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1. Recall from the lecture that the octonions over a ring R have a basis e, es, ..., eg such
that €2 = 1 (for i > 2) and e;e; = (i, j, k)ex, for a choice of signs £(4, j, k) = +1 where
{i,7,k} belongs to

fano := {@ <2 + n, 2 + (n+1) mod 7, 2 + (n+3) mod 7> : n in [0..6] @};

Let A = O(Q) denote the algebra of octonions over the rational field Q,
(a) Let a be the matrix corresponding to the permutation (2,3,4,5,6,7,8). Show that
a is an automorphism of A that permutes the vectors =*e;.
Hint: PERMUTATIONMATRIX( . . . )
Solution: First construct the octonions as a structure constant algebra as in the
lecture.
T = [<f[19],f[29],f[39],SIGN(g)> : g in SYM(3), f in fano];
T cat:= [ <i,i,1,—1> :iin[2..8] |;
T cat:= [ <1,i,i,1> :iin [1..8] ] cat [<i,1,i,1> :iin [2..8] |;
octonions := func< R | ALGEBRA< R, 8 | T > >;
A := octonions(RATIONALS());

Convert the permutation to a permutation matrix over the rationals.
a := PERMUTATIONMATRIX(RATIONALS(), SYM(8) ! (2,3,4,5,6,7,8));

Check that a preserves multiplication of basis elements.
B := BasIs(A);
forall{<u,v> : u,v in B | (uxv)xa eq (uxa)x(v*a) };
true
BB := B cat [-v : v in B];
forall{e : e in BB | exa in BB };

(b) Let by be the permutation (2,7)(3,4). Show that by is an automorphism of the 7-
point plane defined by fano. Then find a diagonal matrix d = diag(+1, +1,...,+1)
such that db is an automorphism of A that permutes the vectors +e;, where b is
the permutation matrix of bg.

Solution: First change the ‘lines’ of the 7-point plane to 3-element sets instead
of triples.

sfano := {@{2 + n, 2 + (n+1) mod 7, 2 + (n+3) mod 7} : n in [0..6]@};
by := SYym(8) ! (2,7)(3,4);

Check that by preserves the lines.
forall{/n : In in sfano | In® in sfano };

true

To find the diagonal matrix, define a function isAuto(A, g) to check whether a matrix
g is an automorphism of A.
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isAuto := func< A, g |
forall{<u,v> : u,v in BASIS(A) | (uxv)xg eq (uxg)x(vxg) } >;

Convert b to a permutation matrix.

b := PERMUTATIONMATRIX(RATIONALS(), by ) ;

A moments thought shows that we only need to find the signs at positions 2, 3, 4
and 7.
for s3, 53,584,587 in [1,—1] do
do := DIAGONALMATRIX(RATIONALS(), [1, S2, S3, 54,1, 1,57, 1]);
if isAuto(A, dyxb) then sg,s3,54,57; d := do; end if;
end for;

11-1-1
-1-111

(c) Let G be the subgroup of GL(8,Q) generated by the matrices a and db. Show that
the order of G is 1344 and that G has a normal abelian subgroup E of order 8
such that the quotient G/E is isomorphic to SL(3,2). Furthermore, this extension
is non-split; that is, there is no subgroup of G isomorphic to SL(3,2).

Solution: Using the matrix d found in the previous part of this exercise we have

G := sub<GL(8,RATIONALS()) | a, dxb >;
#G;

1344

E := pCORE(G,2);

#E ;

8

S:=quo< G| E >;

check := ISISOMORPHIC(S,SL(3,2)); check ;

true
Use the second cohomology group to find the type of the extension.
832 = SL(3,2);

V := GMODULE(S32);

CM := COHOMOLOGYMODULE(S32, V) ;
Hsy := COHOMOLOGYGROUP(CM, 2);
Ha;

Full Vector space of degree 1 over GF(2)

extn; := EXTENSION(CM, Hy ! [0]);
extny := EXTENSION(CM, Ha | [1]);

Convert from GRPFP to a permutation group so that we can use ISISOMORPHIC.

perm; := COSETIMAGE(extn;, sub<extn;|>);
ok := ISISOMORPHIC(perm;,AGL(3,2)); ok;

true
permy := COSETIMAGE(extns, sub<extng|>);
ok := ISISOMORPHIC(perms, G);

true



2. Let M be the set of elements of norm 1 in the integral octonions.

(a) Show that the elements of M satisfy the alternative laws: (zy)z = z(yx), z(zy) =
22y, (zy)y = xy? but M is not associative.

