proposition 4.9, {DK}K∈N are a family of finite-rank
operators H2

t → H2
u with DK → I in operator norm. By duality, inclusion I : H2

−u → H2
−t is

also compact. Then for any choice of u ∈ (γ−1t, t), K : H2
−t → H2

−t is the composition of the
bounded operator K : H2

−u → H2
−t with this compact inclusion, giving compactness of K in H2

−t.
Similarly, from the above and Theorem 1.2 we know that KK = PKK are uniformly bounded

H2
−s → H2

−t for any s ∈ (u, t). Then since I : H2
−t → H2

−s is compact we can compose
KK = I ◦ KK to see that they are uniformly compact.

We are given that KK = PKK. From Theorem 1.2 and the fact that σu(K)/σt(K) ≤
2e−K(t−u), we have that

∥PK − I∥H2
t→H2

u
≤ 2CPe

−K(t−u),

but we need to convert this into the dual norm. Because PK is self-adjoint in L2(µ), we have
for ψ, χ ∈ L2(Leb,T) (i.e. in L2(µ)) that∫

PKψ χdx =

∫
ψ hPK(h−1χ) dx

and so, by the same argument as in Proposition 5.5, PK and I−PK extend to bounded operators
H2

−u → H2
−t, with

∥I − PK∥H2
−u→H2

−t
≤ ∥h∥H∞

t
∥I − PK∥H2

t→H2
u
∥h∥H∞

u
≤M2 · 2CPe

−K(t−u)
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Consequently, using Proposition 5.5 and Theorem 5.1 we obtain that for all u > γ−1t,

∥K − KK∥H2
−t

≤ ∥I − PK∥H2
−u→H2

−t
∥K∥H2

−t→H2
−u

(12)

≤ 2M2CH2CPe
−K(t−u). (13)

Taking the infimum over u we get the required result.

Proof of Corollary 2.2. The dual of K : H2
−t ⟲ is Lµ : H2

t ⟲. Because the Lµ are compact in
this space, we have∫

φψ ◦ fn dµ =

∫
Lnµφψ dµ =

J∑
j=1

∫
T
LnµΠjφψ dµ+ o(λnJ)

as n→ ∞, where Πj are the spectral projections onto the λj-generalised eigenspace, and there-
fore each

∫
T LnµΠjφψ dµ = O(nmjλnj ) where mj is the multiplicity of λj . Note that since

σ(Lµ) = σ(L1), these are the same eigenvalues we would get if we were considering correla-
tions against Lebesgue measure or the physical measure of f , so they are the Ruelle-Pollicott
resonances in the usual sense.

The convergence result follows from [23, Theorems 1,6] applied to Lµ and (Lµ)∗, noting that
it doesn’t matter which value of t we use to estimate the eigenvalues, and ζ gives the optimal
bound.

Proof of Theorem 1.1. {KL}L∈N are rank-2L− 1 approximations of K, and using (12),

∥KL −K∥H2
−t

≤ 4M2CH2CPe
−L(t−u).

Similarly, {KL}L≤K are rank-2L− 1 approximations of KK , and using (12),

∥KL −KK∥H2
−t

≤ ∥KL −K∥H2
−t

+ ∥KK −K∥H2
−t

≤ ∥K ≤ 4M2CH2CPe
−L(t−u)

for u ∈ [γ−1t, t], so taking infima,

∥KL −KK∥H2
−t
, ∥KL −K∥H2

−t
≤ 4M2CH2CPe

−L(1−γ−1)t.

This means the 2L−1th and 2Lth approximation numbers (and therefore corresponding singular
values) of KK ,K are bounded by the above constant. By [2, Corollary 5.3] we have that the
Hausdorff distance between KK ,K are bounded by Ce−c

√
K for some C, c > 0.

To prove the rest of the theorem, we apply Corollary 2.2 when the Πj are rank-one: i.e. we
can decompose Πj = bjβj with βjbj = 1, and therefore Lnµbj = λnj bj . Note that the constant
h = 1− γ−1.

