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Algebras

From the MAGMA Handbook:

In MAGMA a finitely-presented algebra (FPA) is a quotient of a free
associative algebra by an ideal of relations.

To compute with these ideals of relations, one constructs
noncommutative Gröbner bases, which have many parallels with
commutative Gröbner bases.

At the heart of the theory is a noncommutative version of the
Buchberger algorithm which computes a Gröbner basis of an ideal of
an algebra starting from an arbitrary basis (generating set) of the ideal.

One significant difference with the commutative case is that a
noncommutative Gröbner basis may not be finite for a
finitely-generated ideal.



3/32

The type hierarchy: varieties and categories

There are many types of algebras in MAGMA. For example
> M := MatrixAlgebra(GF(5),4); Type(M), IsAssociative(M);
AlgMat true

Alg

AlgGen

AlgAss AlgLie

AlgQuat

AlgMat

AlgGrpAlgClff

AlgFP AlgExt

Rng

> ISA(AlgMat,AlgAss), ISA(AlgClff,AlgAss), ISA(AlgAss,Rng);
false true true

Other types: Heck algebras, universal enveloping algebras (AlgUE),
quantized universal enveloping algebras (AlgQUE) and many more.
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Clifford Algebras
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Quadratic forms and Clifford algebras

Let V be a finite-dimensional vector space over a field F
and let Q : V → F be a quadratic form with polar form β;
i.e., β(u, v) =Q(u + v)−Q(u)−Q(v).

The Clifford algebra of Q is an F-algebra C with identity 1 and a linear
map f : V →C such that

f (v)2 =Q(v)1 for all v ∈V .

Then f (u) f (v)+ f (v) f (u) =β(u, v)1.

For example:
> Q := StandardQuadraticForm(4,GF(11));
> C, V, f := CliffordAlgebra(Q);
> Dimension(C), One(C);
16 ( 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

The dimension of a Clifford algebra is 2n , where n = dimV .
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Exterior algebras

An exterior algebra is the Clifford of a quadratic form that is identically
zero. MAGMA returns a structure constant algebra of type AlgClff.

However, MAGMA’s intrinsic ExteriorAlgebra returns a quotient of a
free algebra and even though AlgExt does not inherit from AlgFP most
of the operations applicable to finitely presented algebras can be used.
The Gröbner basis machinery applies to algebras of type AlgExt.
> E<w,x,y,z> := ExteriorAlgebra(GF(11),4);
> I := ideal< E | w*x + y*z >;
> B := quo< E | I>; B;
Affine Algebra of rank 4 over GF(11)
Graded Reverse Lexicographical (exterior algebra) Order
Variables: w, x, y, z
Quotient relations:
[

w*x + y*z
]
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Homomorphisms

To construct a homomorphism from an exterior algebra of type AlgExt
to another algebra we only need to supply the images of the basis
elements.
> C := CliffordAlgebra( ZeroMatrix(GF(11),4,4) );
> E<w,x,y,z> := ExteriorAlgebra(GF(11),4);

The vector space V and the embedding f : V →C can be obtained as
attributes of C ; namely C‘space and C‘embedding.
> h := hom< E -> C | [C‘embedding(v) : v in Basis(C‘space)] >;

The constructor hom returns a linear map but MAGMA makes no
attempt to check whether it preserves multiplication. But we can
check directly.
> forall{ <s,t> : s, t in [w,x,y,z] | h(s*t) eq h(s)*h(t) };
true
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Clifford algebras of forms in dimension 2

> I := IdentityMatrix(Rationals(),2);
> C1<e1,e2>, V1, f1 := CliffordAlgebra(I);
> C2<i,j>, V2, f2 := CliffordAlgebra(-I);
> J := Matrix(Rationals(),[[1,0],[0,-1]]);
> C3<u1,u2>, V3, f3 := CliffordAlgebra(J);

C1 is the algebra of 2×2 matrices over the rationals.
C2 is the algebra of quaternions with rational coefficients.
> U := [e1,e1*e2];
> Matrix(2,2,[ (U[s]*U[t] + U[t]*U[s])[1]/2 : s,t in [1,2] ]);
[ 1 0]
[ 0 -1]

> phi := hom< C3 -> C1 | [One(C1),e1,e1*e2,e2 ] >;
> forall<s,t> : s,t in Basis(C3) | phi(s*t) eq phi(s)*phi(t) ;
true

Therefore C3 is isomorphic to C1.
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Finitely presented algebras

The free associative algebra of rank n over a field K is the set of
K -linear combinations of noncommutative polynomials in n
indeterminates. This is the tensor algebra of the vector space K n .