Solution: Recall that the ring of integral octonions is a maximal order in the
algebra A of octonions over the rationals.

X := { INcLUDE( {h™ : h in line}, 2 ') : line in fano }
where 7 is SYm(8) ! (1,2); X;
X join:= {{1..8} diff x : x in X };
Change the elements of X to sequences.
X = { SETSEQ(X) : x in X };
Define the Moufang loop M.
M:={axx :xinB, ain{1,—1} };
M join:= {(axB|p[1]]+bxB|p[2]]+c*B|p[3]]+d*B[p[4]])/2 :
a,b,c,d in {1,—-1}, p in X};

Check the alternative laws:
forall{<x,y> :x,y in M | (xxy)xx eq xx(y*x) and xx(xxy) eq x2xy
and (xxy)xy eq xxy? };

true
Check non-associativity:
exists{ <x,y,z> : x,y,z in M | (xxy)xz ne xx(yxz) };
true
(b) Show that every element of M has an inverse.

Solution:
conj = func< & | 2«£[1]%PARENT(E) 1 1—£>;
forall{ x : x in M | xxconj(x) eq 1 };

true

(¢) The reflection r, in the hyperplane orthogonal to « is

2
vrq = v — [v, a]a where [v,a] = (v,a)'
(a, @)
In O(Q) we have (u,v) = uv + vu and so for a € M we have vr, = —ava.

norm := func< & | (§xconj(€))[1] >;
ref := func< a, v | —axconj(v)xa / norm(a) >;
refmat := func< a | MATRIXRING(BASERING(P), DIMENSION(P)) !
[ref(a,x) : x in BAsIS(P)] where P is PARENT(a) >;

Use MAGMA to check that M is a root system. That is,
o 0¢ M,
e For all « € M the reflection r, leaves M invariant,
e For all «, 5 € M the Cartan coefficient [a, 3] is an integer.

Solution:

0 notin M,
forall{<a,b> : a,b in M | ref(a,b) in M },
{ (uxconj(v) + vxconj(u))[1] : u,v in M };

true true {-2, -1, 0, 1, 2}



If w has order 3, the map =z — wzw is an automorphism of OQz. The matrix of this
automorphism is autmat(w), where

aut := func< a, v | a% eq 1 select a®xvxa else 0 >;
autmat := func< a | MATRIXRING(BASERING(P), DIMENSION(P)) !

[aut(a,x) : x in BASIS(P)] where P is PARENT(a) >;

Let gens be the set of all automorphisms of Oy constructed from the elements of order 3
in M and let G be the group they generate.

(a) Show that the elements of gens are involutions and that G can be generated by

three of them.

Solution:
trace := func< & | 2x£[1] >;
Ms := [ x : x in M | trace(x) eq —1 ];

reps == [ REP(Q) : Q in {{x,x "'} : x in M3}];
gens := [ autmat(w) : w in reps |;
{ ORDER(g) : g in gens };

{3}
G := sub<GL(8,RATIONALS()) | gens >;
exists{ g : g in gens | G eq sub< G | gens[1],gens[2],g > };
true

Find the orbits of G on M and their lengths.

Solution: The elements of G act on the underlying vector space of the algebra
A of rational quaternions. First check that the elements of order 3 form a single
orbit as do the elements of order 6.

V := VECTORSPACE(A);
#Ms;
56
w = REP(M3);
orbs :={w=xg:ginG};
orbg :={ —g : g in orbs };
#orbs, #orbg, orbs eq orbg;
56 56 false
Similarly the elements of order 4 form a single orbit.
My:=[x:xinM|x?eq—1];
i := REP(My);
oby :={ixg:ginG};
#orby, SET(orby) eq SET(My);
126 true

Since G fixes 1 and —1 this accounts for all the elements of M.
Show that the set My of elements of order 4 in M is a root system of type E7.