A Proofs of transfer operator bounds
In this section, we prove various bounds on the transfer operator, specifically in Hp

u → Hp
t for

p ∈ {1, 2,∞}. We will actually prove results for an extension of the transfer operator in these
spaces to more general spaces of harmonic functions. For t > 0 and p ∈ [1,∞] us define the
spaces

Ap
t = {φ : Tζ → C : ( ∂

2

∂x2 + ∂2

∂y2 )φ(x+ iy) = 0; ∥φ|∂Tζ
∥Lp <∞}

with the norm

∥φ∥Ap
t
= ∥φ|∂Tζ

∥Lp =

{
1
4π

∫
T |φ(x+ it)|p + |φ(x− it)|p dx, p <∞

supz∈∂Tζ
|φ(z)|.
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Harmonicity means that a function in Ap
t is uniquely determined by its values on the boundary:

in particular from any function on Tζ with an Lp restriction to ∂Tζ , we can construct a harmonic
function Itφ ∈ Ap

t that matches φ on the boundary using a kernel operator

Itφ(x+ iy) =

∫
T
(kt(θ + it− z)φ(θ + it) + kt(θ + it− z)φ(θ − it)) dθ (14)

where

kt(x+ iy) =
∑
n∈Z

π

4t

2 cot πy4t sech
2 π(x+2n)

4t

cot2 πy4t + tanh2 π(x+2n)
4t

≥ 0. (15)

Note that functions in Ap
t are mapped to themselves under It.

Since all holomorphic functions are harmonic, the Hardy space Hp
t is a closed subset of Ap

t

with the same norm. We can therefore study Lµ : Hp
u → Hp

t by the following (not entirely
natural) extension to general harmonic functions:

L̃t,µφ = ItLµφ = It

w−1∑
j=0

Jµ(·+ 2πj)φ(v(·+ 2πj))

 ,
and it is this operator we will prove is bounded on Ap

t → Ap
u for the different p. Note that for

any φ ∈ Ap
t ,

∥L̃t,µφ∥Ap
t
= ∥(ItLµφ)|∂Tζ

∥Lp = ∥(Lµφ)|∂Tζ
∥Lp , (16)

even though Lµφ may not even be harmonic, simply because It matches functions on the bound-
ary.

Proof of Proposition 5.2. From (16) we have for φ ∈ Ap
u that

∥L̃t,µφ∥A∞
t

= sup
z∈Tt

|(Lµφ)(z)|

= sup
z∈Tt

w−1∑
j=0

Jµ(z + 2πj)φ(v(z + 2πj).

Now, from its definition in (11), |Jµ(z+2πj)| ≤M2|v′(z+2πj)|. Our Hölder distortion assump-
tion implies that

|v′(z + 2πj)| = 1

2π

∫ ℜz+π

ℜz−π
|v′(z + 2πj)|dx

≤ 1

2π

∫ ℜz+π

ℜz−π
eD|z−x|α |v′(x+ 2πj)|dx

≤ eD(π2+ζ2)α/2 Leb v([ℜz−π+2πj,ℜz+π+2πj])
2π

so
w−1∑
j=0

|Jµ(z + 2πj)| ≤ eD(π2+ζ2)α/2

.

Furthermore, ℑv(z+2πj) ≤ |v(z+2πj)−v(ℜz+2πj)| ≤ γℑz ≤ γt, so v(z+2πj) ∈ Tγ−1t ⊂ Tu,
so by the maximum principle

∥L̃t,µφ∥A∞
t

≤ eD(π+ζ)α2πM2 sup
z∈Tu

|φ(z)| ≤ eD(π2+ζ2)α/2

2πM2∥φ∥A∞
u

as required.
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Proof of Proposition 5.3. Note that we only need consider u smaller than ζ: larger u follows by
inclusion.