A finitely presented algebra is the quotient of a free algebra by an
ideal.

The Clifford algebra C1 of the previous slide can be constructed as a
finitely presented algebra.
> F<x1,x2> := FreeAlgebra(Rationals(),2);
> I := ideal< F | x1^2 - 1, x2^2 - 1, x1*x2 + x2*x1 >;
> C<e1,e2> := quo< F | I >;
> Rank(C), Dimension(C), Type(C);
2 4 AlgFP

> f := e1 + 3*e2 + 4 *e1*e2 + 6;
> LeadingTerm(f);
-4*e2*e1
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Reflections

Suppose that f : V →C is the Clifford algebra of a quadratic form Q.

If a ∈ f (V ) is invertible, the map f (V ) → f (V ) : b 7→ −a−1ba is the
reflection in the hyperplane orthogonal to a.

The reflections generate the orthogonal group of Q.
> F<z> := GF(9);
> Q := StandardQuadraticForm(4,F);
> C,V,f := CliffordAlgebra(Q);
> I := IsometryGroup(V);
> a := f(z*V.2 + V.3);
> M := -Matrix([(a^-1*f(b)*a) @@ f : b in Basis(V)]);
> M in I, IsReflection(M);
true
true ( 0 z 1 0) ( 0 z^7 1 0)
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The Clifford Group

The Clifford group of the Clifford algebra f : V →C is

Γ= { s : s ∈C | s is invertible and s−1 f (v)s ∈ f (V ) for all v ∈V }.

The map χ : Γ→ GL(V ) such that f (vχ(s)) = s−1 f (v)s is the vector
representation of Γ. If s ∈ Γ∩ f (V ), then −χ(s) is a reflection.

If dimV is even, the image of χ is an orthogonal group (the isometry
group of the quadratic space V ).
> H := sub<GL(4,F)|
> [VectorAction(f(g)) : g in V | QuadraticNorm(g) in {1,z}] >;
> H eq I;
true

Exercise. Suppose that a,b ∈ f (V ) and a is invertible. Show that
a−1ba ∈ f (V ).

Exercise. Find the image of χ when dimV is odd.
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The main involution

Let C+ (resp. C−) be the subspace spanned by products of an even
(resp. odd) number of basis elements. Then C+ is a subalgebra and
C =C+⊕C−.

The main involution of C is the linear map J : C →C such that
J (u) = u for u ∈C+ and J (u) =−u for u ∈C−. It is an automorphism.
> J := MainInvolution(C);
> Cplus := EvenSubalgebra(C);
> forall{<u,v> : u,v in Basis(V) |
> J(f(u)*f(v)) eq J(f(u))*J(f(v))};

Exercise. Suppose that f : V →C is a Clifford algebra over F. Write a
MAGMA function derivation(C,lambda) that takes a linear functional
λ : V → F and returns a derivation d : C →C such that d( f (v)) =λ(v)1
and d(x y) = d(x)y + J (x)d(y) for all x, y ∈C .



13/32

More exercises

Exercise 1
> F := RationalField();
> Q := DiagonalMatrix(F,[1,-2,-5]);
> C,V,f := CliffordAlgebra(Q);
> E, h := EvenSubalgebra(C);

Show that E is a generalised quaternion algebra.

Exercise 2
> Q := StandardQuadraticForm(4,GF(25));
> C := CliffordAlgebra(Q);
> E := EvenSubalgebra(C);

Show that E is not simple. Find orthogonal central idempotents that
generate its ideals. (Hint. Check out DirectSumDecomposition.)

Exercise 3
> F<w> := GF(25);
> Q := StandardQuadraticForm(5,F);
> C := CliffordAlgebra(w*Q);

Show that C is the algebra of 4×4 matrices over the field F625.
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The Spin group

The mapping that reverses the multiplication is the
main antiautomorphism of C ; its square is the identity.

The special Clifford group is Γ+ = Γ∩C+.

The spin group is Spin(V ,Q) = { s ∈ Γ+ |α(s)s = 1},
where α is the main antiautomorphism of C .