Solution: Since My is a subset of M, which is a root system of type Ejg, in order
to check that it is a root system it is enough to show that for all a,b in My we have
ary € My where 1, denotes the reflection.

forall{ <a,b> : a,b in My | ref(a,b) in My };

true



Find positive roots and simple roots using the code from the lecture.
z:=Al[2 :iin[1..8]];
P :={@ v : v in My | INNERPRODUCT(Z,v) gt 0 @};
S := P diff {@ u+v : u,vin P | u+v in P @};
CHANGEUNIVERSE(~S, V);
C := MATRIX(INTEGERS(), #S,#S, [2*(a,b)/(b,b) : a,b in S]);
DYNKINDIAGRAM(C) ;

E7 65-6-3-1-7-4
|
2

(d) Let i be an element of My and let G be its stabiliser in G. Find the lengths of the
orbits of Gy on My.

Solution: Using the element ¢ in My from above:

Go := STABILISER(G, V !i);

orbs := [[;

while &+[INTEGERS()| #00 : 00 in orbs | It #M, do
j :=rep{ v :vin M, | v notin &oin orbs };
APPEND(~orbs, { jxg : g in Gy });

end while;

[#00 : o0 in orbs |;

[ 48, 12, 16, 16, 16, 16, 1, 1 ]

4. Find all semisimple root data (up to isomorphism) of type As. (Hint: Let C' be a Cartan
matrix of type A3 and consider factorisations C' = ABT.)

Solution:
Cs := CARTANMATRIX(“A3");
Is := IDENTITYMATRIX(INTEGERS(), 3);
As = MATRlx([[1,0,0],[0,1,0] [1,0,2]]);
B; := MATRIX([[2, —1,—1],[-1,2,0],[0,—1,1]]);
Cs; A3xTRANSPOSE(B3) eq Cs;

[ 2 -1 0]
[-1 2 -1]
[ 0-1 2]
true

R1 := RootDATUM(/3, C3);
Ry := ROOTDATUM(C3, I3);
Rs := ROOTDATUM(A3, Bs);
ISISOMORPHIC(R1, R2), ISISOMORPHIC(Rz2, R3), ISISOMORPHIC(R1, R3);

false false false

5. The MAGMA code

P<x> := POLYNOMIALRING(RATIONALS());
F<7> := NUMBERFIELD(x2 — x —1);

creates the field F' generated over the rationals by the element 7 such that 72 = 7 + 1.
Then the code



H<i,j, k> := QUATERNIONALGEBRA< F | —1, —1 >;
creates the algebra of quaternions over F' with basis 1, 4, j, k such that
i? =42 =k =ijk=—1.

Let
7= 1/2)x(—1 +i+j+ k);
o= (1/2)*(7_1 i +Tx));
X :={H!1,7,0};

and let I be the smallest multiplicatively closed subset of H containing X.
(a) Show that I is isomorphic to SL(2,5).
Solution:

IT := MATRIX(F,4,4,[ ELTSEQ(b*7) : b in BASIS(H) ]);

Y := MATRIX(F,4,4,[ ELTSEQ(b*0) : b in BASIS(H) ]);

S, f:= sub< GL(4,F) | II,LY >;

I:={H!f(g)[1]:9in S };

X subset | and forall{ <x,y> : x,y in | | xxy in I};

true
bool, _ := ISISOMORPHIC(S,SL(2,5)); bool;

true

(b) Show that I is a root system (when considered as a subset of H). What is its
Cartan type?

Solution:
S :=[m, —0];
APPEND(~S, rep{ s : s in | | INNERPRODUCT(S, S[1]) eq 0 and
2xINNERPRODUCT(S, S[2]) eq —1 });
APPEND(~S, rep{ s : s in | | INNERPRODUCT(S, S[1]) eq 0 and
INNERPRODUCT(S, S[2]) eq 0 and 2xINNERPRODUCT(S, S[3]) eq —7 });
CARTANNAME( MATRIX(F, 4,4, [2xINNERPRODUCT(S, t) : s,t in S]) );

H4

. Let p be a prime and let S be the simply connected group of Lie type A and rank 1 over
the finite field of p elements. For p = 2,3,5 find the dimensions of the highest weight
representations of S (as computed by MAGMA)?

Solution:
for p in [2,3,5] do
S := GROUPOFLIETYPE(“A1", GF(p) : ISOGENY := “sC”);
[DIMENSION(CODOMAIN(HIGHESTWEIGHTREPRESENTATION(S, [n]))) = n in [1..2xp+1]];
end for;

[ 2, 3, 4, 5, 6]
[ 2, 3, 4,5,6,7, 8]
(2, 3, 4,5,6,7,8,9, 10, 11, 12 ]



