let s^2=-2; let Z^3=-Z^2-2*Z+2; off nat; phiZ:=(2*(s-1)+(3*s-2)*Z+s*Z^2)/4$ phi2Z:=(2*(-s-1)-(3*s+2)*Z-s*Z^2)/4$ % The following are zero: Z^3+Z^2+2*Z-2; phiZ^3+phiZ^2+2*phiZ-2; phi2Z^3+phi2Z^2+2*phi2Z-2; sub(Z=phiZ,phiZ)-phi2Z; sub(X=phiZ,X^3+X^2+2*X-2); sub(X=phi2Z,X^3+X^2+2*X-2); ID3:=mat((1,0,0), (0,1,0), (0,0,1))$ % We embed the division algebra $\cD$ into the space of $3\times3$ % matrices over $m=\Q(s,Z)$, mapping $\sigma$ to the matrix $SIGMAT$, % and $Z$ to the matrix $ZMAT$. ZMAT:=mat((Z, 0, 0), (0,phiZ, 0), (0, 0,phi2Z))$ SIGMAT:=mat((0,1,0), (0,0,1), (3,0,0))$ gendt:=(1+2*s)/3$ gendti:=(1-2*s)/3$ FF:=mat((3,0,0), (0,0,1), (0,1,0))$ ;end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % The generators for $\bar\Gamma$ in the case $(a=2,p=3,\emptyset)$: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a1:=0/20$ a2:=-2/20$ a3:=4/20$ a4:=-14/20$ a5:=8/20$ a6:=0/20$ a7:=-2/20$ a8:=2/20$ a9:=4/20$ a10:=-2/20$ a11:=-4/20$ a12:=-4/20$ a13:=2/20$ a14:=-3/20$ a15:=2/20$ a16:=4/20$ a17:=-3/20$ a18:=2/20$ b1:=6/60$ b2:=18/60$ b3:=2/60$ b4:=0/60$ b5:=-6/60$ b6:=-2/60$ b7:=6/60$ b8:=0/60$ b9:=-4/60$ b10:=-24/60$ b11:=6/60$ b12:=-14/60$ b13:=-27/60$ b14:=-9/60$ b15:=-7/60$ b16:=-15/60$ b17:=9/60$ b18:=-5/60$ c1:=0/2$ c2:=0/2$ c3:=0/2$ c4:=-2/2$ c5:=0/2$ c6:=0/2$ c7:=0/2$ c8:=0/2$ c9:=0/2$ c10:=0/2$ c11:=0/2$ c12:=0/2$ c13:=1/2$ c14:=0/2$ c15:=0/2$ c16:=1/2$ c17:=0/2$ c18:=0/2$ % Here are the matrix forms of the elements of $\cD$ corresponding % to the above sequences of coefficients: AA:=a1*ZMAT^0*SIGMAT^0+a2*ZMAT^0*SIGMAT^1+a3*ZMAT^0*SIGMAT^2+ a4*ZMAT^1*SIGMAT^0+a5*ZMAT^1*SIGMAT^1+a6*ZMAT^1*SIGMAT^2+ a7*ZMAT^2*SIGMAT^0+a8*ZMAT^2*SIGMAT^1+a9*ZMAT^2*SIGMAT^2+ a10*s*ZMAT^0*SIGMAT^0+a11*s*ZMAT^0*SIGMAT^1+a12*s*ZMAT^0*SIGMAT^2+ a13*s*ZMAT^1*SIGMAT^0+a14*s*ZMAT^1*SIGMAT^1+a15*s*ZMAT^1*SIGMAT^2+ a16*s*ZMAT^2*SIGMAT^0+a17*s*ZMAT^2*SIGMAT^1+a18*s*ZMAT^2*SIGMAT^2$ BB:=b1*ZMAT^0*SIGMAT^0+b2*ZMAT^0*SIGMAT^1+b3*ZMAT^0*SIGMAT^2+ b4*ZMAT^1*SIGMAT^0+b5*ZMAT^1*SIGMAT^1+b6*ZMAT^1*SIGMAT^2+ b7*ZMAT^2*SIGMAT^0+b8*ZMAT^2*SIGMAT^1+b9*ZMAT^2*SIGMAT^2+ b10*s*ZMAT^0*SIGMAT^0+b11*s*ZMAT^0*SIGMAT^1+b12*s*ZMAT^0*SIGMAT^2+ b13*s*ZMAT^1*SIGMAT^0+b14*s*ZMAT^1*SIGMAT^1+b15*s*ZMAT^1*SIGMAT^2+ b16*s*ZMAT^2*SIGMAT^0+b17*s*ZMAT^2*SIGMAT^1+b18*s*ZMAT^2*SIGMAT^2$ CC:=c1*ZMAT^0*SIGMAT^0+c2*ZMAT^0*SIGMAT^1+c3*ZMAT^0*SIGMAT^2+ c4*ZMAT^1*SIGMAT^0+c5*ZMAT^1*SIGMAT^1+c6*ZMAT^1*SIGMAT^2+ c7*ZMAT^2*SIGMAT^0+c8*ZMAT^2*SIGMAT^1+c9*ZMAT^2*SIGMAT^2+ c10*s*ZMAT^0*SIGMAT^0+c11*s*ZMAT^0*SIGMAT^1+c12*s*ZMAT^0*SIGMAT^2+ c13*s*ZMAT^1*SIGMAT^0+c14*s*ZMAT^1*SIGMAT^1+c15*s*ZMAT^1*SIGMAT^2+ c16*s*ZMAT^2*SIGMAT^0+c17*s*ZMAT^2*SIGMAT^1+c18*s*ZMAT^2*SIGMAT^2$ % Explicitly: AA:=(1/20)*mat( (2*(2*s*z^2+s*z-s-z^2-7*z),-3*s*z^2-3*s*z-4*s+2*z^2+8*z-2,2*(s*z^2+s*z-2*s+2*z^2+2)), (12*s*(-z^2-z-3),2*(-2*s*z^2-5*s*z-7*s+3*z^2+5*z+8),2*(s*z^2+3*s*z+2*s-2*z^2-2*z-6)), (3*(s*z^2-3*s*z+2*z^2-4*z-6),6*(s*z^2+s*z-2*s-2*z^2-2),4*(2*s*z-s-z^2+z+1)))$ BB:=(1/60)*mat( (3*(-5*s*z^2-9*s*z-8*s+2*z^2+2),3*(3*s*z^2-3*s*z+2*s-2*z+6),-5*s*z^2-7*s*z-14*s-4*z^2-2*z+2), (3*(5*s*z^2+5*s*z-2*z^2+4*z+6),3*(s*z^2+3*s*z+2*s-4*z^2+6*z-2),6*(-s*z^2-s+3*z^2+5*z+8)), (9*(-s*z^2+3*s*z-6*z^2-8*z-2),6*(s*z-3*s+3*z^2-z+6),6*(2*s*z^2+3*s*z+3*s+z^2-3*z)))$ CC:=(1/2)*mat( (z*(s*z+s-2),0,0), (0,-s*z^2-2*s*z-3*s+z^2+z+2,0), (0,0,s*z-s-z^2+z))$ AASTAR:=sub(s=-s,tp(AA))$ BBSTAR:=sub(s=-s,tp(BB))$ CCSTAR:=sub(s=-s,tp(CC))$ % Checking that the elements $\xi$ satisfy $\iota(\xi)\xi=1$: % The following are zero: AASTAR*FF*AA-FF; BBSTAR*FF*BB-FF; CCSTAR*FF*CC-FF; % Checking the integrality conditions: condmatq2type1:=mat( (1,0,0,3,0,0,1,0,0,0,0,0,0,0,0,0,0,0), (0,1,0,0,3,0,0,1,0,0,0,0,0,0,0,0,0,0), (0,0,1,0,0,3,0,0,1,0,0,0,0,0,0,0,0,0), (0,0,3,0,0,6,0,0,6,0,0,0,0,0,6,0,0,0), (1,0,0,2,0,0,2,0,0,0,0,0,2,0,0,0,0,0), (0,1,0,0,2,0,0,2,0,0,0,0,0,2,0,0,0,0), (0,3,0,0,6,0,0,6,0,0,0,0,0,2,0,0,0,0), (0,0,3,0,0,6,0,0,6,0,0,0,0,0,2,0,0,0), (1,0,0,2,0,0,2,0,0,0,0,0,6,0,0,0,0,0), (0,0,0,0,0,0,0,0,0,1,0,0,3,0,0,1,0,0), (0,0,0,0,0,0,0,0,0,0,1,0,0,3,0,0,1,0), (0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,0,0,1), (0,0,0,0,0,5,0,0,4,0,0,3,0,0,6,0,0,6), (0,0,0,7,0,0,4,0,0,1,0,0,2,0,0,2,0,0), (0,0,0,0,7,0,0,4,0,0,1,0,0,2,0,0,2,0), (0,0,0,0,3,0,0,4,0,0,3,0,0,6,0,0,6,0), (0,0,0,0,0,3,0,0,4,0,0,3,0,0,6,0,0,6), (0,0,0,1,0,0,4,0,0,1,0,0,2,0,0,2,0,0))$ condmatq5type1:=mat( (1,12,19,0,19,3,16,11,7,0,0,0,0,8,4,0,13,19), (0,0,0,1,19,3,6,14,18,0,0,0,0,4,2,0,24,12), (0,0,0,0,0,0,5,20,15,0,0,0,0,5,15,0,10,5), (0,19,3,16,11,7,11,0,0,0,8,4,0,13,19,0,21,23), (1,19,3,6,14,18,17,23,1,0,4,2,0,24,12,0,18,9), (0,0,0,5,20,15,20,5,10,0,5,15,0,10,5,0,5,15), (0,11,7,13,21,2,22,23,1,0,3,14,0,23,24,0,2,1), (0,0,0,18,17,4,20,5,10,0,10,5,0,2,1,0,20,10), (1,19,3,18,17,4,14,16,17,0,21,23,0,18,9,0,19,22), (0,0,0,0,21,23,0,6,3,1,12,19,0,19,3,16,11,7), (0,0,0,0,23,24,0,13,19,0,0,0,1,19,3,6,14,18), (0,0,0,0,10,5,0,20,10,0,0,0,0,0,0,5,20,15), (0,21,23,0,6,3,0,2,1,0,19,3,16,11,7,11,0,0), (0,23,24,0,13,19,0,16,8,1,19,3,6,14,18,17,23,1), (0,10,5,0,20,10,0,10,5,0,0,0,5,20,15,20,5,10), (0,11,18,0,1,13,0,24,12,0,11,7,13,21,2,22,23,1), (0,20,10,0,24,12,0,15,20,0,0,0,18,17,4,20,5,10), (0,2,1,0,16,8,0,3,14,1,19,3,18,17,4,14,16,17))$ avec:=mat((a1),(a2),(a3),(a4),(a5),(a6),(a7),(a8),(a9),(a10),(a11),(a12),(a13),(a14),(a15),(a16),(a17),(a18))$ bvec:=mat((b1),(b2),(b3),(b4),(b5),(b6),(b7),(b8),(b9),(b10),(b11),(b12),(b13),(b14),(b15),(b16),(b17),(b18))$ cvec:=mat((c1),(c2),(c3),(c4),(c5),(c6),(c7),(c8),(c9),(c10),(c11),(c12),(c13),(c14),(c15),(c16),(c17),(c18))$ % The following are zero, checking that condmatq2type1*avec, condmatq2type1*bvec and condmatq2type1*cvec % have entries in $\Z_2$: condmatq2type1*avec -(1/5)*mat((-11),(6),(2),(12),(-7),(3),(12),(10),(-5),(2),(-4),(1),(7),(-24),(12),(-4),(7),(-3)); condmatq2type1*bvec -(1/15)*mat((3),(0),(-2),(-18),(-9),(-3),(0),(-11),(-36),(-30),(-3),(-10),(-35),(-21),(-9),(0),(-34),(-21)); condmatq2type1*cvec - mat((-3),(0),(0),(0),(-1),(0),(0),(0),(1),(2),(0),(0),(0),(-5),(0),(0),(0),(1)); % The following are zero, checking that condmatq5type1*avec, condmatq5type1*bvec and condmatq5type1*cvec % have entries in $\Z_5$: condmatq5type1*avec - (1/4)*mat((41),(34),(17),(-50),(-18),(3),(-19),(-42),(-59),(12),(51),(30),(15),(27),(53),(14),(76),(27)); condmatq5type1*bvec - (1/12)*mat((26),(-10),(-23),(30),(29),(-81),(-66),(13),(-20),(-154),(-107),(-16),(-59),(-21),(-139),(-112),(-168),(-180)); condmatq5type1*cvec - mat((0),(-1),(0),(-16),(-6),(-5),(-13),(-18),(-18),(8),(7/2),(5/2),(27/2),(23/2),(25/2),(35/2),(19),(16)); % Checking the determinants. The following are zero: det(AA)-1; det(BB)-(1+2*s)/3; det(CC)-1; % Checking the relations: % Here are the inverses of AA, BB and CC: AAI:=mat( ((-2*s*z^2-s*z+s-z^2-7*z)/10,(-s*z^2+3*s*z+2*z^2-4*z-6)/20,(s*(z^2+z+3))/5), ((3*(-s*z^2-s*z+2*s+2*z^2+2))/10,(-2*s*z+s-z^2+z+1)/5,(-s*z^2-3*s*z-2*s-2*z^2-2*z-6)/10), ((3*(3*s*z^2+3*s*z+4*s+2*z^2+8*z-2))/20,(3*(-s*z^2-s*z+2*s-2*z^2-2))/10,(2*s*z^2+5*s*z+7*s+3*z^2+5*z+8)/10))$ BBI:=mat( ((5*s*z^2+9*s*z+8*s+2*z^2+2)/20,(s*z^2-3*s*z-6*z^2-8*z-2)/20,(-5*s*z^2-5*s*z-2*z^2+4*z+6)/60), ((5*s*z^2+7*s*z+14*s-4*z^2-2*z+2)/20,(-2*s*z^2-3*s*z-3*s+z^2-3*z)/10,(s*z^2+s+3*z^2+5*z+8)/10), ((3*(-3*s*z^2+3*s*z-2*s-2*z+6))/20,(-s*z+3*s+3*z^2-z+6)/10,(-s*z^2-3*s*z-2*s-4*z^2+6*z-2)/20))$ CCI:=mat(((z*(-s*z-s-2))/2,0,0), (0,(-s*z+s-z^2+z)/2,0), (0,0,(s*z^2+2*s*z+3*s+z^2+z+2)/2))$ % The following matrices are zero: BB^3 - gendt*ID3; (BB*CC*AAI*CC*AA)^3 - gendt*ID3; AAI*BBI*AAI*CC*BB*CC*AA*BB*CC*AAI*CC*BBI - ID3; AAI*BBI*AAI*CC*AAI*BB*CC*AAI*BBI*AAI^2*BB - ID3; CCI*AAI*BBI*CCI*AAI*BBI*CCI*BBI*AA*BB*CC*AAI*BBI - gendti*ID3; BB*CC*AAI*BBI*CCI^2*BBI*CCI*AA*CCI*BBI*AA*CCI*BBI*AAI - gendti*ID3; AA*BB*AA*BB*CC*AAI*CC*BBI*CC*AAI*CC*BB*CC*BB*AA^2*CCI - gendt*ID3; AA^2*CCI*AA*CCI*BBI*AA*BB*CC^2*AAI^2*BBI*AA*BB*CC*AAI*CC - ID3; AA*CCI*AA*CCI*BBI*AA*BB*CC*BBI*AAI*CC*AAI^2*BBI*CC*AAI^2*BBI*CCI - gendti*ID3; BB*AA^2*CCI*AA*BB*AA*BBI*CCI*AA*CCI*BBI*AAI*CC*AAI*CC*BBI*CC*BB*AA - ID3; AAI*BBI*CCI*BBI*AA^2*BB*CC*AAI^2*BBI*AAI*BBI*AAI*CC*BBI*CC*AAI*CC*BB*CC - gendti*ID3; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % The generators for $\bar\Gamma$ in the case $(a=2,p=3,\{2\})$. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ad1:=0/20$ ad2:=-2/20$ ad3:=4/20$ ad4:=-14/20$ ad5:=8/20$ ad6:=0/20$ ad7:=-2/20$ ad8:=2/20$ ad9:=4/20$ ad10:=-2/20$ ad11:=-4/20$ ad12:=-4/20$ ad13:=2/20$ ad14:=-3/20$ ad15:=2/20$ ad16:=4/20$ ad17:=-3/20$ ad18:=2/20$ bd1:=0/60$ bd2:=18/60$ bd3:=12/60$ bd4:=6/60$ bd5:=-15/60$ bd6:=2/60$ bd7:=18/60$ bd8:=3/60$ bd9:=-2/60$ bd10:=18/60$ bd11:=9/60$ bd12:=18/60$ bd13:=-6/60$ bd14:=-3/60$ bd15:=10/60$ bd16:=0/60$ bd17:=0/60$ bd18:=8/60$ cd1:=0/2$ cd2:=0/2$ cd3:=0/2$ cd4:=-2/2$ cd5:=0/2$ cd6:=0/2$ cd7:=0/2$ cd8:=0/2$ cd9:=0/2$ cd10:=0/2$ cd11:=0/2$ cd12:=0/2$ cd13:=1/2$ cd14:=0/2$ cd15:=0/2$ cd16:=1/2$ cd17:=0/2$ cd18:=0/2$ % Here are the matrix forms of the elements of $\cD$ corresponding % to the above sequences of coefficients: AD:=ad1*ZMAT^0*SIGMAT^0+ad2*ZMAT^0*SIGMAT^1+ad3*ZMAT^0*SIGMAT^2+ ad4*ZMAT^1*SIGMAT^0+ad5*ZMAT^1*SIGMAT^1+ad6*ZMAT^1*SIGMAT^2+ ad7*ZMAT^2*SIGMAT^0+ad8*ZMAT^2*SIGMAT^1+ad9*ZMAT^2*SIGMAT^2+ ad10*s*ZMAT^0*SIGMAT^0+ad11*s*ZMAT^0*SIGMAT^1+ad12*s*ZMAT^0*SIGMAT^2+ ad13*s*ZMAT^1*SIGMAT^0+ad14*s*ZMAT^1*SIGMAT^1+ad15*s*ZMAT^1*SIGMAT^2+ ad16*s*ZMAT^2*SIGMAT^0+ad17*s*ZMAT^2*SIGMAT^1+ad18*s*ZMAT^2*SIGMAT^2$ BD:=bd1*ZMAT^0*SIGMAT^0+bd2*ZMAT^0*SIGMAT^1+bd3*ZMAT^0*SIGMAT^2+ bd4*ZMAT^1*SIGMAT^0+bd5*ZMAT^1*SIGMAT^1+bd6*ZMAT^1*SIGMAT^2+ bd7*ZMAT^2*SIGMAT^0+bd8*ZMAT^2*SIGMAT^1+bd9*ZMAT^2*SIGMAT^2+ bd10*s*ZMAT^0*SIGMAT^0+bd11*s*ZMAT^0*SIGMAT^1+bd12*s*ZMAT^0*SIGMAT^2+ bd13*s*ZMAT^1*SIGMAT^0+bd14*s*ZMAT^1*SIGMAT^1+bd15*s*ZMAT^1*SIGMAT^2+ bd16*s*ZMAT^2*SIGMAT^0+bd17*s*ZMAT^2*SIGMAT^1+bd18*s*ZMAT^2*SIGMAT^2$ CD:=cd1*ZMAT^0*SIGMAT^0+cd2*ZMAT^0*SIGMAT^1+cd3*ZMAT^0*SIGMAT^2+ cd4*ZMAT^1*SIGMAT^0+cd5*ZMAT^1*SIGMAT^1+cd6*ZMAT^1*SIGMAT^2+ cd7*ZMAT^2*SIGMAT^0+cd8*ZMAT^2*SIGMAT^1+cd9*ZMAT^2*SIGMAT^2+ cd10*s*ZMAT^0*SIGMAT^0+cd11*s*ZMAT^0*SIGMAT^1+cd12*s*ZMAT^0*SIGMAT^2+ cd13*s*ZMAT^1*SIGMAT^0+cd14*s*ZMAT^1*SIGMAT^1+cd15*s*ZMAT^1*SIGMAT^2+ cd16*s*ZMAT^2*SIGMAT^0+cd17*s*ZMAT^2*SIGMAT^1+cd18*s*ZMAT^2*SIGMAT^2$ ADSTAR:=sub(s=-s,tp(AD))$ BDSTAR:=sub(s=-s,tp(BD))$ CDSTAR:=sub(s=-s,tp(CD))$ % Checking that the elements $\xi$ satisfy $\iota(\xi)\xi=1$: % The following are zero: ADSTAR*FF*AD-FF; BDSTAR*FF*BD-FF; CDSTAR*FF*CD-FF; % Checking the integrality conditions: condmatq2type2:=mat( (1,0,0,3,0,0,1,0,0,0,0,0,0,0,0,0,0,0), (0,1,0,0,3,0,0,1,0,0,0,0,0,0,0,0,0,0), (0,0,0,0,0,0,0,0,0,0,0,2,0,0,6,0,0,2), (0,0,3,0,0,6,0,0,6,0,0,0,0,0,6,0,0,0), (1,0,0,2,0,0,2,0,0,0,0,0,2,0,0,0,0,0), (0,0,0,0,6,0,0,0,0,0,2,0,0,4,0,0,4,0), (0,0,0,0,5,0,0,4,0,0,5,0,0,2,0,0,2,0), (0,0,0,0,0,5,0,0,4,0,0,5,0,0,2,0,0,2), (1,0,0,2,0,0,2,0,0,0,0,0,6,0,0,0,0,0), (0,0,0,0,0,0,0,0,0,1,0,0,3,0,0,1,0,0), (0,0,0,0,0,0,0,0,0,0,1,0,0,3,0,0,1,0), (0,0,7,0,0,5,0,0,7,0,0,0,0,0,0,0,0,0), (0,0,0,0,0,5,0,0,4,0,0,3,0,0,6,0,0,6), (0,0,0,7,0,0,4,0,0,1,0,0,2,0,0,2,0,0), (0,7,0,0,6,0,0,6,0,0,0,0,0,6,0,0,0,0), (0,3/2,0,0,7,0,0,3,0,0,0,0,0,5,0,0,4,0), (0,0,3/2,0,0,7,0,0,3,0,0,0,0,0,5,0,0,4), (0,0,0,1,0,0,4,0,0,1,0,0,2,0,0,2,0,0))$ advec:=mat((ad1),(ad2),(ad3),(ad4),(ad5),(ad6),(ad7),(ad8),(ad9),(ad10),(ad11),(ad12),(ad13),(ad14),(ad15),(ad16),(ad17),(ad18))$ bdvec:=mat((bd1),(bd2),(bd3),(bd4),(bd5),(bd6),(bd7),(bd8),(bd9),(bd10),(bd11),(bd12),(bd13),(bd14),(bd15),(bd16),(bd17),(bd18))$ cdvec:=mat((cd1),(cd2),(cd3),(cd4),(cd5),(cd6),(cd7),(cd8),(cd9),(cd10),(cd11),(cd12),(cd13),(cd14),(cd15),(cd16),(cd17),(cd18))$ % The following are zero, checking that condmatq2type2*advec, condmatq2type2*bdvec and condmatq2type2*cdvec % have entries in $\Z_2$: condmatq2type2*advec - (1/5)*mat((-11),(6),(2),(12),(-7),(4),(4),(1),(-5),(2),(-4),(14),(7),(-24),(7),(8),(9),(-3)); condmatq2type2*bdvec - (1/15)*mat((9),(-6),(28),(24),(9),(-21),(-6),(32),(3),(0),(0),(20),(41),(30),(9),(-21),(27),(21)); condmatq2type2*cdvec - mat((-3),(0),(0),(0),(-1),(0),(0),(0),(1),(2),(0),(0),(0),(-5),(0),(0),(0),(1)); % The following are zero, checking that condmatq5type1*advec, condmatq5type1*bdvec and condmatq5type1*cdvec % have entries in $\Z_5$: condmatq5type1*advec - (1/4)*mat((41),(34),(17),(-50),(-18),(3),(-19),(-42),(-59),(12),(51),(30),(15),(27),(53),(14),(76),(27)); condmatq5type1*bdvec -(1/12)*mat((128),(-11),(59),(200),(161),(114),(194),(96),(264),(48),(-37),(4),(148),(186),(24),(117),(22),(13)); condmatq5type1*cdvec - mat((0),(-1),(0),(-16),(-6),(-5),(-13),(-18),(-18),(8),(7/2),(5/2),(27/2),(23/2),(25/2),(35/2),(19),(16)); % Checking the determinants. The following are zero: det(AD)-1; det(BD)-(1+2*s)/3; det(CD)-1; % Here are the inverses of AD, BD and CD: ADI:=mat( ((-2*s*z^2-s*z+s-z^2-7*z)/10,(-s*z^2+3*s*z+2*z^2-4*z-6)/20,(s*(z^2+z+3))/5), ((3*(-s*z^2-s*z+2*s+2*z^2+2))/10,(-2*s*z+s-z^2+z+1)/5,(-s*z^2-3*s*z-2*s-2*z^2-2*z-6)/10), ((3*(3*s*z^2+3*s*z+4*s+2*z^2+8*z-2))/20,(3*(-s*z^2-s*z+2*s-2*z^2-2))/10,(2*s*z^2+5*s*z+7*s+3*z^2+5*z+8)/10))$ BDI:=mat( ((s*z-3*s+3*z^2+z)/10,(-2*s*z^2-5*s*z-7*s-z^2+z+6)/20,(s*z^2+s*z-2*s+4*z^2-2*z+10)/30), ((-4*s*z^2-5*s*z-9*s-z^2+z+6)/10,(-s*z^2-s*z-3*s-z^2-z-3)/5,(s*z^2+2*s*z+2*z+4)/10), ((3*(s*z-3*s+z^2-5*z+6))/20,(3*s*z^2+4*s*z+s-3*z^2+z+4)/10,(2*s*z^2+s*z-s-z^2+z-4)/10))$ CDI:=mat(((z*(-s*z-s-2))/2,0,0), (0,(-s*z+s-z^2+z)/2,0), (0,0,(s*z^2+2*s*z+3*s+z^2+z+2)/2))$ (BD*AD)^3 - gendt*ID3; (CDI*BDI*CDI*AD)^3 - gendti*ID3; (AD*BD*CD*ADI*CD*AD)^3 - gendt*ID3; CD*ADI^2*BDI*CDI*BD*CD*ADI*BD*CDI*BDI*ADI - ID3; BD*CD*ADI*CD*AD*BD*CD*ADI*CD*BDI*CDI*BDI*ADI*CD - ID3; AD*CDI*BDI*CD*BD^2*CD*BD*CD*AD*CDI*BDI^2*CDI - ID3; ADI*BDI*CDI*BDI*CDI*BDI^2*CDI*AD^2*BD*CD*BD*AD*CD*BD^2*CD - ID3; BDI*AD*CDI*BDI^2*CDI*BDI*CDI*AD*CDI*AD*BD*AD*CDI*BDI*CDI*BDI^2 - gendti^2*ID3; BD*ADI^2*BDI*CDI*BDI*CDI*BDI^2*CD*ADI^2*CD*BD^2*CD*BD*CD - ID3; BDI^2*CDI*BD*CD*ADI^2*CD*BDI*AD*CDI*BDI^2*CDI*BDI^2*AD*CDI - gendti^2*ID3; BD^3*CD*BD*CD*BD*AD^3*BD*CD*ADI*CD*BDI*AD*CDI*BDI^2*CDI - gendt*ID3; ADI*BDI*CDI*BDI*CDI*BDI*CD*BD*CD*BD*AD*CD*BD*CD*BD^2*CD*ADI*BD*CDI - gendt*ID3; BDI*CD*BD*CD*BD*CDI*ADI*CD*BD*CDI*AD*CDI*BDI*AD*CDI*BD*CDI*AD*CDI*BDI*ADI*BDI*AD*CDI - ID3; % Finding generators of the intersection of the two groups. % Note that the following are zero: AA-AD; CC-CD; BBI*CC*BB*AA-BDI*CDI*BD*CD*ADI; BBI*AAI*BBI-BDI*CDI*BDI; ;end;