Suppose that s = f (u) and t = f (v) where u, v ∈V are orthogonal and
Q(u) = 0. Then st −1 ∈ Spin(V ,Q) and χ(uv −1) is a Siegel
transformation.
> s := f(V.1);
> t := f(V.2);
> VectorAction(s*t - One(C)) eq SiegelTransformation(V.1,V.2);
true

The Siegel transformations generate the group Ω(V ,Q).
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Spin representations

If the dimension of V is even, the Clifford algebra C of Q is simple. A
minimal right ideal of C is a spin representation and its elements are
spinors. The minimal right ideals of C+ are the half spin spaces.

The restrictions to the groups Γ, Γ+ and Spin(V ,Q) are also called
spin representations.
> F<z> := GF(9);
> Q := StandardQuadraticForm(6,F);
> C,V,f := CliffordAlgebra(Q);
> S := MinimalRightIdeals(C : Limit := 1)[1];
> Dimension(S);
8
> s := f(V.1); t := f(V.2); g := s*t - One(C);
> m := VectorAction(g); n := ActionMatrix(S,g);
> IsUnipotent(m), IsUnipotent(n), IsUnipotent(-n);
true 2
false
true 2
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Spin+(6,9)

Collect 6 random Siegel elements of Spin+(6,9) and find the group
they generate in the spin representation.
> X := { };
> for random u in V do
> if u eq 0 or QuadraticNorm(u) ne 0 then continue; end if;
> for random v in V do
> if v ne 0 and DotProduct(u,v) eq 0 then Include(~X,<u,v>);
> break;
> end if;
> end for;
> if #X ge 6 then break; end if;
> end for;
> H := sub<GL(Dimension(S),F) | [ActionMatrix(S,f(u)*f(v) - One(C))
> : p in X | true where u,v is Explode(p) ]>;
> LMGFactoredOrder(H), FactoredOrder(OmegaPlus(6,F));
[ <2, 12>, <3, 12>, <5, 2>, <7, 1>, <13, 1>, <41, 1> ]
[ <2, 11>, <3, 12>, <5, 2>, <7, 1>, <13, 1>, <41, 1> ]
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Minkowski space

> Q := DiagonalMatrix(Rationals(),[1,1,1,-1]);
> C<e1,e2,e3,e4>, V, f := CliffordAlgebra(Q);
> IsSimple(C), Dimension(Centre(C));
true 1

C is the central simple algebra of 4×4 matrices over Q.
> E, h := EvenSubalgebra(C);
> Z := Centre(E); i := Z.2;
> IsSimple(E), Dimension(E), Dimension(Z), i^2;
true 8 2 (-1 0)
> AsPolynomial(h(i));
e1*e2*e3*e4

E is the central simple algebra of 2×2 matrices over Q[i ].
> ee := (1/2)*(1 - e1*e4);
> ff := (1/2)*(1 + e1*e4);
> R, r := rideal< E | ee >;
> S, s := rideal< E | ff >;
> Dimension(R), Dimension(S);
4 4
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Exercise: Pauli matrices

Let E be the even subalgebra of the Clifford algebra of the quadratic
form Q over the rationals with signature (3,1).
> Q := DiagonalMatrix(Rationals(),[1,1,1,-1]);
> C<e1,e2,e3,e4>, V, f := CliffordAlgebra(Q);
> E, h := EvenSubalgebra(C);
> Z := Centre(E);

Let R be the right ideal
> R, r := rideal< E | (1/2)*(1 - e1*e4) >;

Observe that Z is isomorphic to the Gaussian field Q[i ]
and that R is a vector space of dimension 2 over Z. Check that
{-e1*e2*e3*e4+e2*e3, e1*e2-e2*e4} is a Z-basis for R.

Identifying Z with Q[i ], write a MAGMA function that returns the
matrix in M2(Q[i ]) of an element of E acting on R.

Show that the matrices of e4*e3, e4*e2 and e4*e1 are the Pauli
matrices.
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Group Algebras
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Representations

The group algebra of a finite group G with coefficients from a field (or
ring) K is the K -space K [G] of formal sums

∑
g∈G ag g with coefficients

ag ∈ K and multiplication inherited from G.