Functions in A1
u are harmonic and so obey

φ(z) = (Itφ)(z) =
∫

T
(ku(θ + iu− z)φ(θ + iu) + ku(θ + iu− z)φ(θ − iu)) dθ

for ku given by (15).
Using (16), we have that

∥L̃t,1φ∥A1
t
≤
∑

±a,±b

w−1∑
j=0

∫
T

∫
T
|J ′
µ(x+ 2πj ±b it)|ku(θ ±a iu− v(x±b +2πj + it))|φ(θ + iu)|dθ dω

and so by Fubini’s theorem,

∥Lµφ∥A1
t
≤ sup
u∈T,±a

∑
±b

w−1∑
j=0

∫
T
|J ′
µ(x+ 2πj ±b it)|ku(θ ±a iu− v(x±b +2πj + it)) dω

≤M2 sup
θ∈T

w−1∑
j=0

∑
±

∫
T
|v′(x+ 2πj + it)|ku(θ ± iu− v(x+ 2πj + it)) dω

≤M2 sup
θ∈T

∑
±

∫
v(wT+it)

ku(θ ± iu− z) |dz| (17)

where we used the symmetry of v under conjugation and bounds on h, followed by a change of
variables.

On Tu we can bound
ku(x+ iy) ≤ Cu +

2y

x2 + y2
. (18)

for some Cu increasing in u. Note that ku blows up near 0 and is not integrable along certain
curves (e.g. y = |x|, which maximises ku for fixed x), but has constant integral along lines of
constant y. We will show that when our curve v(wT + it) is close enough to x+ iy = 0, it must
be locally close to a line of constant y.

If v′ > 0 on T, then | arg v′(x+it)| = ℑ log v′(x+it) ≤ Dζα ≤ π
3 , so |v′(x+it)| ≤ 2|ℜv′(x+it)|,

we have that v(wT + it) on the complex plane identified with R2 can be written as a graph of a
function V : T → [−γ−1t, γ−1t] with |V ′| ≤

√
3. A similar thing holds when v′ < 0 on T. This

means that∫
v(wT+it)

ku(θ±iu−z) =
∫

T
ku(θ±iu−(x+iV (x)))

√
1 + V (x)2 dx ≤ 2

∫
T
ku(θ±iu−(x+iV (x))) dx

(19)
Let us consider separately two parts of our curve: the set X = {x ∈ [θ−2u, θ+2u] : |V (x)| >

u/2}, and the remainder T\X. Using (18) on T\X, we can bound

ku(θ ± iu− (x+ iV (x))) ≤ Cu +


u

(x−θ)2+(u/2)2 , |x− θ| < u/2
1

x−θ , |x− θ| ∈ [u/2, 2u]
4u

(x−θ)2+4u2 , |x− θ| > 2u.

This means that the T\X contribution to (19) gives∫
T\X

ku(θ ± iu− (x+ iV (x))) dx ≤ |T\X|Cu + π + log 4.

On the other hand for x ∈ X,

u ≤ ℑv(x+ it) ≤
∫ t

0

|v′(x+ iτ)|dτ ≤ teDζ
α

|v′(x+ it)|

18



by Hölder distortion on Tζ , so for x ∈ X,

|v′(x+ it)|−1 ≤ 2teDζ
α

/u ≤ 2ζeDζ
α

/u.

As a result, the direction of the curve v(wX + it) varies as an α-Hölder function of arc-length
with constant D(2γeDζ

α

)α, and so V ′ = tan arg v′ has an α-Hölder constant 4D(2γeDζ
α

/u)α =:
Kαu−α.

Now let us consider the curve x+ iV (x) for x close to θ. Since V must lie in [−u, u], it must
reach a maximum (resp. minimum) in [−u, u], and so

|V ′(θ)| ≤ K ′
(
u−V (θ)

u

)α/(α+1)

(20)

with K ′ = K α
α+1 . Taylor approximation gives us that

|V (x)−V (θ)
u − V ′(θ)x−θu | ≤ K ′′|x−θu |1+α. (21)

with K ′′ = 1
1+αK

α. Combining the previous two equations we get that

K ′
(
u−V (θ)

u

) α
α+1

(x− θ)−K ′′|x−θu |1+α ≤ V (x)−V (θ)
u ≤ K ′

(
u−V (θ)

u

) α
α+1

(x− θ) +K ′′|x−θu |1+α

(22)
Noting the scaling of this equation with u, the fact that the length of X must be less than 2u,
and the bound for ku in (18), we find there exists a uniform bound∫

T\X
ku(θ ± iu− (x+ iV (x))) dx ≤ |X|Cu + C ′

for C ′ independent of u. Substituting this and (A) into (19) we get∫
v(wT+it)

ku(θ ± iu− z) ≤ 2πCu + π + log 4 + C ′ ≤ 2πCζ + π + log 4 = C ′′.

