let g^2=g+1$ % golden ratio let z^6=-z^3-1$ % 9-th root of 1 phiz:=z^4$ phi2z:=z^7$ s:=1+2*z^3$ % square root of -3. ID3:=mat((1,0,0), (0,1,0), (0,0,1))$ ZMAT:=mat((z, 0, 0), (0,z^4, 0), (0, 0,z^7))$ gendt:=(g+(2*g-1)*z^3)/2$ gendti:=(g+(2*g-1)*z^6)/2$ SIG:=mat( (0,1,0), (0,0,1), (gendt,0,0))$ SIGI:=mat( (0,0,gendti), (1,0,0), (0,1,0))$ T:=2*((3-2*g)+(-2+g)*Z+(2-g)*Z^2-Z^4+(1-g)*Z^5)$ phiT:=sub(z=z^4,T)$ phi2T:=sub(z=z^7,T)$ FF:=mat( (T, 0, 0), (0,phiT, 0), (0, 0,phi2T))$ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % The generators for $\bar\Gamma$ in the case $(\cC_2,p=2,\emptyset)$: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% AA:=(1/3)*mat( (g*z^4+g*z^3-g*z^2+z^4+z^3+1,-g*z^5-g*z^3+z^2-1,g*z^5-3*g*z^4-g*z^3-2*g*z+2*z^3-z^2-z+3), (g*z^5+2*g*z^4+2*g*z^3+2*g*z+z^5+2*z^4+z^2+2,g*z^5-g*z^4+g*z^3+g*z^2-g*z-z^4+z^3-z+1,-(g*z^3+g*z^2+z^5+z^2+1)), (-g*z^3-g*z^2+z^5+z^3+1,2*g*z^3+g*z^2-2*g*z-z^5-2*z^4-2*z+2,-g*z^5+g*z^3+g*z+z^3+z+1))$ BB:=(1/3)*mat( (g*z^5+g*z^4-g*z^3-z^5+z^4+z^3-z^2+z+1,-g*z^2-g+z^3+z,-g*z^4+2*g*z^2-g*z+g+z^4+z^3+3), (-g*z^5+3*g*z^3+g*z+g-z^5+z^4+z^2+1,-g*z^4-g*z^3+g*z^2-g*z+z^5+z^3-z+1,g*z^5+g*z^2-g+z^4+z^3), ((-g*z^4-2*g*z^3+g*z^2+g*z-3*g+z^5-z^3+2*z^2-z)/2,g*z^4+3*g*z^3-g*z^2+g-z^5-z^4-2*z^2-z+1,-g*z^5-g*z^3-g*z^2+g*z-z^4+z^3+z^2+1))$ ZZ:=mat( (z, 0, 0), (0,z^4, 0), (0, 0,z^7))$ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % The generators for $\bar\Gamma$ in the case $(\cC_2,p=2,\{3\})$: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% AD:=(1/6)*mat( (2*(g*z^3-g*z^2-g*z+g-z+1),2*(-2*g*z^5+2*g*z^4-2*g*z^3-3*g*z^2+2*g*z-3*g-3*z^5+2*z^4+z^3-z^2+2*z-1),2*(-2*g*z^5+g*z^4-g*z^3-g*z^2+2*g*z-2*g-z^5+2*z^4-z^2+z-1)), (2*(-g*z^5-2*g*z^4-2*g*z^3-2*g*z^2-g*z-g-z^5-z^4-z^3-z^2-2*z),2*(g*z^5-g*z^4+g*z^3+g*z^2+g-z^4+1),2*(3*g*z^5-2*g*z^3+g*z^2-2*g*z-3*g+z^5+z^3-2*z^2-2*z-1)), (2*(3*g*z^5+g*z^4-3*g*z^3+g*z^2+3*g*z-2*g+2*z^5-z^3+3*z^2+z+1),2*(2*g*z^5+g*z^4-2*g*z^3+g*z^2+2*g*z-g+z^5-z^4-z^3+z),2*(-g*z^5+g*z^4+g*z^3+g*z+g+z^4+z+1)))$ BD:=(1/6)*mat( (2*(-g*z^4-g*z-g+z^3-z),2*(-2*g*z^3+g*z^2-g*z-g-z^5+z^4+z^2+z+1),2*(g*z^5+g*z^3+g*z^2+3*g+z^5-2*z^4+z^3+2*z^2-2*z)), (2*(2*g*z^4+g*z^3+2*g*z^2+g*z-z^4+3*z^3+1),2*(g*z-g-z^4+z^3),2*(-g*z^5-g*z^4-2*g*z^3-g*z^2-g-z^5-2*z^2-z+1)), (2*g*z^4+g*z^3-4*g*z^2+2*g*z+2*g-z^3-2*z+3,2*(-2*g*z^5-g*z^4+g*z^3-2*g*z^2-2*g*z+z^4+3*z^3+z+1),2*(g*z^4-g+z^4+z^3+z)))$ ZD:=mat( (z, 0, 0), (0,z^4, 0), (0, 0,z^7))$ a1:=2/3$ a2:=1/3$ a3:=-1/3$ a4:=2/3$ a5:=0/3$ a6:=0/3$ a7:=-1/3$ a8:=0/3$ a9:=1/3$ a10:=0/3$ a11:=1/3$ a12:=0/3$ a13:=0/3$ a14:=1/3$ a15:=0/3$ a16:=0/3$ a17:=0/3$ a18:=0/3$ a19:=0/3$ a20:=0/3$ a21:=0/3$ a22:=0/3$ a23:=0/3$ a24:=0/3$ a25:=-1/3$ a26:=-1/3$ a27:=0/3$ a28:=2/3$ a29:=1/3$ a30:=-1/3$ a31:=-2/3$ a32:=1/3$ a33:=0/3$ a34:=-1/3$ a35:=0/3$ a36:=-1/3$ b1:=1/3$ b2:=1/3$ b3:=0/3$ b4:=1/3$ b5:=1/3$ b6:=1/3$ b7:=1/3$ b8:=-1/3$ b9:=0/3$ b10:=0/3$ b11:=1/3$ b12:=1/3$ b13:=0/3$ b14:=1/3$ b15:=0/3$ b16:=2/3$ b17:=-1/3$ b18:=0/3$ b19:=1/3$ b20:=0/3$ b21:=-1/3$ b22:=-1/3$ b23:=0/3$ b24:=0/3$ b25:=1/3$ b26:=0/3$ b27:=-1/3$ b28:=3/3$ b29:=-1/3$ b30:=0/3$ b31:=-1/3$ b32:=1/3$ b33:=0/3$ b34:=1/3$ b35:=1/3$ b36:=0/3$ z1:=0$ z2:=0$ z3:=0$ z4:=0$ z5:=1$ z6:=0$ z7:=0$ z8:=0$ z9:=0$ z10:=0$ z11:=0$ z12:=0$ z13:=0$ z14:=0$ z15:=0$ z16:=0$ z17:=0$ z18:=0$ z19:=0$ z20:=0$ z21:=0$ z22:=0$ z23:=0$ z24:=0$ z25:=0$ z26:=0$ z27:=0$ z28:=0$ z29:=0$ z30:=0$ z31:=0$ z32:=0$ z33:=0$ z34:=0$ z35:=0$ z36:=0$ ad1:=0/3$ ad2:=1/3$ ad3:=-1/3$ ad4:=1/3$ ad5:=-1/3$ ad6:=2/3$ ad7:=1/3$ ad8:=0/3$ ad9:=-1/3$ ad10:=-1/3$ ad11:=0/3$ ad12:=1/3$ ad13:=2/3$ ad14:=0/3$ ad15:=2/3$ ad16:=0/3$ ad17:=0/3$ ad18:=-3/3$ ad19:=-1/3$ ad20:=1/3$ ad21:=-3/3$ ad22:=-1/3$ ad23:=-1/3$ ad24:=2/3$ ad25:=1/3$ ad26:=-1/3$ ad27:=-3/3$ ad28:=-2/3$ ad29:=1/3$ ad30:=-2/3$ ad31:=1/3$ ad32:=0/3$ ad33:=2/3$ ad34:=-1/3$ ad35:=0/3$ ad36:=-2/3$ bd1:=1/3$ bd2:=0/3$ bd3:=1/3$ bd4:=-1/3$ bd5:=-1/3$ bd6:=1/3$ bd7:=0/3$ bd8:=0/3$ bd9:=1/3$ bd10:=3/3$ bd11:=1/3$ bd12:=0/3$ bd13:=0/3$ bd14:=0/3$ bd15:=1/3$ bd16:=0/3$ bd17:=0/3$ bd18:=-1/3$ bd19:=0/3$ bd20:=-1/3$ bd21:=-1/3$ bd22:=1/3$ bd23:=-1/3$ bd24:=-1/3$ bd25:=0/3$ bd26:=0/3$ bd27:=1/3$ bd28:=1/3$ bd29:=0/3$ bd30:=-2/3$ bd31:=-1/3$ bd32:=-1/3$ bd33:=0/3$ bd34:=2/3$ bd35:=0/3$ bd36:=0/3$ zd1:=0$ zd2:=0$ zd3:=0$ zd4:=0$ zd5:=1$ zd6:=0$ zd7:=0$ zd8:=0$ zd9:=0$ zd10:=0$ zd11:=0$ zd12:=0$ zd13:=0$ zd14:=0$ zd15:=0$ zd16:=0$ zd17:=0$ zd18:=0$ zd19:=0$ zd20:=0$ zd21:=0$ zd22:=0$ zd23:=0$ zd24:=0$ zd25:=0$ zd26:=0$ zd27:=0$ zd28:=0$ zd29:=0$ zd30:=0$ zd31:=0$ zd32:=0$ zd33:=0$ zd34:=0$ zd35:=0$ zd36:=0$ AA-( a1*g^0*ZMAT^0*SIGI+ a2*g^0*ZMAT^0*SIG^0+ a3*g^0*ZMAT^0*SIG^1 + a4*g^0*ZMAT^1*SIGI+ a5*g^0*ZMAT^1*SIG^0+ a6*g^0*ZMAT^1*SIG^1 + a7*g^0*ZMAT^2*SIGI+ a8*g^0*ZMAT^2*SIG^0+ a9*g^0*ZMAT^2*SIG^1 +a10*g^0*ZMAT^3*SIGI+a11*g^0*ZMAT^3*SIG^0+a12*g^0*ZMAT^3*SIG^1 +a13*g^0*ZMAT^4*SIGI+a14*g^0*ZMAT^4*SIG^0+a15*g^0*ZMAT^4*SIG^1 +a16*g^0*ZMAT^5*SIGI+a17*g^0*ZMAT^5*SIG^0+a18*g^0*ZMAT^5*SIG^1 +a19*g^1*ZMAT^0*SIGI+a20*g^1*ZMAT^0*SIG^0+a21*g^1*ZMAT^0*SIG^1 +a22*g^1*ZMAT^1*SIGI+a23*g^1*ZMAT^1*SIG^0+a24*g^1*ZMAT^1*SIG^1 +a25*g^1*ZMAT^2*SIGI+a26*g^1*ZMAT^2*SIG^0+a27*g^1*ZMAT^2*SIG^1 +a28*g^1*ZMAT^3*SIGI+a29*g^1*ZMAT^3*SIG^0+a30*g^1*ZMAT^3*SIG^1 +a31*g^1*ZMAT^4*SIGI+a32*g^1*ZMAT^4*SIG^0+a33*g^1*ZMAT^4*SIG^1 +a34*g^1*ZMAT^5*SIGI+a35*g^1*ZMAT^5*SIG^0+a36*g^1*ZMAT^5*SIG^1); BB-( b1*g^0*ZMAT^0*SIGI+ b2*g^0*ZMAT^0*SIG^0+ b3*g^0*ZMAT^0*SIG^1 + b4*g^0*ZMAT^1*SIGI+ b5*g^0*ZMAT^1*SIG^0+ b6*g^0*ZMAT^1*SIG^1 + b7*g^0*ZMAT^2*SIGI+ b8*g^0*ZMAT^2*SIG^0+ b9*g^0*ZMAT^2*SIG^1 +b10*g^0*ZMAT^3*SIGI+b11*g^0*ZMAT^3*SIG^0+b12*g^0*ZMAT^3*SIG^1 +b13*g^0*ZMAT^4*SIGI+b14*g^0*ZMAT^4*SIG^0+b15*g^0*ZMAT^4*SIG^1 +b16*g^0*ZMAT^5*SIGI+b17*g^0*ZMAT^5*SIG^0+b18*g^0*ZMAT^5*SIG^1 +b19*g^1*ZMAT^0*SIGI+b20*g^1*ZMAT^0*SIG^0+b21*g^1*ZMAT^0*SIG^1 +b22*g^1*ZMAT^1*SIGI+b23*g^1*ZMAT^1*SIG^0+b24*g^1*ZMAT^1*SIG^1 +b25*g^1*ZMAT^2*SIGI+b26*g^1*ZMAT^2*SIG^0+b27*g^1*ZMAT^2*SIG^1 +b28*g^1*ZMAT^3*SIGI+b29*g^1*ZMAT^3*SIG^0+b30*g^1*ZMAT^3*SIG^1 +b31*g^1*ZMAT^4*SIGI+b32*g^1*ZMAT^4*SIG^0+b33*g^1*ZMAT^4*SIG^1 +b34*g^1*ZMAT^5*SIGI+b35*g^1*ZMAT^5*SIG^0+b36*g^1*ZMAT^5*SIG^1); ZZ-( z1*g^0*ZMAT^0*SIGI+ z2*g^0*ZMAT^0*SIG^0+ z3*g^0*ZMAT^0*SIG^1 + z4*g^0*ZMAT^1*SIGI+ z5*g^0*ZMAT^1*SIG^0+ z6*g^0*ZMAT^1*SIG^1 + z7*g^0*ZMAT^2*SIGI+ z8*g^0*ZMAT^2*SIG^0+ z9*g^0*ZMAT^2*SIG^1 +z10*g^0*ZMAT^3*SIGI+z11*g^0*ZMAT^3*SIG^0+z12*g^0*ZMAT^3*SIG^1 +z13*g^0*ZMAT^4*SIGI+z14*g^0*ZMAT^4*SIG^0+z15*g^0*ZMAT^4*SIG^1 +z16*g^0*ZMAT^5*SIGI+z17*g^0*ZMAT^5*SIG^0+z18*g^0*ZMAT^5*SIG^1 +z19*g^1*ZMAT^0*SIGI+z20*g^1*ZMAT^0*SIG^0+z21*g^1*ZMAT^0*SIG^1 +z22*g^1*ZMAT^1*SIGI+z23*g^1*ZMAT^1*SIG^0+z24*g^1*ZMAT^1*SIG^1 +z25*g^1*ZMAT^2*SIGI+z26*g^1*ZMAT^2*SIG^0+z27*g^1*ZMAT^2*SIG^1 +z28*g^1*ZMAT^3*SIGI+z29*g^1*ZMAT^3*SIG^0+z30*g^1*ZMAT^3*SIG^1 +z31*g^1*ZMAT^4*SIGI+z32*g^1*ZMAT^4*SIG^0+z33*g^1*ZMAT^4*SIG^1 +z34*g^1*ZMAT^5*SIGI+z35*g^1*ZMAT^5*SIG^0+z36*g^1*ZMAT^5*SIG^1); AD-( ad1*g^0*ZMAT^0*SIGI+ ad2*g^0*ZMAT^0*SIG^0+ ad3*g^0*ZMAT^0*SIG^1 + ad4*g^0*ZMAT^1*SIGI+ ad5*g^0*ZMAT^1*SIG^0+ ad6*g^0*ZMAT^1*SIG^1 + ad7*g^0*ZMAT^2*SIGI+ ad8*g^0*ZMAT^2*SIG^0+ ad9*g^0*ZMAT^2*SIG^1 +ad10*g^0*ZMAT^3*SIGI+ad11*g^0*ZMAT^3*SIG^0+ad12*g^0*ZMAT^3*SIG^1 +ad13*g^0*ZMAT^4*SIGI+ad14*g^0*ZMAT^4*SIG^0+ad15*g^0*ZMAT^4*SIG^1 +ad16*g^0*ZMAT^5*SIGI+ad17*g^0*ZMAT^5*SIG^0+ad18*g^0*ZMAT^5*SIG^1 +ad19*g^1*ZMAT^0*SIGI+ad20*g^1*ZMAT^0*SIG^0+ad21*g^1*ZMAT^0*SIG^1 +ad22*g^1*ZMAT^1*SIGI+ad23*g^1*ZMAT^1*SIG^0+ad24*g^1*ZMAT^1*SIG^1 +ad25*g^1*ZMAT^2*SIGI+ad26*g^1*ZMAT^2*SIG^0+ad27*g^1*ZMAT^2*SIG^1 +ad28*g^1*ZMAT^3*SIGI+ad29*g^1*ZMAT^3*SIG^0+ad30*g^1*ZMAT^3*SIG^1 +ad31*g^1*ZMAT^4*SIGI+ad32*g^1*ZMAT^4*SIG^0+ad33*g^1*ZMAT^4*SIG^1 +ad34*g^1*ZMAT^5*SIGI+ad35*g^1*ZMAT^5*SIG^0+ad36*g^1*ZMAT^5*SIG^1); BD-( bd1*g^0*ZMAT^0*SIGI+ bd2*g^0*ZMAT^0*SIG^0+ bd3*g^0*ZMAT^0*SIG^1 + bd4*g^0*ZMAT^1*SIGI+ bd5*g^0*ZMAT^1*SIG^0+ bd6*g^0*ZMAT^1*SIG^1 + bd7*g^0*ZMAT^2*SIGI+ bd8*g^0*ZMAT^2*SIG^0+ bd9*g^0*ZMAT^2*SIG^1 +bd10*g^0*ZMAT^3*SIGI+bd11*g^0*ZMAT^3*SIG^0+bd12*g^0*ZMAT^3*SIG^1 +bd13*g^0*ZMAT^4*SIGI+bd14*g^0*ZMAT^4*SIG^0+bd15*g^0*ZMAT^4*SIG^1 +bd16*g^0*ZMAT^5*SIGI+bd17*g^0*ZMAT^5*SIG^0+bd18*g^0*ZMAT^5*SIG^1 +bd19*g^1*ZMAT^0*SIGI+bd20*g^1*ZMAT^0*SIG^0+bd21*g^1*ZMAT^0*SIG^1 +bd22*g^1*ZMAT^1*SIGI+bd23*g^1*ZMAT^1*SIG^0+bd24*g^1*ZMAT^1*SIG^1 +bd25*g^1*ZMAT^2*SIGI+bd26*g^1*ZMAT^2*SIG^0+bd27*g^1*ZMAT^2*SIG^1 +bd28*g^1*ZMAT^3*SIGI+bd29*g^1*ZMAT^3*SIG^0+bd30*g^1*ZMAT^3*SIG^1 +bd31*g^1*ZMAT^4*SIGI+bd32*g^1*ZMAT^4*SIG^0+bd33*g^1*ZMAT^4*SIG^1 +bd34*g^1*ZMAT^5*SIGI+bd35*g^1*ZMAT^5*SIG^0+bd36*g^1*ZMAT^5*SIG^1); ZD-( zd1*g^0*ZMAT^0*SIGI+ zd2*g^0*ZMAT^0*SIG^0+ zd3*g^0*ZMAT^0*SIG^1 + zd4*g^0*ZMAT^1*SIGI+ zd5*g^0*ZMAT^1*SIG^0+ zd6*g^0*ZMAT^1*SIG^1 + zd7*g^0*ZMAT^2*SIGI+ zd8*g^0*ZMAT^2*SIG^0+ zd9*g^0*ZMAT^2*SIG^1 +zd10*g^0*ZMAT^3*SIGI+zd11*g^0*ZMAT^3*SIG^0+zd12*g^0*ZMAT^3*SIG^1 +zd13*g^0*ZMAT^4*SIGI+zd14*g^0*ZMAT^4*SIG^0+zd15*g^0*ZMAT^4*SIG^1 +zd16*g^0*ZMAT^5*SIGI+zd17*g^0*ZMAT^5*SIG^0+zd18*g^0*ZMAT^5*SIG^1 +zd19*g^1*ZMAT^0*SIGI+zd20*g^1*ZMAT^0*SIG^0+zd21*g^1*ZMAT^0*SIG^1 +zd22*g^1*ZMAT^1*SIGI+zd23*g^1*ZMAT^1*SIG^0+zd24*g^1*ZMAT^1*SIG^1 +zd25*g^1*ZMAT^2*SIGI+zd26*g^1*ZMAT^2*SIG^0+zd27*g^1*ZMAT^2*SIG^1 +zd28*g^1*ZMAT^3*SIGI+zd29*g^1*ZMAT^3*SIG^0+zd30*g^1*ZMAT^3*SIG^1 +zd31*g^1*ZMAT^4*SIGI+zd32*g^1*ZMAT^4*SIG^0+zd33*g^1*ZMAT^4*SIG^1 +zd34*g^1*ZMAT^5*SIGI+zd35*g^1*ZMAT^5*SIG^0+zd36*g^1*ZMAT^5*SIG^1); AASTAR:=sub(z=z^8,tp(AA))$ BBSTAR:=sub(z=z^8,tp(BB))$ ZZSTAR:=sub(z=z^8,tp(ZZ))$ % Checking that the elements $\xi$ satisfy $\iota(\xi)\xi=1$: % The following are zero: AASTAR*FF*AA-FF; BBSTAR*FF*BB-FF; ZZSTAR*FF*ZZ-FF; ADSTAR:=sub(z=z^8,tp(AD))$ BDSTAR:=sub(z=z^8,tp(BD))$ ZDSTAR:=sub(z=z^8,tp(ZD))$ % Checking that the elements $\xi$ satisfy $\iota(\xi)\xi=1$: % The following are zero: ADSTAR*FF*AD-FF; BDSTAR*FF*BD-FF; ZDSTAR*FF*ZD-FF; avec:=mat((a1),(a2),(a3),(a4),(a5),(a6),(a7),(a8),(a9),(a10),(a11),(a12),(a13),(a14),(a15),(a16),(a17),(a18), (a19),(a20),(a21),(a22),(a23),(a24),(a25),(a26),(a27),(a28),(a29),(a30),(a31),(a32),(a33),(a34),(a35),(a36))$ bvec:=mat((b1),(b2),(b3),(b4),(b5),(b6),(b7),(b8),(b9),(b10),(b11),(b12),(b13),(b14),(b15),(b16),(b17),(b18), (b19),(b20),(b21),(b22),(b23),(b24),(b25),(b26),(b27),(b28),(b29),(b30),(b31),(b32),(b33),(b34),(b35),(b36))$ zvec:=mat((z1),(z2),(z3),(z4),(z5),(z6),(z7),(z8),(z9),(z10),(z11),(z12),(z13),(z14),(z15),(z16),(z17),(z18), (z19),(z20),(z21),(z22),(z23),(z24),(z25),(z26),(z27),(z28),(z29),(z30),(z31),(z32),(z33),(z34),(z35),(z36))$ advec:=mat((ad1),(ad2),(ad3),(ad4),(ad5),(ad6),(ad7),(ad8),(ad9),(ad10),(ad11),(ad12),(ad13),(ad14),(ad15),(ad16),(ad17),(ad18), (ad19),(ad20),(ad21),(ad22),(ad23),(ad24),(ad25),(ad26),(ad27),(ad28),(ad29),(ad30),(ad31),(ad32),(ad33),(ad34),(ad35),(ad36))$ bdvec:=mat((bd1),(bd2),(bd3),(bd4),(bd5),(bd6),(bd7),(bd8),(bd9),(bd10),(bd11),(bd12),(bd13),(bd14),(bd15),(bd16),(bd17),(bd18), (bd19),(bd20),(bd21),(bd22),(bd23),(bd24),(bd25),(bd26),(bd27),(bd28),(bd29),(bd30),(bd31),(bd32),(bd33),(bd34),(bd35),(bd36))$ zdvec:=mat((zd1),(zd2),(zd3),(zd4),(zd5),(zd6),(zd7),(zd8),(zd9),(zd10),(zd11),(zd12),(zd13),(zd14),(zd15),(zd16),(zd17),(zd18), (zd19),(zd20),(zd21),(zd22),(zd23),(zd24),(zd25),(zd26),(zd27),(zd28),(zd29),(zd30),(zd31),(zd32),(zd33),(zd34),(zd35),(zd36))$ CondMtxDM3Type1:=mat( (1,1,5,4,1,3,6,1,8,6,0,1,6,0,2,2,0,1,6,0,5,8,0,6,0,0,8,6,0,8,8,0,6,0,0,8), (3,0,8,3,0,7,7,0,8,7,1,6,1,1,5,8,1,0,3,0,1,1,0,3,0,0,1,3,0,4,7,0,3,0,0,7), (6,0,5,8,0,6,0,0,8,6,0,8,8,0,6,0,0,8,7,1,1,3,1,0,6,1,7,3,0,0,5,0,8,2,0,0), (3,0,1,1,0,3,0,0,1,3,0,4,7,0,3,0,0,7,6,0,0,4,0,1,7,0,0,1,1,1,8,1,8,8,1,7), (7,0,8,5,1,3,3,2,4,1,0,2,8,7,6,3,5,4,4,0,2,1,0,2,4,0,5,4,0,5,7,0,8,4,0,8), (8,0,7,1,2,3,6,4,5,8,0,1,4,8,0,6,7,8,5,0,4,2,0,1,5,0,1,8,0,7,8,0,1,8,0,4), (4,0,2,1,0,2,4,0,5,4,0,5,7,0,8,4,0,8,2,0,1,6,1,5,7,2,0,5,0,7,6,7,5,7,5,3), (5,0,4,2,0,1,5,0,1,8,0,7,8,0,1,8,0,4,4,0,2,3,2,4,2,4,6,7,0,8,3,8,1,5,7,3), (2,0,6,0,0,2,5,1,5,5,0,0,6,0,5,8,7,8,7,0,2,8,0,4,3,0,3,7,0,8,2,0,7,3,0,3), (4,0,0,3,0,4,1,2,1,7,0,6,6,0,7,4,8,4,2,0,1,7,0,2,6,0,6,5,0,1,1,0,2,6,0,6), (7,0,2,8,0,4,3,0,3,7,0,8,2,0,7,3,0,3,0,0,8,8,0,6,8,1,8,3,0,8,8,0,3,2,7,2), (2,0,1,7,0,2,6,0,6,5,0,1,1,0,2,6,0,6,6,0,1,1,0,6,7,2,7,3,0,7,7,0,0,1,8,1), (8,0,3,8,0,8,0,1,4,2,0,2,6,0,3,0,8,8,7,0,4,2,0,7,3,0,2,2,0,3,4,0,2,6,0,8), (7,0,7,3,0,6,0,1,1,1,0,5,5,0,2,0,0,3,7,0,6,5,0,7,3,0,1,0,0,7,6,0,0,0,0,1), (7,0,4,2,0,7,3,0,2,2,0,3,4,0,2,6,0,8,6,0,7,1,0,6,3,1,6,4,0,5,1,0,5,6,8,7), (7,0,6,5,0,7,3,0,1,0,0,7,6,0,0,0,0,1,5,0,4,8,0,4,3,1,2,1,0,3,2,0,2,0,0,4), (5,1,2,4,1,7,8,7,1,1,0,1,6,0,6,4,0,3,2,0,4,7,0,2,8,0,1,2,0,7,7,0,5,5,0,4), (8,0,8,3,0,3,5,0,6,6,1,3,1,1,4,3,7,4,7,0,2,2,0,4,4,0,5,4,0,2,5,0,7,4,0,5), (2,0,4,7,0,2,8,0,1,2,0,7,7,0,5,5,0,4,7,1,6,2,1,0,7,7,2,3,0,8,4,0,2,0,0,7), (7,0,2,2,0,4,4,0,5,4,0,2,5,0,7,4,0,5,6,0,1,5,0,7,0,0,2,1,1,5,6,1,2,7,7,0), (3,0,4,6,1,6,7,8,5,2,0,5,4,0,3,1,0,4,0,0,3,1,0,3,4,0,4,5,0,4,6,0,7,0,0,5), (7,0,4,5,0,6,8,0,5,5,0,0,1,1,0,8,8,0,4,0,5,3,0,2,0,0,4,5,0,7,7,0,1,4,0,0), (0,0,3,1,0,3,4,0,4,5,0,4,6,0,7,0,0,5,3,0,7,7,1,0,2,8,0,7,0,0,1,0,1,1,0,0), (4,0,5,3,0,2,0,0,4,5,0,7,7,0,1,4,0,0,2,0,0,8,0,8,8,0,0,1,0,7,8,1,1,3,8,0), (0,0,5,1,1,5,2,8,7,4,0,1,3,8,5,8,1,5,4,0,3,1,0,4,8,0,1,2,0,8,2,0,6,3,0,3), (5,0,8,6,1,4,1,8,4,4,0,6,4,0,1,1,0,3,7,0,1,7,0,3,6,0,6,6,0,2,3,0,1,2,0,4), (4,0,3,1,0,4,8,0,1,2,0,8,2,0,6,3,0,3,4,0,8,2,1,0,1,8,8,6,0,0,5,8,2,2,1,8), (7,0,1,7,0,3,6,0,6,6,0,2,3,0,1,2,0,4,3,0,0,4,1,7,7,8,1,1,0,8,7,0,2,3,0,7), (8,0,5,4,6,3,2,2,0,5,0,5,7,0,6,8,8,3,5,0,7,1,0,8,3,0,6,5,0,7,7,0,8,0,0,3), (4,0,4,2,0,3,1,1,6,4,0,1,2,6,0,1,1,3,4,0,2,2,0,1,0,0,6,1,0,5,8,0,7,3,0,0), (5,0,7,1,0,8,3,0,6,5,0,7,7,0,8,0,0,3,4,0,3,5,6,2,5,2,6,1,0,3,5,0,5,8,8,6), (4,0,2,2,0,1,0,0,6,1,0,5,8,0,7,3,0,0,8,0,6,4,0,4,1,1,3,5,0,6,1,6,7,4,1,3), (3,1,2,1,7,8,4,1,0,2,0,7,6,0,1,3,0,5,1,0,0,3,0,1,1,0,0,1,0,3,3,0,7,4,0,6), (7,0,2,3,0,8,6,0,4,5,1,0,7,7,0,7,1,5,8,0,6,6,0,2,5,0,3,2,0,3,6,0,8,5,0,6), (1,0,0,3,0,1,1,0,0,1,0,3,3,0,7,4,0,6,4,1,2,4,7,0,5,1,0,3,0,1,0,0,8,7,0,2), (8,0,6,6,0,2,5,0,3,2,0,3,6,0,8,5,0,6,6,0,8,0,0,1,2,0,7,7,1,3,4,7,8,3,1,2))$ CondMtxDM3Type2:=mat( (1,1,5,4,1,3,6,1,8,6,0,1,6,0,2,2,0,1,6,0,5,8,0,6,0,0,8,6,0,8,8,0,6,0,0,8), (3,0,8,3,0,7,7,0,8,7,1,6,1,1,5,8,1,0,3,0,1,1,0,3,0,0,1,3,0,4,7,0,3,0,0,7), (6,0,5,8,0,6,0,0,8,6,0,8,8,0,6,0,0,8,7,1,1,3,1,0,6,1,7,3,0,0,5,0,8,2,0,0), (3,0,1,1,0,3,0,0,1,3,0,4,7,0,3,0,0,7,6,0,0,4,0,1,7,0,0,1,1,1,8,1,8,8,1,7), (6,0,5,2,1,7,6,2,5,5,0,6,6,0,7,3,0,4,8,0,5,1,0,0,8,0,2,7,0,3,0,0,1,7,0,6), (4,0,3,3,0,2,6,0,5,2,0,2,8,1,5,0,2,0,2,0,6,0,0,8,2,0,3,6,0,8,1,0,1,6,0,8), (8,0,5,1,0,0,8,0,2,7,0,3,0,0,1,7,0,6,5,0,1,3,1,7,5,2,7,3,0,0,6,0,8,1,0,1), (2,0,6,0,0,8,2,0,3,6,0,8,1,0,1,6,0,8,6,0,0,3,0,1,8,0,8,8,0,1,0,1,6,6,2,8), (8,0,1,2,0,5,8,1,2,6,0,7,8,0,3,3,0,6,5,0,3,5,0,6,6,0,0,1,0,4,6,0,8,3,0,6), (3,0,2,1,0,6,6,0,3,5,0,8,1,0,8,2,1,8,8,0,5,3,0,1,6,0,3,6,0,7,2,0,5,0,0,6), (5,0,3,5,0,6,6,0,0,1,0,4,6,0,8,3,0,6,4,0,4,7,0,2,5,1,2,7,0,2,5,0,2,6,0,3), (8,0,5,3,0,1,6,0,3,6,0,7,2,0,5,0,0,6,2,0,7,4,0,7,3,0,6,2,0,6,3,0,4,2,1,5), (3,0,7,2,0,5,0,8,2,0,0,1,5,0,8,0,8,2,2,0,1,1,0,2,6,0,0,2,0,7,1,0,2,6,0,6), (0,0,8,4,0,1,0,1,7,3,0,8,7,0,4,0,7,4,7,0,2,8,0,7,3,0,3,4,0,8,2,0,4,3,0,6), (2,0,1,1,0,2,6,0,0,2,0,7,1,0,2,6,0,6,5,0,8,3,0,7,6,8,2,2,0,8,6,0,1,6,8,8), (7,0,2,8,0,7,3,0,3,4,0,8,2,0,4,3,0,6,7,0,1,3,0,8,3,1,1,7,0,7,0,0,8,3,7,1), (5,1,2,4,1,7,8,7,1,1,0,1,6,0,6,4,0,3,2,0,4,7,0,2,8,0,1,2,0,7,7,0,5,5,0,4), (8,0,8,3,0,3,5,0,6,6,1,3,1,1,4,3,7,4,7,0,2,2,0,4,4,0,5,4,0,2,5,0,7,4,0,5), (2,0,4,7,0,2,8,0,1,2,0,7,7,0,5,5,0,4,7,1,6,2,1,0,7,7,2,3,0,8,4,0,2,0,0,7), (7,0,2,2,0,4,4,0,5,4,0,2,5,0,7,4,0,5,6,0,1,5,0,7,0,0,2,1,1,5,6,1,2,7,7,0), (3,0,4,6,1,6,7,8,5,2,0,5,4,0,3,1,0,4,0,0,3,1,0,3,4,0,4,5,0,4,6,0,7,0,0,5), (7,0,4,5,0,6,8,0,5,5,0,0,1,1,0,8,8,0,4,0,5,3,0,2,0,0,4,5,0,7,7,0,1,4,0,0), (0,0,3,1,0,3,4,0,4,5,0,4,6,0,7,0,0,5,3,0,7,7,1,0,2,8,0,7,0,0,1,0,1,1,0,0), (4,0,5,3,0,2,0,0,4,5,0,7,7,0,1,4,0,0,2,0,0,8,0,8,8,0,0,1,0,7,8,1,1,3,8,0), (8,0,7,7,8,6,0,1,8,5,0,7,4,8,3,6,1,8,8,0,1,5,0,7,5,0,7,8,0,4,5,0,4,8,0,4), (4,0,2,5,1,6,3,8,1,4,0,5,2,7,0,6,2,7,1,0,5,4,0,5,1,0,5,7,0,5,1,0,2,4,0,2), (8,0,1,5,0,7,5,0,7,8,0,4,5,0,4,8,0,4,7,0,8,3,8,4,5,1,6,4,0,2,0,8,7,5,1,3), (1,0,5,4,0,5,1,0,5,7,0,5,1,0,2,4,0,2,5,0,7,0,1,2,4,8,6,2,0,1,3,7,2,1,2,0), (8,0,5,4,6,3,2,2,0,5,0,5,7,0,6,8,8,3,5,0,7,1,0,8,3,0,6,5,0,7,7,0,8,0,0,3), (4,0,4,2,0,3,1,1,6,4,0,1,2,6,0,1,1,3,4,0,2,2,0,1,0,0,6,1,0,5,8,0,7,3,0,0), (5,0,7,1,0,8,3,0,6,5,0,7,7,0,8,0,0,3,4,0,3,5,6,2,5,2,6,1,0,3,5,0,5,8,8,6), (4,0,2,2,0,1,0,0,6,1,0,5,8,0,7,3,0,0,8,0,6,4,0,4,1,1,3,5,0,6,1,6,7,4,1,3), (3,1,2,1,7,8,4,1,0,2,0,7,6,0,1,3,0,5,1,0,0,3,0,1,1,0,0,1,0,3,3,0,7,4,0,6), (7,0,2,3,0,8,6,0,4,5,1,0,7,7,0,7,1,5,8,0,6,6,0,2,5,0,3,2,0,3,6,0,8,5,0,6), (1,0,0,3,0,1,1,0,0,1,0,3,3,0,7,4,0,6,4,1,2,4,7,0,5,1,0,3,0,1,0,0,8,7,0,2), (8,0,6,6,0,2,5,0,3,2,0,3,6,0,8,5,0,6,6,0,8,0,0,1,2,0,7,7,1,3,4,7,8,3,1,2))$ % The following are zero, checking that CondMtxDM3Type1*avec, CondMtxDM3Type1*bvec, CondMtxDM3Type1*zvec have entries in $\Z_3$: CondMtxDM3Type1*avec - mat((-4),(-4),(6),(-9),(-1),(-2),(-4),(0),(-3),(1),(-1),(-3),(3),(-3),(-1),(1),(-8),(0),(-8),(-1),(-1),(1),(0),(-6),(-4),(3),(-3),(-6),(0),(-1),(-8),(5),(-5),(-1),(-1),(8)); CondMtxDM3Type1*bvec - mat((5),(15),(12),(8),(12),(19),(18),(23),(12),(10),(10),(15),(9),(4),(18),(8),(10),(12),(15),(12),(9),(13),(8),(11),(13),(11),(14),(11),(12),(3),(11),(13),(13),(16),(12),(18)); CondMtxDM3Type1*zvec - mat((1),(0),(0),(0),(1),(2),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(1),(0),(0),(0),(1),(0),(0),(0),(1),(1),(0),(0),(6),(0),(0),(0),(7),(0),(0),(0)); % The following are zero, checking that CondMtxDM3Type2*advec, CondMtxDM3Type2*bdvec, CondMtxDM3Type2*zdvec have entries in $\Z_3$: CondMtxDM3Type2*advec - mat((-18),(0),(-1),(1),(-11),(-9),(-7),(-20),(6),(-14),(-3),(-15),(-1),(-12),(-19),(1),(4),(-10),(-10),(0),(0),(-12),(-12),(7),(-19),(-17),(-13),(-14),(-5),(-10),(-6),(-6),(3),(-8),(-3),(-12)); CondMtxDM3Type2*bdvec - mat((6),(12),(14),(7),(17),(4),(10),(19),(6),(6),(9),(6),(6),(5),(-4),(5),(3),(15),(-4),(9),(2),(8),(11),(4),(13),(5),(11),(7),(0),(6),(17),(4),(3),(10),(4),(5)); CondMtxDM3Type2*zdvec - mat((1),(0),(0),(0),(1),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(1),(0),(0),(0),(1),(0),(0),(0),(8),(1),(0),(0),(6),(0),(0),(0),(7),(0),(0),(0)); % The following are zero, checking the statements about determinants: det(AA)-1; det(BB)-gendt; det(ZZ)-z^3; % The following are zero, checking the statements about determinants: det(AD)-1; det(BD)-gendt; det(ZD)-z^3; % Here is the inverse of FF: FFI:=mat(((2*g*z^5-2*g*z^4+4*g*z^2-4*g*z+3*g+z^5-z^4+2*z^2-2*z+3)/6, 0, 0), ( 0,(-4*g*z^5-2*g*z^4-2*g*z^2+2*g*z+3*g-2*z^5-z^4-z^2+z+3)/6, 0), ( 0, 0,(2*g*z^5+4*g*z^4-2*g*z^2+2*g*z+3*g+z^5+2*z^4-z^2+z+3)/6))$ AAI:=FFI*AASTAR*FF; BBI:=FFI*BBSTAR*FF; ZZI:=FFI*ZZSTAR*FF; ADI:=FFI*ADSTAR*FF; BDI:=FFI*BDSTAR*FF; ZDI:=FFI*ZDSTAR*FF; AAI:=mat( ((g*z^5+g*z^4-g*z^3+g*z-g+z^5-z^3)/3,(2*g*z^5-3*g*z^4+g*z^3+g*z^2-3*g*z+z^5-z^4+2*z^3+z^2+3)/3,(-2*g*z^5+g*z^4-2*g*z^3-g*z-g+z^4-3*z^3-1)/3), ((-g*z^5-g*z^4-g*z^2+g*z+3*g-2*z^5-z^3-z^2+z)/3,(-g*z^3+g*z^2-g*z-g-z^3+z^2)/3,(-g*z^5+g*z^3+g*z^2+3*g*z-z^5+z^4+2*z^3+z+3)/3), ((-2*g*z^5-g*z^4+2*g*z^3-g*z^2-2*g*z-g-z^5-z^4-z^3-3*z)/3,(g*z^5+2*g*z^4+g*z+3*g+z^5+z^4-z^3-z^2)/3,(-(g*z^5+g*z^4+g*z^3+g*z^2+g+z^5+z^3+z^2))/3)); BBI:=mat( ((g*z^5+g*z^4+g*z^3+g-z^3-z^2+z)/3,(2*g*z^5-2*g*z^4+g*z^3+g*z^2-3*g*z+2*g+z^5-z^4+2*z^3+z^2-z+3)/3,(g*z^5-5*g*z^4+5*g*z^3-2*g*z^2-g*z+g+4*z^5-z^4+z^3-z^2+2*z+2)/6), ((3*g*z^5+g*z^4+g*z^3+g*z^2-g*z-g+2*z^4-z^3-2)/3,(-g*z^4+g*z^3+g*z^2-g*z+g+z^5+z^4-z^3+z^2)/3,(-g*z^5-g*z^4+g*z^3+g*z^2+2*g*z+2*g-z^5+2*z^3+z+3)/3), ((-2*g*z^5+3*g*z^3-g*z^2-2*g*z-z^5+z^3-2*z+1)/3,(-g*z^5-2*g*z^4+g*z^3+2*g*z^2-g*z-g-2*z^4-z^3-2*z-2)/3,(-g*z^5+g*z^3-g*z^2+g*z+g-z^5-z^4-z^3-z)/3)); ZZI:=mat( (-z^2*(z^3+1),0,0), (0,z^5,0), (0,0,z^2)); ADI:=mat( ((g*z^5+g*z^4-g*z^3+g*z^2+g*z+z^5+z^2+1)/3,(-g*z^5+g*z^4-g*z^3+g*z^2-g*z+g+z^5+z^4-z^3+2*z^2)/3,(g*z^5+2*g*z^3+g*z+2*g-3*z^4+z^2-z)/3), ((2*g*z^4+g*z^3+g*z^2-g*z+z^5-z^4+z^3-1)/3,(-g*z^5-g*z^3-g*z-z^5+1