Let χ j (1 ≤ j ≤ m) be the irreducible complex characters of G, let
ρ j : G → GL(W j ) be a representation corresponding to χ j and put
n j = dim(W j ).

Define ρ̃ j :C[G] → End(W j ) :
∑

g∈G ag g 7→∑
g∈G agρ j (g ). The family(

ρ̃ j
)

1≤ j≤m defines the Fourier transform

ρ̃ :C[G] →
m∏

j=1
End(W j ) '

m∏
j=1

Mn j (C).

The group algebra C[G] is semisimple and ρ̃ is an isomorphism.
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Splitting the regular representation

In MAGMA C is not an ‘exact field’. However, the irreducible
representations of G can always be written over the field of nth roots
of unity, where n is the exponent of G (Richard Brauer).

For example, Q[w], where w3 = 1 is a splitting field for Alt(4).
> G := AlternatingGroup(4);
> F<w> := CyclotomicField(3 : Sparse);
> A := GroupAlgebra(F,G);
> R, rho := RegularRepresentation(A);
> V := GModule(sub<GL(#G,F) | [rho(G.i) : i in [1..Ngens(G)]]>);
> dsd := DirectSumDecomposition(V);
> [Dimension(X) : X in dsd];
[ 1, 1, 1, 3, 3, 3 ]
> ActionGenerators(dsd[4]);
[

[-1 0 0] [ 0 1 1]
[ 0 0 1] [ 1 0 -1]
[ 0 1 0], [ 0 1 0]

]
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Fourier inversion

Collect the representations G → GL(W j ).
> irreps := IrreducibleModules(G,F); // intrinsic
> sigma := [hom< G -> GL(Dimension(W),F) | ActionGenerators(W) >
> : W in irreps];

Let ρ̃ j (1 ≤ j ≤ m) be the irreducible representations of F [G]. Suppose
that U = [u1, . . . ,um] where u j ∈ im ρ̃ j . The following function returns
u ∈ F [G] such that ρ̃ j (u) = u j for all j .
> fourierInv := func< A,sigma,U | // A is the group algebra
> &+[ &+[Nrows(u)*Trace(sigma[i](s^-1)*u) : i -> u in U]*A!s
> : s in Group(A) ] >;

Check.
> U := < rho(Random(G)) : rho in sigma >;
> fourierInv(A,sigma,U);

(-w + 1)*Id(G) + (-w + 1)*(1, 2)(3, 4) + (-w + 1)*(1, 3, 2) + (-w + 1)*(1, 4, 3)
+ (-w + 1)*(2, 3, 4) + (-w + 1)*(1, 2, 4) + (2*w - 2)*(1, 3, 4) + (2*w - 2)*(1, 4, 2)
+ (2*w + 10)*(2, 4, 3) + (2*w - 2)*(1, 2, 3) + (-w + 1)*(1, 3)(2, 4) + (-w + 1)*(1, 4)(2, 3)
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Matrix Algebras
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Groups, modules and algebras

The MAGMA function PermutationModule(G,H,F) creates the
G-module over the field F from the action of the group G on the
cosets of a subgroup H . The function Action returns the matrix
algebra giving the action on the module. The group itself is returned
by MatrixGroup.
> G := Sym(7);
> H := YoungSubgroup([3,3,1]);
> M := PermutationModule(G,H,GF(2));
> A := Action(M);
> W := MatrixGroup(M);
> Type(W), #W, #G, Index(G,H); A:Minimal;
GrpMat 5040 5040
Matrix Algebra of degree 140 and dimension 2124

with 2 generators over GF(2)
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Records

MAGMA is capable of generating a considerable amount of information
about an algebra. In many cases the data is returned as a record or as
a sequence of records. To access the data in a field xxx in a record r,
use r‘xxx.