Substituting this into (17) gives the required uniform bound.

We will need the following result to relate different Ap spaces with each other, allowing us
to prove Theorem 5.1:

Lemma A.1. For t ∈ [0, ζ], u > γ−1t, and p, p′ ∈ [1,∞], L̃t,µ : Ap
u → Ap′

t is bounded.

Proof. Proposition 5.2 tells us that L̃t,µ is bounded A∞
γ−1t → A∞

t . We then need to resolve the
integrability parameters.

The boundedness of the kernel ku(x+ iy) for y > 0 via (18) means that, by the definition of
(14), Iu is bounded Ap

u → A∞
γ−1t, and therefore so is function inclusion. On the other hand, Lp

inclusions on the boundary gives a bounded inclusion from Ap′

t → A∞
t .

Proof of Theorem 5.1. The spaces A2
t are Hilbert spaces with the L2(∂Tζ) inner product. As

a result, for any t ∈ [0, ζ], u > γ−1t there exists an operator J u,t
µ : A2

t → A2
u adjoint to

L̃t,µ : A2
u → A2

t . We can then say that

∥L̃t,µ∥2A2
u→A2

t
= ∥L̃t,µJ u,t

µ ∥A2
u
,

and in fact by self-adjointness of L̃t,µJ u,t
µ that

∥L̃t,µ∥2A2
u→A2

t
= n

√
∥(L̃t,µJ u,t

µ )n∥A2
u
.

Now,
∥(L̃t,µJ u,t

µ )n∥A2
u
≤ ∥L̃t,µ∥A1

t→A2
u
∥(J u,t

µ L̃t,µ)∥n−1
A1

t
∥J u,t

µ ∥A2
u→A1

t
.
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Since A2
t has a bounded inclusion into A1

t , J u,t
µ is bounded A2

u → A1
t ; by the previous lemma,

L̃t,µ is bounded A1
t → A2

u. All the operators in the above expression are therefore bounded, and
in particular for some C,

∥L̃t,µ∥2A2
u→A2

t
≤ inf
n≥1

n

√
C∥(J u,t

µ L̃t,µ)∥n−1
A1

t
= ∥J u,t

µ L̃t,µ∥A1
t
. (23)

Suppose then that φ ∈ A2
t , and so J u,t

µ L̃t,µφ is as well. Defining ω = It
[

J u,t
µ L̃t,µφ

|J u,t
µ L̃t,µφ|

]
∈ A∞

µ

we have that almost everywhere on the boundary of Tt,

ω̄J u,t
µ L̃t,µφ = |J u,t

µ L̃t,µφ|.

We then have

∥J u,t
µ L̃t,µφ∥A1

t
=

1

4π

∫
T
(ω̄J u,t

µ L̃t,µφ)(θ + iζ) + (ω̄J u,t
µ L̃t,µφ)(θ − iζ) dθ

= ⟨ω,J u,t
µ L̃t,µφ⟩A2

t
= ⟨L̃t,µω, L̃t,µφ⟩A2

t

=
1

4π

∫
T
(Lµω L̃t,µφ)(θ + iζ) + (Lµω L̃t,µφ)(θ − iζ) dθ

≤ ∥Lµ∥A∞
t

1

4π

∫
T
(L̃t,µφ)(θ + iζ) + (L̃t,µφ)(θ − iζ) dθ

≤ ∥Lµ∥A∞
t
∥Lµ∥A1

t
∥φ∥A1

t

Applying Propositions 5.2 and 5.3 for A spaces, and substituting into (23), gives us what we
want when φ ∈ A2

t . Since A2
t is dense in A1

t , we obtain the full result by interpolation.
We can of course then go back and restrict to looking at Lµ on H2

u → H2
t .
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