let h^2=6; let z^6=-z^3-1$ % 9-th root of 1 phiz:=z^4$ phi2z:=z^7$ s:=1+2*z^3$ % square root of -3. U:=h*s/3$ % square root of -2. ID3:=mat((1,0,0), (0,1,0), (0,0,1))$ ZEROMAT:=mat( (0,0,0), (0,0,0), (0,0,0))$ ZMAT:=mat((z, 0, 0), (0,z^4, 0), (0, 0,z^7))$ gendt:=(h+s)/3$ gendti:=(h-s)/3$ SIG:=mat( (0,1,0), (0,0,1), (gendt,0,0))$ SIGI:=mat( (0,0,gendti), (1,0,0), (0,1,0))$ T:=3+h*(-1-z^4-z^5)$ phiT:=3 + h*(-1+z-z^2+z^4)$ phi2T:=3 + h*(-1-z+z^2+z^5)$ TI:=(3*(-2*z^5-2*z^2+2*z-1)+(-z^5+z^4-2*z^2+2*z-3)*h)/9$ phiTI:=(3*(2*z^5+2*z^4-1)+(2*z^5+z^4+z^2-z-3)*h)/9$ phi2TI:=(3*(-2*z^4+2*z^2-2*z-1)+(-z^5-2*z^4+z^2-z-3)*h)/9$ FF:=mat( (T, 0, 0), (0,phiT, 0), (0, 0,phi2T))$ FFI:=mat( (TI, 0, 0), ( 0,phiTI, 0), ( 0, 0,phi2TI))$ % Generators of group ${\bar\Gamma}(C_{18},p=3,\emptyset)$ are AA, BB and ZZ: AA:=(1/18)*mat( ((-h*s+(3*h+6))*z^2+(-h*s+(3*h+6))*z+(2*h+3)*s-3, ((3*h+9)*s+(3*h-9))*z^2+((-h-12)*s-3*h-12)*z+(4*h+6)*s+6*h+12, ((-2*h-6)*s+(6*h+12))*z^2+((5*h+12)*s-3*h-12)*z+(-4*h-9)*s-3), (((-3*h-9)*s-3*h-9)*z^2+(-6*h-12)*s*z+(-3*h-9)*s+3*h+9, ((-h-3)*s-3*h-3)*z^2+((2*h+3)*s-3)*z+(2*h+3)*s-3, (-3*h*s+(3*h+18))*z^2+(-h*s+(3*h+24))*z+(4*h+6)*s+6*h+12), (((-5*h-3)*s-3*h-3)*z^2+(4*h*s-6*h-12)*z+(4*h+12)*s+6, ((3*h+9)*s-3*h-9)*z^2+((3*h+6)*s+(9*h+18))*z+(-3*h-9)*s+3*h+9, ((2*h+3)*s-3)*z^2+((-h-3)*s-3*h-3)*z+(2*h+3)*s-3))$ BB:=(1/18)*mat( (((2*h+3)*s+3)*z+(h+3)*s-3*h-3, ((-2*h-6)*s+6)*z^2+((h+9)*s-3*h-3)*z+(-2*h-3)*s-3, ((h+9)*s-3*h+3)*z^2+((-5*h-3)*s-3*h+3)*z+(h+9)*s+3*h+3), (((-h+6)*s+(3*h+12))*z^2+((4*h+3)*s+15)*z+(4*h+3)*s-3, (-h*s-3*h-6)*z+(h+3)*s-3*h-3, (h*s-3*h-12)*z^2+((-2*h-6)*s-12)*z+(-2*h-3)*s-3), (((3*h+4)*s+h)*z^2+(7*s+(4*h+9))*z+(-h-5)*s+h+3, ((-h-9)*s-3*h+3)*z^2+((-2*h+6)*s-6*h-12)*z+(4*h+3)*s-3, ((-h-3)*s+(3*h+3))*z+(h+3)*s-3*h-3))$ ZZ:=mat( (z, 0, 0), (0,z*(s-1)/2, 0), (0, 0,-z*(s+1)/2))$ % Generators of group {\bar\Gamma}(C_{18},p=3,\{2\}) are AD, BD and CD: AD:=(1/18)*mat( (((h+3)*s-3*h-3)*z^2-h*s-3*h-6, (h*s+(3*h+6))*z^2+(h*s-3*h-12)*z+(h-3)*s+3*h+15, ((-2*h-6)*s+12)*z^2+((h+9)*s-3*h+3)*z+(-5*h-3)*s-3*h+3), (((-2*h-3)*s-6*h-3)*z^2+((-h-9)*s-3*h+3)*z+(-2*h-9)*s+6*h-3, (h*s+(3*h+6))*z^2-h*s-3*h-6, ((-2*h-3)*s-3)*z^2+((-2*h-6)*s+6)*z+(h-3)*s+3*h+15), ((s-2*h-9)*z^2+((3*h+4)*s+h)*z+7*s+4*h+9, ((4*h+3)*s-3)*z^2+((-h+6)*s+(3*h+12))*z+(-2*h-9)*s+6*h-3, ((-2*h-3)*s-3)*z^2-h*s-3*h-6))$ BD:=(1/36)*mat( ((-2*h*s+12)*z^2+(h*s+(3*h+12))*z+(4*h+6)*s-6, ((3*h+6)*s-3*h+18)*z^2+((-2*h+6)*s-12*h-6)*z+(-h+12)*s+9*h+24, ((3*h+6)*s+(3*h-18))*z^2+((-h-12)*s+(3*h-12))*z+(5*h+6)*s+3*h+6), ((3*h*s+9*h)*z^2+(12*s+6*h)*z+(3*h+12)*s-3*h, ((h-6)*s-3*h-6)*z^2+((h+6)*s-3*h-6)*z+(4*h+6)*s-6, (-12*s+6*h)*z^2+((-5*h-6)*s+(9*h-6))*z+(-h+12)*s+9*h+24), (((h-12)*s-3*h-12)*z^2+((h+18)*s-3*h+6)*z+(7*h+6)*s+9*h+6, -6*h*s*z^2+((3*h-6)*s-3*h-18)*z+(3*h+12)*s-3*h, ((h+6)*s+(3*h-6))*z^2+((-2*h-6)*s-6)*z+(4*h+6)*s-6))$ CD:=(1/36)*mat( (((-3*h-6)*s-3*h-18)*z^2+6*h*z-6*s+18, ((4*h+18)*s-6*h-6)*z^2+((-5*h-6)*s+(3*h-6))*z+(4*h+12)*s+6*h+12, ((3*h+12)*s+9*h)*z^2+((-5*h-12)*s-3*h-24)*z+2*h*s+12*h+24), (((-2*h-6)*s+(12*h+6))*z^2+((h+12)*s+(9*h+24))*z+(4*h+12)*s+6*h+24, ((3*h+12)*s-3*h)*z^2+(3*h*s-3*h)*z-6*s+18, ((h-6)*s+(9*h+30))*z^2+(4*h*s+(6*h+12))*z+(4*h+12)*s+6*h+12), (((-5*h-18)*s-3*h+6)*z^2+(-h*s-3*h-24)*z+(6*h+12)*s, (-5*h*s-9*h-12)*z^2+((4*h+6)*s-6*h-30)*z+(4*h+12)*s+6*h+24, (-6*s+(6*h+18))*z^2+(-3*h*s-3*h)*z-6*s+18))$ % Here are the inverses of these generators: AAI:=(1/18)*mat( (((-2*h-3)*s-3)*z^2+((-2*h-3)*s-3)*z+(-2*h-3)*s-3, ((3*h+6)*s-3*h)*z+(-3*h-3)*s+3*h+9, ((2*h-6)*s+6)*z^2+(2*h*s+6)*z-h*s-3*h+6), (((h-6)*s-3*h+6)*z^2+(-3*s-9)*z-h*s+3*h-6, ((h+3)*s-3*h-3)*z^2+(h*s+(3*h+6))*z+(-2*h-3)*s-3, ((-3*h-3)*s-3*h-9)*z+(-3*h-3)*s+3*h+9), (((h+3)*s+(3*h+15))*z-3*s+6*h+9, (h*s+(3*h-12))*z^2+(-3*s+9)*z-h*s+3*h-6, (h*s+(3*h+6))*z^2+((h+3)*s-3*h-3)*z+(-2*h-3)*s-3))$ BBI:=(1/18)*mat( ((h*s-3*h-6)*z^2+(-h-3)*s-3*h-3, (-6*s-6*h)*z^2+((-h+3)*s+(3*h+15))*z+3*s-6*h-9, ((-3*h-1)*s+(7*h+9))*z^2+((2*h+8)*s-2*h-12)*z+(-2*h-7)*s+4*h+3), (((-4*h-6)*s-12)*z^2+((-4*h-6)*s+6)*z+(-h-3)*s+3*h+15, ((h+3)*s+(3*h+3))*z^2+(-h-3)*s-3*h-3, ((3*h+3)*s+(3*h-9))*z^2+((2*h+6)*s-12)*z+3*s-6*h-9), (((2*h-3)*s+(6*h+3))*z^2+((-4*h-3)*s+3)*z+(-h-3)*s-3*h-15, ((2*h+9)*s-6*h-3)*z^2+((2*h+6)*s+(6*h+6))*z+(-h-3)*s+3*h+15, ((-2*h-3)*s+3)*z^2+(-h-3)*s-3*h-3))$ ZZI:=mat( (-z^2*(s+1)/2, 0, 0), ( 0,z^2*(s-1)/2, 0), ( 0, 0,z^2))$ ADI:=(1/18)*mat( (((2*h+3)*s-3)*z+h*s-3*h-6, ((2*h+6)*s-12)*z^2+((-3*h-6)*s+3*h)*z+(3*h+3)*s+3*h-9, ((2*h+8)*s-2*h-12)*z^2+((-2*h-7)*s+(4*h+3))*z+(5*h+5)*s+h-3), (((2*h+6)*s+(6*h+6))*z^2+((2*h+9)*s-3)*z+(2*h+9)*s-6*h-3, ((-h-3)*s-3*h-3)*z+h*s-3*h-6, ((-h+3)*s+(3*h+15))*z^2+((3*h+3)*s+(3*h+9))*z+(3*h+3)*s+3*h-9), (((-4*h-3)*s+3)*z^2+((-h-3)*s-3*h-15)*z+(2*h+3)*s-6*h+3, ((-4*h-6)*s+6)*z^2+((-h-6)*s-3*h-12)*z+(2*h+9)*s-6*h-3, (-h*s+(3*h+6))*z+h*s-3*h-6))$ BDI:=(1/36)*mat( (((-h-6)*s-3*h-6)*z^2+((-h-6)*s+(3*h-6))*z+(-4*h-6)*s-6, ((-9*h-6)*s+(3*h+18))*z^2+((3*h+24)*s-3*h)*z+(-9*h-6)*s+3*h-18, ((8*h+18)*s+(6*h+6))*z^2+((-4*h-12)*s-6*h-12)*z+(5*h+12)*s+9*h+24), (((-h-6)*s+(15*h+30))*z^2+((3*h+6)*s+(9*h+18))*z+(7*h+18)*s+3*h+6, ((2*h+6)*s-6)*z^2+(2*h*s+12)*z+(-4*h-6)*s-6, ((3*h-6)*s-15*h-18)*z^2+((-3*h-12)*s-3*h-36)*z+(-9*h-6)*s+3*h-18), (((8*h+12)*s-6*h+12)*z^2+((-2*h+12)*s+(12*h+24))*z+(-h-24)*s+3*h+12, ((-7*h-12)*s-9*h-24)*z^2+((3*h+6)*s-9*h-18)*z+(7*h+18)*s+3*h+6, (-h*s+(3*h+12))*z^2+((-h+6)*s-3*h-6)*z+(-4*h-6)*s-6))$ CDI:=(1/36)*mat( ((-3*h*s-3*h)*z^2+(6*s+(6*h+18))*z+6*s+18, ((2*h+6)*s+6)*z^2+((-7*h-6)*s-3*h+6)*z+(2*h+12)*s-12, ((h+12)*s+(3*h+12))*z^2+(-h*s-3*h-12)*z+6*h), ((-4*h*s+(6*h+12))*z^2+(-h*s+(3*h+12))*z+2*h*s+12, (3*h*s-3*h)*z^2+((3*h+6)*s-3*h-18)*z+6*s+18, ((-h-6)*s+(3*h+6))*z^2+((2*h+6)*s+(12*h+6))*z+(2*h+12)*s-12), (((-h-6)*s-3*h-6)*z^2+((-3*h+6)*s-9*h-18)*z+4*h*s-6*h-12, ((-h-6)*s-9*h-6)*z^2+((2*h+6)*s-6)*z+2*h*s+12, 6*h*z^2+((-3*h-12)*s-3*h)*z+6*s+18))$ % Checking that these elements are in the division algebra: a1:=0$ a2:=0$ a3:=1$ a4:=-2/3$ a5:=1/3$ a6:=-4/3$ a7:=1$ a8:=1/3$ a9:=0$ a10:=-1$ a11:=1/3$ a12:=2/3$ a13:=2/3$ a14:=0$ a15:=-4/3$ a16:=0$ a17:=0$ a18:=1$ a19:=-2/3$ a20:=1/3$ a21:=1/3$ a22:=1$ a23:=-1/3$ a24:=0$ a25:=-1/3$ a26:=-1/3$ a27:=1/3$ a28:=-1/3$ a29:=0$ a30:=-2/3$ a31:=1$ a32:=-1/3$ a33:=1/3$ a34:=-2/3$ a35:=-1/3$ a36:=-1/3$ b1:=0$ b2:=0$ b3:=-1/3$ b4:=-2/3$ b5:=1/3$ b6:=1/3$ b7:=-2/3$ b8:=0$ b9:=0$ b10:=1/3$ b11:=1/3$ b12:=-1/3$ b13:=-1$ b14:=1/3$ b15:=1$ b16:=1/3$ b17:=0$ b18:=-2/3$ b19:=2/3$ b20:=1/3$ b21:=-1/3$ b22:=-2/3$ b23:=1/3$ b24:=1/3$ b25:=1/3$ b26:=0$ b27:=-1/3$ b28:=0$ b29:=1/3$ b30:=0$ b31:=-2/3$ b32:=0$ b33:=1/3$ b34:=0$ b35:=0$ b36:=0$ z1:=0$ z2:=0$ z3:=0$ z4:=0$ z5:=1$ z6:=0$ z7:=0$ z8:=0$ z9:=0$ z10:=0$ z11:=0$ z12:=0$ z13:=0$ z14:=0$ z15:=0$ z16:=0$ z17:=0$ z18:=0$ z19:=0$ z20:=0$ z21:=0$ z22:=0$ z23:=0$ z24:=0$ z25:=0$ z26:=0$ z27:=0$ z28:=0$ z29:=0$ z30:=0$ z31:=0$ z32:=0$ z33:=0$ z34:=0$ z35:=0$ z36:=0$ ad1:=-2/3$ ad2:=-1/3$ ad3:=2/3$ ad4:=-2/3$ ad5:=0$ ad6:=-2/3$ ad7:=1/3$ ad8:=0$ ad9:=1/3$ ad10:=-1$ ad11:=0$ ad12:=-1/3$ ad13:=1/3$ ad14:=0$ ad15:=0$ ad16:=0$ ad17:=1/3$ ad18:=0$ ad19:=-2/3$ ad20:=0$ ad21:=0$ ad22:=1/3$ ad23:=0$ ad24:=1/3$ ad25:=-2/3$ ad26:=1/3$ ad27:=0$ ad28:=-2/3$ ad29:=1/3$ ad30:=-1/3$ ad31:=0$ ad32:=0$ ad33:=1/3$ ad34:=-2/3$ ad35:=1/3$ ad36:=-1/3$ bd1:=1/3$ bd2:=0$ bd3:=1$ bd4:=1/3$ bd5:=1/3$ bd6:=0$ bd7:=0$ bd8:=1/3$ bd9:=2/3$ bd10:=2/3$ bd11:=1/3$ bd12:=2/3$ bd13:=-1/3$ bd14:=0$ bd15:=1/3$ bd16:=0$ bd17:=0$ bd18:=1/3$ bd19:=1/3$ bd20:=1/3$ bd21:=-1/3$ bd22:=-1/6$ bd23:=0$ bd24:=1/6$ bd25:=1/2$ bd26:=-1/6$ bd27:=1/3$ bd28:=1/6$ bd29:=0$ bd30:=-1/2$ bd31:=1/6$ bd32:=-1/6$ bd33:=2/3$ bd34:=1/2$ bd35:=0$ bd36:=1/6$ cd1:=1$ cd2:=1/3$ cd3:=2/3$ cd4:=-1/3$ cd5:=0$ cd6:=-1/3$ cd7:=1/3$ cd8:=-2/3$ cd9:=1/3$ cd10:=2/3$ cd11:=-1/3$ cd12:=2/3$ cd13:=-1$ cd14:=0$ cd15:=-1/3$ cd16:=1/3$ cd17:=-1/3$ cd18:=1$ cd19:=1/6$ cd20:=0$ cd21:=1/6$ cd22:=-1/3$ cd23:=-1/6$ cd24:=-1/2$ cd25:=2/3$ cd26:=-1/6$ cd27:=1/2$ cd28:=-1/3$ cd29:=0$ cd30:=-1/3$ cd31:=1/6$ cd32:=-1/3$ cd33:=-1/6$ cd34:=1/6$ cd35:=1/6$ cd36:=1/3$ % The following are zero, verifying that the given numbers are the coefficient sequences of the % various generators: AA-(((a1+a19*U)*ID3+(a4+a22*U)*ZZ+(a7+a25*U)*ZZ^2+(a10+a28*U)*ZZ^3+(a13+a31*U)*ZZ^4+(a16+a34*U)*ZZ^5)*SIGI+ ((a2+a20*U)*ID3+(a5+a23*U)*ZZ+(a8+a26*U)*ZZ^2+(a11+a29*U)*ZZ^3+(a14+a32*U)*ZZ^4+(a17+a35*U)*ZZ^5)*ID3+ ((a3+a21*U)*ID3+(a6+a24*U)*ZZ+(a9+a27*U)*ZZ^2+(a12+a30*U)*ZZ^3+(a15+a33*U)*ZZ^4+(a18+a36*U)*ZZ^5)*SIG); BB-(((b1+b19*U)*ID3+(b4+b22*U)*ZZ+(b7+b25*U)*ZZ^2+(b10+b28*U)*ZZ^3+(b13+b31*U)*ZZ^4+(b16+b34*U)*ZZ^5)*SIGI+ ((b2+b20*U)*ID3+(b5+b23*U)*ZZ+(b8+b26*U)*ZZ^2+(b11+b29*U)*ZZ^3+(b14+b32*U)*ZZ^4+(b17+b35*U)*ZZ^5)*ID3+ ((b3+b21*U)*ID3+(b6+b24*U)*ZZ+(b9+b27*U)*ZZ^2+(b12+b30*U)*ZZ^3+(b15+b33*U)*ZZ^4+(b18+b36*U)*ZZ^5)*SIG); ZZ-(((z1+z19*U)*ID3+(z4+z22*U)*ZZ+(z7+z25*U)*ZZ^2+(z10+z28*U)*ZZ^3+(z13+z31*U)*ZZ^4+(z16+z34*U)*ZZ^5)*SIGI+ ((z2+z20*U)*ID3+(z5+z23*U)*ZZ+(z8+z26*U)*ZZ^2+(z11+z29*U)*ZZ^3+(z14+z32*U)*ZZ^4+(z17+z35*U)*ZZ^5)*ID3+ ((z3+z21*U)*ID3+(z6+z24*U)*ZZ+(z9+z27*U)*ZZ^2+(z12+z30*U)*ZZ^3+(z15+z33*U)*ZZ^4+(z18+z36*U)*ZZ^5)*SIG); AD-(((ad1+ad19*U)*ID3+(ad4+ad22*U)*ZZ+(ad7+ad25*U)*ZZ^2+(ad10+ad28*U)*ZZ^3+(ad13+ad31*U)*ZZ^4+(ad16+ad34*U)*ZZ^5)*SIGI+ ((ad2+ad20*U)*ID3+(ad5+ad23*U)*ZZ+(ad8+ad26*U)*ZZ^2+(ad11+ad29*U)*ZZ^3+(ad14+ad32*U)*ZZ^4+(ad17+ad35*U)*ZZ^5)*ID3+ ((ad3+ad21*U)*ID3+(ad6+ad24*U)*ZZ+(ad9+ad27*U)*ZZ^2+(ad12+ad30*U)*ZZ^3+(ad15+ad33*U)*ZZ^4+(ad18+ad36*U)*ZZ^5)*SIG); BD-(((bd1+bd19*U)*ID3+(bd4+bd22*U)*ZZ+(bd7+bd25*U)*ZZ^2+(bd10+bd28*U)*ZZ^3+(bd13+bd31*U)*ZZ^4+(bd16+bd34*U)*ZZ^5)*SIGI+ ((bd2+bd20*U)*ID3+(bd5+bd23*U)*ZZ+(bd8+bd26*U)*ZZ^2+(bd11+bd29*U)*ZZ^3+(bd14+bd32*U)*ZZ^4+(bd17+bd35*U)*ZZ^5)*ID3+ ((bd3+bd21*U)*ID3+(bd6+bd24*U)*ZZ+(bd9+bd27*U)*ZZ^2+(bd12+bd30*U)*ZZ^3+(bd15+bd33*U)*ZZ^4+(bd18+bd36*U)*ZZ^5)*SIG); CD-(((cd1+cd19*U)*ID3+(cd4+cd22*U)*ZZ+(cd7+cd25*U)*ZZ^2+(cd10+cd28*U)*ZZ^3+(cd13+cd31*U)*ZZ^4+(cd16+cd34*U)*ZZ^5)*SIGI+ ((cd2+cd20*U)*ID3+(cd5+cd23*U)*ZZ+(cd8+cd26*U)*ZZ^2+(cd11+cd29*U)*ZZ^3+(cd14+cd32*U)*ZZ^4+(cd17+cd35*U)*ZZ^5)*ID3+ ((cd3+cd21*U)*ID3+(cd6+cd24*U)*ZZ+(cd9+cd27*U)*ZZ^2+(cd12+cd30*U)*ZZ^3+(cd15+cd33*U)*ZZ^4+(cd18+cd36*U)*ZZ^5)*SIG); AASTAR:=sub(z=z^8,tp(AA))$ BBSTAR:=sub(z=z^8,tp(BB))$ ZZSTAR:=sub(z=z^8,tp(ZZ))$ % Checking that the elements $\xi$ satisfy $\iota(\xi)\xi=1$: % The following are zero: AASTAR*FF*AA-FF; BBSTAR*FF*BB-FF; ZZSTAR*FF*ZZ-FF; ADSTAR:=sub(z=z^8,tp(AD))$ BDSTAR:=sub(z=z^8,tp(BD))$ CDSTAR:=sub(z=z^8,tp(CD))$ % Checking that the elements $\xi$ satisfy $\iota(\xi)\xi=1$: % The following are zero: ADSTAR*FF*AD-FF; BDSTAR*FF*BD-FF; CDSTAR*FF*CD-FF; avec:=mat((a1),(a2),(a3),(a4),(a5),(a6),(a7),(a8),(a9),(a10),(a11),(a12),(a13),(a14),(a15),(a16),(a17),(a18), (a19),(a20),(a21),(a22),(a23),(a24),(a25),(a26),(a27),(a28),(a29),(a30),(a31),(a32),(a33),(a34),(a35),(a36))$ bvec:=mat((b1),(b2),(b3),(b4),(b5),(b6),(b7),(b8),(b9),(b10),(b11),(b12),(b13),(b14),(b15),(b16),(b17),(b18), (b19),(b20),(b21),(b22),(b23),(b24),(b25),(b26),(b27),(b28),(b29),(b30),(b31),(b32),(b33),(b34),(b35),(b36))$ zvec:=mat((z1),(z2),(z3),(z4),(z5),(z6),(z7),(z8),(z9),(z10),(z11),(z12),(z13),(z14),(z15),(z16),(z17),(z18), (z19),(z20),(z21),(z22),(z23),(z24),(z25),(z26),(z27),(z28),(z29),(z30),(z31),(z32),(z33),(z34),(z35),(z36))$ advec:=mat((ad1),(ad2),(ad3),(ad4),(ad5),(ad6),(ad7),(ad8),(ad9),(ad10),(ad11),(ad12),(ad13),(ad14),(ad15),(ad16),(ad17),(ad18), (ad19),(ad20),(ad21),(ad22),(ad23),(ad24),(ad25),(ad26),(ad27),(ad28),(ad29),(ad30),(ad31),(ad32),(ad33),(ad34),(ad35),(ad36))$ bdvec:=mat((bd1),(bd2),(bd3),(bd4),(bd5),(bd6),(bd7),(bd8),(bd9),(bd10),(bd11),(bd12),(bd13),(bd14),(bd15),(bd16),(bd17),(bd18), (bd19),(bd20),(bd21),(bd22),(bd23),(bd24),(bd25),(bd26),(bd27),(bd28),(bd29),(bd30),(bd31),(bd32),(bd33),(bd34),(bd35),(bd36))$ cdvec:=mat((cd1),(cd2),(cd3),(cd4),(cd5),(cd6),(cd7),(cd8),(cd9),(cd10),(cd11),(cd12),(cd13),(cd14),(cd15),(cd16),(cd17),(cd18), (cd19),(cd20),(cd21),(cd22),(cd23),(cd24),(cd25),(cd26),(cd27),(cd28),(cd29),(cd30),(cd31),(cd32),(cd33),(cd34),(cd35),(cd36))$ % The following are zero, verifying that AA, BB and ZZ have coefficients in $\Z[1/2,1/3]\cap\Z_2$: avec-(1/3)*mat((0),(0),(3),(-2),(1),(-4),(3),(1),(0),(-3),(1),(2),(2),(0),(-4),(0),(0),(3),(-2),(1),(1),(3),(-1),(0),(-1),(-1),(1),(-1),(0),(-2),(3),(-1),(1),(-2),(-1),(-1)); bvec-(1/3)*mat((0),(0),(-1),(-2),(1),(1),(-2),(0),(0),(1),(1),(-1),(-3),(1),(3),(1),(0),(-2),(2),(1),(-1),(-2),(1),(1),(1),(0),(-1),(0),(1),(0),(-2),(0),(1),(0),(0),(0)); zvec-mat((0),(0),(0),(0),(1),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0)); % The following are zero, verifying that AA, BB and ZZ have coefficients in $\Z[1/2,1/3]$: advec-(1/3)*mat((-2),(-1),(2),(-2),(0),(-2),(1),(0),(1),(-3),(0),(-1),(1),(0),(0),(0),(1),(0),(-2),(0),(0),(1),(0),(1),(-2),(1),(0),(-2),(1),(-1),(0),(0),(1),(-2),(1),(-1)); bdvec-(1/6)*mat((2),(0),(6),(2),(2),(0),(0),(2),(4),(4),(2),(4),(-2),(0),(2),(0),(0),(2),(2),(2),(-2),(-1),(0),(1),(3),(-1),(2),(1),(0),(-3),(1),(-1),(4),(3),(0),(1)); cdvec-(1/6)*mat((6),(2),(4),(-2),(0),(-2),(2),(-4),(2),(4),(-2),(4),(-6),(0),(-2),(2),(-2),(6),(1),(0),(1),(-2),(-1),(-3),(4),(-1),(3),(-2),(0),(-2),(1),(-2),(-1),(1),(1),(2)); CondMtxDM2Type2:=(1/2)*mat( (6,2,2,0,0,0,0,0,0,4,0,4,0,0,0,0,0,0,4,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), (4,0,4,0,0,0,0,0,0,2,2,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,4,0,0,0,0,0,0), (2,0,2,0,0,0,0,0,0,4,0,4,0,0,0,0,0,0,6,2,2,0,0,0,0,0,0,4,0,4,0,0,0,0,0,0), (4,0,4,0,0,0,0,0,0,6,0,6,0,0,0,0,0,0,4,0,4,0,0,0,0,0,0,2,2,6,0,0,0,0,0,0), (0,0,0,4,2,2,2,2,4,0,0,0,6,0,2,2,0,6,0,0,0,0,0,4,0,4,0,0,0,0,4,0,4,0,0,0), (0,0,0,2,0,6,6,0,2,0,0,0,2,2,4,4,2,2,0,0,0,4,0,4,0,0,0,0,0,0,4,0,0,0,4,0), (0,0,0,4,0,2,0,2,0,0,0,0,2,0,2,0,0,4,0,0,0,4,2,2,2,2,4,0,0,0,6,0,2,2,0,6), (0,0,0,6,0,6,0,0,4,0,0,0,6,0,4,0,2,4,0,0,0,2,0,6,6,0,2,0,0,0,2,2,4,4,2,2), (0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,4,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,4,0,4), (0,0,0,0,0,0,4,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,4,0,0,0,0,0,0,0,4,4), (0,0,0,0,0,0,2,6,4,0,0,0,0,0,0,2,0,6,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,4), (0,0,0,0,0,0,6,0,2,0,0,0,0,0,0,4,6,2,0,0,0,0,0,0,4,0,4,0,0,0,0,0,0,0,0,4), (0,0,0,0,0,0,4,0,4,0,0,0,0,0,0,6,6,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,4), (0,0,0,0,0,0,2,2,6,0,0,0,0,0,0,2,6,6,0,0,0,0,0,0,4,0,4,0,0,0,0,0,0,4,0,4), (0,0,0,0,0,0,4,0,4,0,0,0,0,0,0,2,0,2,0,0,0,0,0,0,4,0,4,0,0,0,0,0,0,6,6,2), (0,0,0,0,0,0,6,0,6,0,0,0,0,0,0,6,0,6,0,0,0,0,0,0,2,2,6,0,0,0,0,0,0,2,6,6), (4,2,2,2,2,4,0,0,0,6,0,2,2,0,6,0,0,0,0,0,4,0,4,0,0,0,0,4,0,4,0,0,0,0,0,0), (2,0,6,6,0,2,0,0,0,2,2,4,4,2,2,0,0,0,4,0,4,0,0,0,0,0,0,4,0,0,0,4,0,0,0,0), (4,0,2,0,2,0,0,0,0,2,0,2,0,0,4,0,0,0,4,2,2,2,2,4,0,