For example, if A is the action algebra of the permutation module
from the previous example we have
> r := AlgebraGenerators(A);
> Names(r);
[ FieldGenerators, PermutationMatrices, PrimitiveIdempotents,
RadicalGenerators,SequenceRadicalGenerators,
GeneratingPolynomialsForCenters, StandardFormConjugationMatrices ]
> #r‘PrimitiveIdempotents;
5

This implies that A modulo its Jacobson radical is the direct sum of
five simple algebras. We can check this directly.
> J := JacobsonRadical(A);
> dd := DirectSumDecomposition(A/J); #dd;
5
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Simple quotients

There is a faster way to find the decomposition of A and it returns a
lot more information.
> sq := SimpleQuotientAlgebras(A);
> Names(sq);
[ SimpleQuotients, DegreesOverCenters, DegreesOfCenters,

OrdersOfCenters ]
> sq‘DegreesOverCenters;
[ 20, 14, 8, 6, 1 ]
> sq‘DegreesOfCenters;
[ 1, 1, 1, 1, 1 ]
> sq‘OrdersOfCenters;
[ 2, 2, 2, 2, 2 ]
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Generators, idempotents, presentations

Suppose that K is a finite field. The quotient A/J (A) of a K -algebra A
by its Jacobson radical is a direct sum of full matrix algebras Ai over
extension fields Ki of K .

For each i there is a primitive idempotent ei such that ei Ai ei ' Ki .

The algebra Ai can be generated by elements bi and ti such that
bni

i = ei and ti is conjugate to a permutation matrix of degree ni ,
were ni = |Ki |. If e =∑

i ei , then e Ae is the condensed algebra of A; it
is Morita equivalent to A.
> G := Sym(7);
> H := DirectProduct(Sym(3),Sym(3));
> M := PermutationModule(G, G !! H, GF(3));
> A := Action(M);
> pp := PrimitiveIdempotents(A);
> P, J, mu := Presentation(A);
> C := CondensedAlgebra(A);
> #pp, "|", Dimension(A), Degree(A), "|", Dimension(C), Degree(C);
7 | 2319 140 | 30 18
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Basic Algebras
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Definition

From the Chapter 92 (by Jon Carlson) of the Handbook:

A basic algebra is a finite dimensional algebra over a field, all of whose
simple modules have dimension one.

In the literature such an algebra is known as a “split” basic algebra.

Every algebra is Morita equivalent to a basic algebra, though a field
extension may be necessary to obtain the split basic algebra.

MAGMA has several functions that create the basic algebras
corresponding to algebras of different types.

The type AlgBas in Magma is optimized for the purposes of doing
homological calculations.
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Example

Continuing the previous example of a permutation module of Sym(7).
> B := BasicAlgebraOfMatrixAlgebra(A);
> B;
Basic algebra of dimension 30 over GF(3)
Number of projective modules: 7
Number of generators: 17

Compare this with the condensed algebra.
> C := CondensedAlgebra(A);
> C;
Matrix Algebra of degree 18 with 17 generators over GF(3)
> R := JacobsonRadical(C);
> C/R;
Associative Algebra of dimension 7 with base ring GF(3)
> IsCommutative($1);
true
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Idempotents and projective modules

Suppose A is a finite dimensional algebra over a field F . If e1, . . . , es

are primitive orthogonal idempotents such that 1 = e1 +·· ·+es , then A
is the direct sum of the indecomposable (a.k.a. projective) right
A-modules ei A. If A is basic, then ei A ' e j A iff i = j .

Number the ei so that e1 A, . . . , et A represent the isomorphism
classes of projective indecomposable modules. Then e Ae is a basic
algebra for A.
> P := PermutationGroup(ATLASGroup("2A7"));
> M := PermutationModule(P,Stabiliser(P,1),GF(2));
> A := Action(M);
Matrix Algebra of degree 240 with 2 generators over GF(2)
> C := CondensedAlgebra(A); C;
Matrix Algebra of degree 36 with 15 generators over GF(2)
> CartanMatrix(A);
[3 2 0 0 0 4]
[2 3 0 0 0 4]
[0 0 7 4 4 0]
[0 0 4 4 2 0]
[0 0 4 2 4 0]
[4 4 0 0 0 8]
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Basic algebras of blocks

Here is an example from Jon Carlson showing that the basic algebra of
the principal block of the double cover of Alt(7) is isomorphic to the
basic algebra of the second block of the double cover of Alt(9).
> A := BasicAlgebraFromGroup("2A7",2,1); A;
Basic algebra of dimension 38 over GF(2)
Number of projective modules: 3
Number of generators: 8
> B := BasicAlgebraFromGroup("2A9",2,2); B;
Basic algebra of dimension 38 over GF(2)
Number of projective modules: 3
Number of generators: 8
> IsIsomorphic(A,B);
true Mapping from: AlgBas: A to AlgBas: B