)/3,(-g*z^5-2*g*z^4-g*z^3-2*g*z^2-g*z+g-2*z^5-z^4-z^3-z^2-z)/3), ((-g*z^5+2*g*z^4+g*z^3-2*g*z^2+g*z+2*g+z^5+z^4+z^3-z^2+1)/3,(-g*z^5-3*g*z^4+g*z^3-g*z^2-2*g*z+z^4+z^3+z^2+z-1)/3,(-g*z^4-g*z^3-g*z^2-z^2+1)/3)); BDI:=mat( ((g*z^2-g+z^5-z^3+z^2-1)/3,(g*z^5+g*z^3-g*z^2-g*z-z^5-z^4+z+1)/3,(-g*z^5+3*g*z^4-4*g*z^3-g*z^2-g*z-2*g-z^5-z^4-2*z^3+2*z^2-2*z-2)/6), ((-g*z^5-g*z^3+g*z+g-z^4-z^2+z+1)/3,(-(g*z^5+g*z^2+g+z^5+z^3+1))/3,(g*z^5-g*z^4+g*z^3+2*g*z^2+2*z^4-z^2+z+1)/3), ((-g*z^4+g*z^3+z^4-z^3+2*z^2-z-1)/3,(g*z^4-g*z^3-g*z^2+g+z^5+2*z^4+z^2+z+1)/3,(g*z^5-g-z^3-z^2-1)/3)); ZDI:=mat( (-z^2*(z^3+1),0,0), (0,z^5,0), (0,0,z^2)); % The following are zero, checking that the relations in the stated presentation % of group $\bar\Gamma_{(\cC_2,p=2,\emptyset)}$ do indeed hold: ZZ^3 - z^3*ID3; (ZZI*BB*AAI)^3 - z^6*gendt*ID3; BB*AAI^2*ZZI*BB^2*ZZ*AA - z^3*gendt*ID3; AAI*BBI*ZZ*AA*BBI^2*AAI*ZZI - z^3*gendti*ID3; AAI*ZZI*BB*AAI^2*ZZ*BBI*ZZI*BBI*ZZ*AA*ZZI*BB*ZZ - z^6*ID3; AAI*ZZI*AAI*ZZI*BBI*ZZI*AA*ZZI*BBI*ZZI*BBI*ZZI - z^3*gendti*ID3; BBI*ZZ*AA*ZZ*AA*ZZ*AA*ZZI*BBI*ZZI*AA*ZZ*AA*ZZI*BBI*ZZI - z^6*gendti*ID3; BBI*ZZ*BBI*ZZ*AAI*ZZI*BB*ZZI*AA*ZZI*BB*ZZ*AA*ZZ*AA*ZZI - ID3; ZZI*BB*ZZI*BB*ZZ*BBI*ZZ*AA*ZZI*BB*ZZI*BB*AA*ZZI*BBI*ZZ*AA*ZZI*BB - z^3*gendt*ID3; % The following are zero, checking that the relations in the stated presentation % of group $\bar\Gamma_{(\cC_2,p=2,\{3\})}$ do indeed hold: ZD^3-z^3*ID3; (BD*ZD)^3 - z^3*gendt*ID3; AD*ZD*BD*ZDI*ADI*ZDI*ADI*ZD*BDI - ID3; ADI*BDI*ZDI*ADI*ZD*BDI*ZD*ADI*BDI*ZDI - z^3*gendti*ID3; BDI*ZD*ADI*BDI*ZD*BD*ZDI*AD*BDI*ZDI*BDI - gendti*ID3; BD*ZDI*AD*ZDI*BDI*AD*BDI*ZD*AD*ZD*BD - z^6*ID3; ADI^2*ZDI*ADI*ZDI*BDI*ZD*ADI^2*BD*ZD - z^3*ID3; (ADI*ZDI*ADI*BD)^3 - z^6*gendt*ID3; BDI*ZD*BDI*AD*ZDI*ADI^2*BD*ZDI*ADI*BD*ZD*ADI - z^6*ID3; ZD*ADI*BD*ZD*BDI*ZD*ADI*ZD*BD^2*AD*ZDI*BD - z^3*gendt*ID3; ZDI*ADI*ZD*ADI*ZDI*ADI*BD*AD*ZDI*BDI*AD*ZDI*ADI^2 - z^3*ID3; ADI*BDI*ZDI*ADI*ZDI*AD*ZD*AD^2*ZD*AD*ZD*AD*ZDI*BD - ID3; ADI*BD*ZDI*BD*AD*BDI*ZD*ADI*BDI^2*ZD*ADI^2*BD*ZDI - z^6*ID3; BDI*AD*BDI*ZD*BDI*AD*ZDI*BDI*ZDI^2*ADI*BDI^2*ZD*ADI*ZD - gendti^2*ID3; AD*ZDI*BD^2*ZDI*ADI^2*BD*ZD*ADI*ZD*BD*AD*ZD*BDI*ZDI - gendt*ID3; BDI^2*AD^2*ZDI*BD^2*AD*ZD*BDI*ZDI*AD*BDI*ZD*ADI*BDI - z^3*gendti*ID3; ADI*BD*ZDI*BD*AD*ZD*ADI*BD*ZD*ADI*BDI*ZDI*ADI*ZD*BD*AD*ZDI*BD*ADI*BDI - z^3*gendt*ID3; ZD*ADI*BD*ZDI*AD*BD*ZD*BD*ADI*BD*ZD*BD*AD*ZD*BDI*ZDI*AD*BD*ZD*BD*ADI - gendt^2*ID3; % The following three elements generate in $\bar\Gamma_{(\cC_2,p=2,\emptyset)}$ % the intersection in $\bar\Gamma_{(\cC_2,p=2,\emptyset)}$ and % $\bar\Gamma_{(\cC_2,p=2,\{3\})}$, a subgroup of index 10. int1:=ZZ$ int2:=AA^2*BBI$ int3:=BB*ZZI*AA$ % The following are zero: int1 - ZD; int2 - z^6*ZDI*BDI*BDI*ZDI*ADI*BD*ZDI*BD*ZD*BDI*ZDI; int3 - z^3*gendt*BDI*ZD*BD*ZDI*AD*BDI*ZDI*BDI*ZDI*AD*ZD; % T3:=BB*ZZ*BB*ZZ*AAI*ZZI*AAI*ZZI; ;end;