0,0,6,0,2,2,0,6,0,0,0), (6,0,6,0,0,4,0,0,0,6,0,4,0,2,4,0,0,0,2,0,6,6,0,2,0,0,0,2,2,4,4,2,2,0,0,0), (0,0,0,4,0,0,0,0,0,0,0,0,4,0,4,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,4,0,4,0,0,0), (0,0,0,4,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,4,0,0,0,0,0,0,0,4,4,0,0,0), (0,0,0,2,6,4,0,0,0,0,0,0,2,0,6,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,4,0,0,0), (0,0,0,6,0,2,0,0,0,0,0,0,4,6,2,0,0,0,0,0,0,4,0,4,0,0,0,0,0,0,0,0,4,0,0,0), (0,0,0,4,0,4,0,0,0,0,0,0,6,0,6,0,6,4,0,0,0,4,0,4,4,0,4,0,0,0,2,2,6,2,6,6), (0,0,0,2,0,2,0,2,4,0,0,0,2,0,2,0,6,4,0,0,0,6,6,2,6,2,2,0,0,0,6,2,2,6,6,2), (0,0,0,2,0,6,2,0,6,0,0,0,3,7,5,7,1,5,0,0,0,4,0,4,0,0,0,0,0,0,6,0,6,0,6,4), (0,0,0,5,1,3,1,7,3,0,0,0,5,7,3,1,1,3,0,0,0,2,0,2,0,2,4,0,0,0,2,0,2,0,6,4), (0,0,4,2,4,4,6,0,6,0,0,0,2,0,2,6,0,4,2,0,2,2,6,4,2,0,6,0,0,0,2,0,6,2,2,4), (0,0,0,6,0,6,2,0,4,0,0,4,4,4,6,4,0,2,0,0,0,6,0,2,6,6,4,2,0,2,4,6,2,4,2,2), (3,0,7,7,1,6,3,0,5,0,0,0,7,0,1,3,7,6,0,0,4,2,4,4,6,0,6,0,0,0,2,0,2,6,0,4), (0,0,0,1,0,7,5,1,2,3,0,7,6,1,7,6,7,3,0,0,0,6,0,6,2,0,4,0,0,4,4,4,6,4,0,2), (6,2,4,6,6,4,0,0,0,6,0,2,6,0,2,0,0,0,4,0,0,0,4,0,0,0,0,4,0,4,0,0,0,0,0,0), (2,0,6,2,0,6,0,0,0,4,2,6,4,6,6,0,0,0,4,0,4,0,0,0,0,0,0,0,0,4,0,4,0,0,0,0), (2,0,4,0,6,0,0,0,0,2,0,2,0,0,4,0,0,0,6,2,4,6,6,4,0,0,0,6,0,2,6,0,2,0,0,0), (6,0,6,0,0,4,0,0,0,4,0,6,0,6,4,0,0,0,2,0,6,2,0,6,0,0,0,4,2,6,4,6,6,0,0,0))$ % The following are zero, verifying that the vectors CondMtxDM2Type2*xvec, for xd =ad, bd and cd, % have entries in $\Z[1/2,1/3]\cap\Z_2$, so that AD, BD and CD fix the type 2 vertex $o_2'$: CondMtxDM2Type2*advec-(1/3)*mat((-17),(-12),(-20),(-20),(6),(4),(-7),(-10),(-6),(0),(-7),(1),(1),(-3),(-4),(3),(-24),(-15),(-11),(-15),(2),(-2),(-1),(0),(-1),(-2),(6),(2),(4),(-14),(-8),(-6),(-30),(-17),(-9),(-14)); CondMtxDM2Type2*bdvec-(1/3)*mat((14),(15),(13),(16),(14),(6),(14),(22),(8),(12),(17),(9),(9),(19),(15),(16),(13),(19),(21),(21),(6),(7),(10),(6),(18),(20),(19),(15),(31),(21),(35),(25),(21),(19),(21),(25)); CondMtxDM2Type2*cdvec-(1/3)*mat((22),(13),(11),(20),(-6),(-4),(2),(-7),(16),(20),(14),(15),(10),(19),(19),(29),(4),(1),(2),(15),(-13),(-14),(-11),(-17),(-8),(2),(2),(-10),(16),(-2),(15),(-5),(3),(3),(1),(9)); % The following are zero: det(AA)-1; det(BB)-gendt; det(ZZ)-z^3; % The following are zero: det(AD)-z^6*gendt; det(BD)-1; det(CD)-z^3*gendt; % The following are zero, verifying that the claimed relations hold: ZZ^3 - z^3*ID3; (BB*ZZ)^3 - z^3*gendt*ID3; AA^2*ZZ*BB*ZZI*AA*ZZI*AA^3*BBI*AA*ZZ - z^3*ID3; AAI*ZZI*BB*ZZ*AAI*ZZI*BB*ZZ*AAI*BB - z^3*gendt*ID3; BB*AAI*BB*AAI^2*ZZ*BBI^2*ZZ*AA*ZZI*AA*ZZI - z^6*ID3; ZZ*AA*ZZ*AA^2*BBI*AA*ZZ*AAI*ZZ*AAI*ZZI*BB - ID3; BB*ZZ*AAI*BBI*ZZ*AAI*ZZ*BBI*ZZ*AAI*ZZI*BB - ID3; BBI*AAI*BB*AAI^2*BB*ZZI*AA*ZZI*AA*ZZI*BBI - ID3; ZZI*AAI*BB*AAI^2*ZZI*BBI^2*ZZ*AAI*BBI*ZZ*AA*BBI - z^3*gendti*ID3; BB*AAI*ZZI*BB*AA*ZZI*BBI*ZZ*AAI*BB*ZZI*AA*ZZI*BB*AAI - gendt*ID3; BBI*ZZ*AAI*ZZ*BBI*ZZ*AA*ZZI*BBI^2*ZZ*AA^2*ZZI*BBI^2*ZZ*AA - gendti^2*ID3; % The following are zero, verifying that the claimed relations hold: (ADI*CDI)^3 - gendti^2*ID3; (ADI*BDI*CD*ADI*BD)^3 - gendti*ID3; (BDI*ADI*CD*ADI*BDI)^3 - gendti*ID3; CDI*BD*AD*BD*CD*ADI - z^6*ID3; ADI*BDI*AD*BD^2*AD*CDI*AD*BD*ADI*BD*CDI*ADI*CDI*BD - z^3*gendti*ID3; ADI*CD*BD*CD*ADI^2*CD*AD*CD*BDI*AD*CDI*BD*AD*BDI - gendt*ID3; AD*CDI*BD*AD*CDI*AD*BD^2*CD*ADI^2*BD*CDI*ADI*CDI - z^3*gendti*ID3; AD*CDI*BD*AD*CDI^2*ADI*BDI*CD*ADI*BDI*CD*ADI*CD*AD*BDI - z^3*ID3; BDI*ADI*CD*BDI*AD^2*CDI*BDI*AD*CDI*AD*BD^3*CDI^2-ID3; BD^2*CDI*ADI*CDI*BD*ADI*BDI^2*CD*ADI*CDI*ADI*BDI*AD*CDI - gendti^2*ID3; BDI^2*ADI*BDI*ADI*BDI*AD^2*CDI*AD*CDI*AD*BD^2*AD*CDI - z^3*ID3; BDI*CD^2*BDI^3*ADI*CD^2*BDI*CD*BDI*CD*ADI*BD*ADI*BDI - gendt*ID3; CDI*AD*CDI*BD*AD*BDI*ADI*CD*ADI*BDI*CD*ADI*CDI*BDI*ADI*CD*ADI - z^3*gendti*ID3; BDI^3*ADI*CD*ADI*BDI*AD*CDI*BDI*CD^2*BDI^3*ADI*CD*ADI - z^3*ID3; CDI*ADI*BDI*AD^2*CDI*BD*CDI^2*ADI*BDI*CD^2*ADI^2*CDI*ADI*BDI - z^3*gendti^2*ID3; BD*CD*ADI^2*CDI*ADI*BDI*CD*BDI*ADI*BD*CDI^2*BDI*ADI^2*BDI*CD - z^3*gendti^2*ID3; BD*CD*ADI^2*BD*ADI*CDI^2*ADI*BDI*CD*BDI*ADI*BD*CDI*ADI*CDI*BD*CD^2 - z^6*gendti^2*ID3; BD*CDI^2*ADI*BDI*CD*BDI*ADI*BD*AD*BDI*ADI*CDI*BDI*CD*AD*CD*BDI*AD*BD - z^3*ID3; AD^2*CDI*BDI*CDI*AD^2*CDI*BD*CDI*AD^2*CDI*BDI*AD*CDI*BDI^2*ADI*BDI - z^6*ID3; BDI*CDI*BD*CD*ADI*BDI*ADI*BD*AD*CD*BDI*ADI*CDI^2*AD*BD^3*AD*CD - z^6*ID3; AD*BD*ADI*BDI*AD*BD*AD*CDI*BDI*CD^2*BDI^2*ADI*BD*AD*CD*AD*BD*CD - gendt^2*ID3; CDI*AD*BD*CDI*BD*AD*CD^2*BDI*AD*CDI*BDI*CD^2*AD*BDI*ADI*CDI*ADI*BDI*AD - z^3*gendt*ID3; ADI*BDI*CD*ADI*BD*CDI^2*BDI*ADI*CDI*BDI*ADI*CDI*BDI*ADI*CDI*ADI*BDI^2*CD*BD - z^6*gendti^3*ID3; ;end; % The following are zero, verifying that CDI*AD*CD, CDI*BD*CD and CDI*(CD*BD*CD)*CD % are words in the generators of ${\bar\Gamma}(C_{18},p=3,\emptyset)$: CDI*AD*CD-z^6*(ZZ^2*AAI*BB*ZZ*AA^2*BBI*AA*BB*ZZ*AA*ZZ); CDI*BD*CD-z^6*(ZZ*AA*ZZ^2*BBI*AAI*BB*AAI*AAI); CDI*(CD*BD*CD)*CD-gendt*ZZ^2*BBI*ZZ*AA*ZZ^2*AAI*BB*AAI^2*ZZ*BBI*ZZ^2;