% This is a file in REDUCE syntax. Read it in to REDUCE by % typing % in filename$ % or % in filename; % (the former just gives the output; the former gives the input too). % REDUCE reads until it encounters the line % ;end; on nat; % Replace this by off nat; if you want printable output. % Let $z$ be a primitive 7-th root of 1: let z^6=-(z^5+z^4+z^3+z^2+z+1); % The following is a square root of -7: s:=1+2*z+2*z^2+2*z^4$ % The following are zero: write "The following is zero, checking that s is a square root of -7:"; s^2+7; write "The following is zero, checking that z satisfies a cubic polynomial over \Q(s):"; z^3-((s-1)*z^2+(s+1)*z+2)/2; phiz:=z^2$ phi2z:=z^4$ ID3:=mat((1,0,0), (0,1,0), (0,0,1))$ % The following element generates, together with $-1$, % the set of $x$ in $\ell=\Q(s)$ such that $v(x)=0$ % for all valuations $v$ on~$\ell$ except the 2-adic % ones, and such that ${\bar x}x=1$. gendt:=(3+s)/4$ gendti:=(3-s)/4$ SIG:=mat(( 0,1,0), ( 0,0,1), ((3+s)/4,0,0))$ % Inverse of SIG: SIGI:=((3-s)/4)*SIG^2$ % The following is zero: % SIG*SIGI-ID3; ZMAT:=mat((z, 0, 0), (0,z^2, 0), (0, 0,z^4))$ ZMATI:=mat((z^6, 0, 0), ( 0,z^5, 0), ( 0, 0,z^3))$ % w:=z+z^6$ % phiw:=phiz+phiz^6$ % phi2w:=phi2z+phi2z^6$ % % FF:=mat( % (w, 0, 0), % (0,phiw, 0), % (0, 0,phi2w))$ % Explicitly: FF:=mat( (-(z^5+z^4+z^3+z^2+1),0,0), (0,z^2*(z^3+1),0), (0,0,z^3*(z+1)))$ % Inverse of w: % wi:=w^2+w-2$ % phiwi:=phiw^2+phiw-2$ % phi2wi:=phi2w^2+phi2w-2$ % % Here is the inverse of FF: % % FFI:=mat((wi, 0, 0), % (0,phiwi, 0), % (0, 0,phi2wi))$ % % Explicitly, FFI:=mat( (-(z^4+z^3+1),0,0), (0,z^2*(z^3+z^2+z+1),0), (0,0,-(z^5+z^2+1)))$ ID18:=mat( (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), (0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), (0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), (0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0), (0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0), (0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0), (0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0), (0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0), (0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0), (0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0), (0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0), (0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0), (0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0), (0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0), (0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0), (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0), (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0), (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1))$ % Here are the various condition matrices: CondMtxDM7Type1:=mat( (9,1,3,9,1,28,34,1,3,43,0,6,9,46,3,24,47,30), (43,0,6,43,0,40,21,0,6,31,2,28,43,1,6,6,48,43), (0,0,0,18,1,40,22,2,3,15,47,21,9,46,6,18,48,21), (0,0,0,37,0,31,18,0,6,28,3,25,43,0,12,21,47,9), (0,0,0,15,0,27,34,48,0,15,46,24,0,1,22,10,4,22), (0,0,0,12,0,37,37,2,0,12,48,15,0,47,12,15,48,12), (0,0,25,25,0,24,9,48,3,15,46,46,15,1,27,44,4,44), (0,0,34,27,0,15,10,2,22,12,48,27,12,47,37,3,48,24), (18,1,40,4,1,12,42,45,18,43,48,34,9,2,15,47,4,35), (37,0,31,30,0,24,10,3,19,15,46,36,27,47,46,28,1,6), (15,0,27,19,48,22,30,47,24,34,4,47,10,3,0,14,44,30), (12,0,37,25,2,12,24,46,15,37,48,46,15,1,0,7,3,10), (12,0,24,16,1,22,30,47,30,0,0,31,34,1,9,3,1,40), (3,0,31,0,0,12,40,1,43,0,48,46,21,48,18,25,1,31), (15,0,27,22,1,19,24,46,33,9,1,31,13,2,43,24,48,3), (12,0,37,34,1,6,6,0,0,43,48,46,24,48,21,22,2,22), (22,1,6,36,46,9,22,2,28,12,1,9,31,0,31,27,47,33), (18,0,12,25,1,34,18,47,24,3,0,34,28,2,46,15,48,0))$ CondMtxDM7Type2:=mat( (9,1,3,9,1,28,34,1,3,43,0,6,9,46,3,24,47,30), (43,0,6,43,0,40,21,0,6,31,2,28,43,1,6,6,48,43), (0,0,0,30,48,32,4,47,22,20,39,26,15,3,44,45,9,41), (0,0,0,24,2,13,13,4,12,9,48,18,12,43,24,8,45,2), (0,0,0,15,0,27,34,48,0,15,46,24,0,1,22,10,4,22), (0,0,0,12,0,37,37,2,0,12,48,15,0,47,12,15,48,12), (0,0,37,12,0,12,28,1,34,9,48,15,9,48,46,43,0,6), (0,0,9,3,0,40,3,0,3,43,1,46,43,0,43,15,48,12), (18,1,40,4,1,12,42,45,18,43,48,34,9,2,15,47,4,35), (37,0,31,30,0,24,10,3,19,15,46,36,27,47,46,28,1,6), (9,0,46,31,1,3,18,47,12,40,0,40,3,1,0,34,1,31), (43,0,43,12,0,6,37,1,40,6,48,15,9,48,0,37,1,46), (12,0,24,16,1,22,30,47,30,0,0,31,34,1,9,3,1,40), (3,0,31,0,0,12,40,1,43,0,48,46,21,48,18,25,1,31), (35,0,21,38,44,6,1,3,16,15,3,30,38,2,20,35,42,7), (42,0,42,29,3,44,5,43,17,12,1,10,1,3,9,21,0,28), (22,1,6,36,46,9,22,2,28,12,1,9,31,0,31,27,47,33), (18,0,12,25,1,34,18,47,24,3,0,34,28,2,46,15,48,0))$ CondMtxDM3Type1:=ID18$ CondMtxDM3Type2:=(1/3)*mat( (18,3,15,12,0,0,9,0,15,24,3,21,12,24,21,15,24,0), (15,0,15,24,0,9,9,0,21,6,0,12,12,3,12,24,0,21), (21,0,24,18,3,18,24,0,0,6,0,3,21,24,18,18,24,6), (12,0,24,21,0,0,15,0,24,21,3,15,12,0,0,9,0,6), (4,0,23,5,0,25,6,1,16,15,26,18,13,26,21,3,0,23), (13,0,25,26,0,13,6,0,22,23,1,25,26,0,15,3,26,5), (12,0,0,9,0,15,24,3,21,12,24,21,15,24,0,18,0,9), (24,0,9,9,0,21,6,0,12,12,3,12,24,0,21,18,24,18), (18,3,18,24,0,0,6,0,3,21,24,18,18,24,6,0,3,12), (21,0,0,15,0,24,21,3,15,12,0,0,9,0,6,18,24,12), (5,0,25,6,1,16,15,26,18,13,26,21,3,0,23,8,1,9), (26,0,13,6,0,22,23,1,25,26,0,15,3,26,5,11,0,3), (0,0,18,18,9,9,9,18,9,18,18,0,0,0,0,0,9,18), (0,0,9,18,0,9,9,9,9,18,0,9,0,18,0,18,0,18), (18,0,0,18,0,9,9,18,0,0,18,18,0,9,9,9,0,18), (18,0,18,9,9,18,9,0,0,0,0,18,0,18,9,9,0,18), (18,3,21,18,24,0,12,24,9,9,0,15,24,3,0,12,0,15), (18,0,12,15,3,21,24,0,18,9,24,15,6,0,9,12,0,21))$ CondMtxDM5Type1:=ID18$ CondMtxDM5Type2:=(1/5)*mat( (40,5,50,75,0,105,35,0,50,30,5,5,40,120,40,50,120,35), (30,0,65,30,0,90,20,0,95,45,0,60,115,5,115,10,0,75), (95,0,30,105,5,35,10,0,110,15,0,110,60,120,70,55,120,105), (115,0,65,95,0,70,65,0,85,75,5,30,60,0,0,90,0,45), (8,0,10,60,0,1,96,1,108,8,124,7,115,124,68,57,0,85), (48,0,94,77,0,87,0,0,48,31,1,40,56,0,0,29,124,38), (75,0,105,35,0,50,30,5,5,40,120,40,50,120,35,105,0,90), (30,0,90,20,0,95,45,0,60,115,5,115,10,0,75,0,120,0), (105,5,35,10,0,110,15,0,110,60,120,70,55,120,105,35,5,40), (95,0,70,65,0,85,75,5,30,60,0,0,90,0,45,0,120,80), (60,0,1,96,1,108,8,124,7,115,124,68,57,0,85,31,1,96), (77,0,87,0,0,48,31,1,40,56,0,0,29,124,38,9,0,68), (50,0,0,25,25,25,75,100,75,0,100,50,25,0,75,75,25,0), (100,0,100,100,0,50,75,25,75,50,0,0,0,100,0,25,0,75), (50,0,50,75,0,50,50,100,100,25,100,25,50,25,75,100,0,25), (75,0,50,0,25,25,50,0,0,75,0,100,0,100,25,75,0,75), (105,5,40,40,120,35,75,120,90,35,0,50,30,5,105,40,0,50), (0,0,115,30,5,75,30,0,0,20,120,65,45,0,90,115,0,95))$ ;end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % The generators for $\bar\Gamma$ in the case $(a=7,p=2,\emptyset)$: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Firstly, the sequences of coefficients: z1:=0$ z2:=0$ z3:=0$ z4:=0$ z5:=1$ z6:=0$ z7:=0$ z8:=0$ z9:=0$ z10:=0$ z11:=0$ z12:=0$ z13:=0$ z14:=0$ z15:=0$ z16:=0$ z17:=0$ z18:=0$ b1:=7/7$ b2:=0/7$ b3:=7/7$ b4:=6/7$ b5:=4/7$ b6:=5/7$ b7:=4/7$ b8:=5/7$ b9:=-6/7$ b10:=8/7$ b11:=3/7$ b12:=2/7$ b13:=11/7$ b14:=-2/7$ b15:=8/7$ b16:=-1/7$ b17:=-3/7$ b18:=-2/7$ % Here are the matrix forms of the elements of the division algebra % $\cD$ corresponding to the above sequences of coefficients: write "Here is the matrix for the element BB of the division algebra:"; BB:= b1*ZMAT^0*SIGI +b2*ZMAT^0*ID3 +b3*ZMAT^0*SIG+ b4*ZMAT^1*SIGI +b5*ZMAT^1*ID3 +b6*ZMAT^1*SIG+ b7*ZMAT^2*SIGI +b8*ZMAT^2*ID3 +b9*ZMAT^2*SIG+ b10*ZMAT^3*SIGI+b11*ZMAT^3*ID3+b12*ZMAT^3*SIG+ b13*ZMAT^4*SIGI+b14*ZMAT^4*ID3+b15*ZMAT^4*SIG+ b16*ZMAT^5*SIGI+b17*ZMAT^5*ID3+b18*ZMAT^5*SIG; write "Here is the matrix for the element ZZ of the division algebra:"; ZZ:= z1*ZMAT^0*SIGI +z2*ZMAT^0*ID3 +z3*ZMAT^0*SIG+ z4*ZMAT^1*SIGI +z5*ZMAT^1*ID3 +z6*ZMAT^1*SIG+ z7*ZMAT^2*SIGI +z8*ZMAT^2*ID3 +z9*ZMAT^2*SIG+ z10*ZMAT^3*SIGI+z11*ZMAT^3*ID3+z12*ZMAT^3*SIG+ z13*ZMAT^4*SIGI+z14*ZMAT^4*ID3+z15*ZMAT^4*SIG+ z16*ZMAT^5*SIGI+z17*ZMAT^5*ID3+z18*ZMAT^5*SIG; % Of course, ZZ is simply ZMAT. write "The following is zero, checking that ZZ equals ZMAT:"; ZZ-ZMAT; ZZSTAR:=sub(z=z^6,tp(ZZ))$ BBSTAR:=sub(z=z^6,tp(BB))$ % Checking that the elements $\xi$ satisfy $\iota(\xi)\xi=1$: % The following are zero: write "The following are zero, checking that BB and ZZ are unitary with respect to FF:"; BBSTAR*FF*BB-FF; ZZSTAR*FF*ZZ-FF; % Therefore, the inverses of ZZ and BB can be calculated using ZZI:=FFI*ZZSTAR*FF$ BBI:=FFI*BBSTAR*FF$ % Explicitly: % BB:=(1/7)*mat( % (-3*z^5-2*z^4+3*z^3+5*z^2+4*z,-2*z^5+8*z^4+2*z^3-6*z^2+5*z+7,-6*z^5+3*z^4+6*z^3+3*z^2+z+7), % (-8*z^5-4*z^4-9*z^3-2*z^2+3*z-1,-3*z^5+2*z^4-6*z^3+z^2-5*z-3,-2*z^5-8*z^4-4*z^3+3*z^2+6*z+5), % (1/2*(-8*z^5+14*z^4-11*z^3+8*z^2-13*z+3),9*z^5+7*z^4+z^3+12*z^2+5*z+8,6*z^5+7*z^4+3*z^3+z^2+8*z+3))$ % BBI:=(1/7)*mat( % (z^5-z^4-6*z^3-7*z^2-4*z-4,-5*z^5-5*z^4+3*z^2-10*z-4,1/2*(7*z^5-12*z^4-8*z^3-2*z^2-z-5)), % (3*z^5+4*z^4+3*z^3-5*z+2,6*z^5-z^4+7*z^3+2*z^2+5*z+2,3*z^4-5*z^3-10*z^2-5*z-4), % (9*z^5-2*z^4+9*z^3+7*z^2+6*z+6,-3*z^5-3*z^4-8*z^2+z-1,-7*z^5-5*z^4-z^3-2*z^2-8*z-5))$ % ZZI:=mat( % (z^6, 0, 0), % ( 0,z^5, 0), % ( 0, 0,z^3))$ % Relations: % The following are zero: write "The following are zero, checking various relations hold:"; ZZ^7 - ID3; (BBI*BBI*ZZ^1)^3 - gendti^2*ID3; (BB*BB*ZZ^5*BB*BB*ZZ^2)^3 - gendt^4*ID3; (BB*BB*ZZ^5*BB*BB*ZZ^4)^3 - gendt^4*ID3; BB*BB*BB*ZZ^5*BBI*ZZ^2*BBI*BBI*ZZ^1 - ID3; BB*BB*BB*ZZ^1*BB*BB*BB*ZZ^3*BB*ZZ^2*BBI*ZZ^6 - gendt^2*ID3; BB*BB*BB*ZZ^2*BB*BB*ZZ^5*BBI*ZZ^6*BBI*BBI*BBI*ZZ^1*BBI*ZZ^6 - ID3; zvec:=mat((z1),(z2),(z3),(z4),(z5),(z6),(z7),(z8),(z9),(z10),(z11),(z12),(z13),(z14),(z15),(z16),(z17),(z18))$ bvec:=mat((b1),(b2),(b3),(b4),(b5),(b6),(b7),(b8),(b9),(b10),(b11),(b12),(b13),(b14),(b15),(b16),(b17),(b18))$ % The following are zero, showing that BB satisfies the type 1 3-adic, 5-adic and 7-adic conditions: write "The following are zero, checking that BB and ZZ satisfy the integrality conditions:"; CondMtxDM3Type1*bvec - (1/7)*mat((7),(0),(7),(6),(4),(5),(4),(5),(-6),(8),(3),(2),(11),(-2),(8),(-1),(-3),(-2)); CondMtxDM5Type1*bvec - (1/7)*mat((7),(0),(7),(6),(4),(5),(4),(5),(-6),(8),(3),(2),(11),(-2),(8),(-1),(-3),(-2)); CondMtxDM7Type1*bvec - mat((81),(206),(78),(155),(145),(72),(184),(118),(203),(225),(171),(208),(151),(90),(157),(207),(149),(186)); % The following are zero, showing that ZZ satisfies the type 1 3-adic, 5-adic and 7-adic conditions: CondMtxDM3Type1*zvec - mat((0),(0),(0),(0),(1),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0)); CondMtxDM5Type1*zvec - mat((0),(0),(0),(0),(1),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0)); CondMtxDM7Type1*zvec - mat((1),(0),(1),(0),(0),(0),(0),(0),(1),(0),(48),(2),(1),(0),(1),(1),(46),(1)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % The generators for $\bar\Gamma$ in the case $(a=7,p=2,\{3\})$: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Firstly, the sequences of coefficients: a1:=-8/21$ a2:=-2/21$ a3:=14/21$ a4:=1/21$ a5:=-9/21$ a6:=27/21$ a7:=-8/21$ a8:=-14/21$ a9:=4/21$ a10:=-7/21$ a11:=-10/21$ a12:=15/21$ a13:=-3/21$ a14:=-4/21$ a15:=25/21$ a16:=-3/21$ a17:=4/21$ a18:=20/21$ b1:=1/3$ b2:=1/3$ b3:=-1/3$ b4:=1/3$ b5:=0/3$ b6:=-3/3$ b7:=-2/3$ b8:=1/3$ b9:=-2/3$ b10:=-1/3$ b11:=-1/3$ b12:=0/3$ b13:=0/3$ b14:=-1/3$ b15:=-2/3$ b16:=0/3$ b17:=-2/3$ b18:=-4/3$ c1:=-4/7$ c2:=0/7$ c3:=-5/7$ c4:=1/7$ c5:=6/7$ c6:=8/7$ c7:=8/7$ c8:=4/7$ c9:=4/7$ c10:=3/7$ c11:=8/7$ c12:=-3/7$ c13:=-7/7$ c14:=4/7$ c15:=1/7$ c16:=-1/7$ c17:=-1/7$ c18:=9/7$ % Here are the matrix forms of the elements of $\cD$ corresponding % to the above sequences of coefficients: write "Here is the matrix for the element AA of the division algebra:"$ AA:= a1*ZMAT^0*SIGI +a2*ZMAT^0*ID3 +a3*ZMAT^0*SIG+ a4*ZMAT^1*SIGI +a5*ZMAT^1*ID3 +a6*ZMAT^1*SIG+ a7*ZMAT^2*SIGI +a8*ZMAT^2*ID3 +a9*ZMAT^2*SIG+ a10*ZMAT^3*SIGI+a11*ZMAT^3*ID3+a12*ZMAT^3*SIG+ a13*ZMAT^4*SIGI+a14*ZMAT^4*ID3+a15*ZMAT^4*SIG+ a16*ZMAT^5*SIGI+a17*ZMAT^5*ID3+a18*ZMAT^5*SIG; write "Here is the matrix for the element BB of the division algebra:"$ BB:= b1*ZMAT^0*SIGI +b2*ZMAT^0*ID3 +b3*ZMAT^0*SIG+ b4*ZMAT^1*SIGI +b5*ZMAT^1*ID3 +b6*ZMAT^1*SIG+ b7*ZMAT^2*SIGI +b8*ZMAT^2*ID3 +b9*ZMAT^2*SIG+ b10*ZMAT^3*SIGI+b11*ZMAT^3*ID3+b12*ZMAT^3*SIG+ b13*ZMAT^4*SIGI+b14*ZMAT^4*ID3+b15*ZMAT^4*SIG+ b16*ZMAT^5*SIGI+b17*ZMAT^5*ID3+b18*ZMAT^5*SIG; write "Here is the matrix for the element CC of the division algebra:"$ CC:= c1*ZMAT^0*SIGI +c2*ZMAT^0*ID3 +c3*ZMAT^0*SIG+ c4*ZMAT^1*SIGI +c5*ZMAT^1*ID3 +c6*ZMAT^1*SIG+ c7*ZMAT^2*SIGI +c8*ZMAT^2*ID3 +c9*ZMAT^2*SIG+ c10*ZMAT^3*SIGI+c11*ZMAT^3*ID3+c12*ZMAT^3*SIG+ c13*ZMAT^4*SIGI+c14*ZMAT^4*ID3+c15*ZMAT^4*SIG+ c16*ZMAT^5*SIGI+c17*ZMAT^5*ID3+c18*ZMAT^5*SIG; %% Here are AA, BB and CC, as matrices with entries in \Q(z): %% AA:=(1/21)*mat( %% (4*z^5-4*z^4-10*z^3-14*z^2-9*z-2,20*z^5+25*z^4+15*z^3+4*z^2+27*z+14,-4*z^5+3*z^4-7*z^3-6*z^2-z-6), %% (7*z^5-z^4+4*z^3+8*z^2+4*z-1,10*z^5-4*z^4+14*z^3+z^2+6*z+8,-15*z^5-11*z^4+5*z^3+12*z^2+10*z-1), %% (-23*z^5-7*z^4-29*z^3-12*z^2-19*z-22,-4*z^5+4*z^4+3*z^3-5*z-5,-14*z^5-13*z^4-4*z^3-8*z^2-18*z-6))$ %% %% BB:=(1/3)*mat( %% (-2*z^5-z^4-z^3+z^2+1,-4*z^5-2*z^4-2*z^2-3*z-1,-z^5-z^3-3*z^2-z), %% (z^5-z^4+z^3+2*z^2+z+2,z^5+2*z^4-z^3+z^2+2,-2*z^4-4*z^3-3*z^2-2*z-1), %% ((8*z^5+4*z^4+5*z^3+6*z^2+z+7)/2,-z^5+z^4-2*z+1,z^5+2*z^4+2*z^3+z^2+3*z+3))$ %% %% CC:=(1/7)*mat( %% (-z^5+4*z^4+8*z^3+4*z^2+6*z,9*z^5+z^4-3*z^3+4*z^2+8*z-5,z^5-7*z^4-3*z^3+6*z^2+6*z-3), %% (-3*z^5+5*z^4-4*z^3-2*z^2-10*z-7,-8*z^5-4*z^4-9*z^3-2*z^2-4*z-8,3*z^5+7*z^4+12*z^3+11*z^2+4*z-2), %% (-9*z^5-6*z^4-5*z^3-13*z^2-2*z-14,4*z^5+2*z^4+z^3-6*z^2+9*z-3,9*z^5+7*z^4+z^3+5*z^2+5*z+1))$ AI:=(1/21)*mat( (-5*z^5-z^4+5*z^3+13*z^2+9*z+7,11*z^5-14*z^4-12*z^3+10*z^2+3*z-19,-7*z^5-3*z^4+5*z^3-18*z^2-16*z-3), (-2*z^5-19*z^4-2*z^3-7*z^2+z+8,-5*z^5+8*z^4-10*z^3+4*z^2-6*z+2,12*z^5+22*z^4+23*z^3+15*z^2-2*z-7), (-5*z^5-13*z^4+4*z^3-24*z^2+8*z-19,2*z^5-5*z^4+3*z^2-17*z+10,10*z^5+14*z^4+5*z^3+4*z^2+18*z+12))$ BI:=(1/3)*mat( (z^5-z^4-z^3-2*z^2+1,2*z^5+z^4+z^2+3*z-1,1/2*(z^5-2*z^3+z+3)), (z^5+2*z^4+z^3+2*z^2+z+2,z^5-z^4+2*z^3+z^2+2,z^4+2*z^3+3*z^2+z-1), (-2*z^5-z^4-2*z^3-3*z^2-z-4,-z^5+z^4+z+1,-2*z^5-z^4-z^3-2*z^2-3*z))$ CI:=(1/7)*mat( (-2*z^5+2*z^4-2*z^3-7*z^2-6*z-6,z^5+6*z^4-6*z^3+3*z+3,-4*z^5-3*z^4-4*z^3-7*z^2-5*z-5), (3*z^5-4*z^4+z^2-z+1,2*z^5-5*z^4-4*z^2+4*z-4,6*z^5+6*z^4+7*z^3+9*z^2+12*z+9), (-7*z^5+5*z^4+z^3+2*z^2+z-2,z^4+3*z^3-z^2-4*z+1,-4*z^4+2*z^3+4*z^2-5*z-4))$ AASTAR:=sub(z=z^6,tp(AA))$ BBSTAR:=sub(z=z^6,tp(BB))$ CCSTAR:=sub(z=z^6,tp(CC))$ % Checking that the elements $\xi$ satisfy $\iota(\xi)\xi=1$: % The following are zero: write "The following are zero, checking that AA, BB and CC are unitary with respect to FF:"; AASTAR*FF*AA-FF; BBSTAR*FF*BB-FF; CCSTAR*FF*CC-FF; % Therefore, the inverses of AA, BB and CC can be calculated using AAI:=FFI*AASTAR*FF$ BBI:=FFI*BBSTAR*FF$ CCI:=FFI*CCSTAR*FF$ avec:=mat((a1),(a2),(a3),(a4),(a5),(a6),(a7),(a8),(a9),(a10),(a11),(a12),(a13),(a14),(a15),(a16),(a17),(a18))$ bvec:=mat((b1),(b2),(b3),(b4),(b5),(b6),(b7),(b8),(b9),(b10),(b11),(b12),(b13),(b14),(b15),(b16),(b17),(b18))$ cvec:=mat((c1),(c2),(c3),(c4),(c5),(c6),(c7),(c8),(c9),(c10),(c11),(c12),(c13),(c14),(c15),(c16),(c17),(c18))$ % Checking the integality conditions: The following are zero: CondMtxDM3Type2*avec-(1/7)*mat((69),(123),(101),(38),(190),(151),(16),(159),(25),(74),(113),(62),(26),(52),(45),(134),(-12),(108)); CondMtxDM3Type2*bvec-mat((-19),(-20),(-25),(-13),(-37),(-23),(-23),(-28),(-14),(-25),(-25),(-24),(-19),(-17),(-12),(-19),(-8),(-29)); CondMtxDM3Type2*cvec-(1/7)*mat((8),(68),(52),(24),(209),(-20),(196),(43),(68),(136),(183),(146),(195),(144),(150),(99),(54),(217)); CondMtxDM5Type1*avec-(1/21)*mat((-8),(-2),(14),(1),(-9),(27),(-8),(-14),(4),(-7),(-10),(15),(-3),(-4),(25),(-3),(4),(20)); CondMtxDM5Type1*bvec-(1/3)*mat((1),(1),(-1),(1),(0),(-3),(-2),(1),(-2),(-1),(-1),(0),(0),(-1),(-2),(0),(-2),(-4)); CondMtxDM5Type1*cvec-(1/7)*mat((-4),(0),(-5),(1),(6),(8),(8),(4),(4),(3),(8),(-3),(-7),(4),(1),(-1),(-1),(9)); CondMtxDM7Type1*avec-(1/3)*mat((117),(279),(162),(197),(81),(121),(258),(299),(69),(238),(108),(10),(206),(218),(240),(159),(167),(278)); CondMtxDM7Type1*bvec-(1/3)*mat((-450),(-408),(-450),(-289),(-288),(-446),(-348),(-487),(-399),(-317),(-369),(-200),(-316),(-487),(-321),(-294),(-373),(-301)); CondMtxDM7Type1*cvec-mat((130),(60),(164),(30),(178),(176),(131),(114),(151),(66),(137),(96),(88),(141),(50),(71),(88),(43)); % Relations: The following are zero: (BB*AA^2*BB)^3 - gendt^2*ID3; (BB*CC*BI*AA*BI*CC)^3-gendti*ID3; (AA^2*BB*AI*BI*CC*BI*CC)^3 - gendti*ID3; CI*BB*CI*AA^2*BB*AA*BB - gendt*ID3; CC^2*BI*CI*BB*AI*BI*AI*BI*AI*CC*BI - gendti*ID3; CI*AA^2*BB*AI*BI*AA*BI*CC*AA*BB*AA - ID3; BB*CI*BB*AA*BB*AA*CI*BB*AI*CC*BI*CI - gendt*ID3; BI*AA*BI*CC*AI*BI^2*AI^2*CI^2*BB*CI*AI - gendti*ID3; AI*BB*AA*CI*BB*AI*BB^2*AI*CC*BI*AA*BI*CC*BB*CC - gendt*ID3; CI*BB*AI*CC*BI*CC^2*AI*BI*AI^2*BI*CI*BB*AI*BB*CI*AA - ID3; AA*BB*AA*BB*CC*BI*AA*CI*AA^2*BB*AI*BB*CI*BB*AI*CC*BI*CC^2 - gendt*ID3; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % The generators for $\bar\Gamma$ in the case $(a=7,p=2,\{5\})$: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Firstly, the sequences of coefficients: a1:=-2/5$ a2:=0/5$ a3:=0/5$ a4:=-6/5$ a5:=-1/5$ a6:=-4/5$ a7:=-2/5$ a8:=4/5$ a9:=0/5$ a10:=2/5$ a11:=4/5$ a12:=2/5$ a13:=0/5$ a14:=2/5$ a15:=-4/5$ a16:=-2/5$ a17:=6/5$ a18:=-2/5$ b1:=2/7$ b2:=0/7$ b3:=-1/7$ b4:=6/7$ b5:=-1/7$ b6:=-5/7$ b7:=5/7$ b8:=-3/7$ b9:=-5/7$ b10:=-1/7$ b11:=-6/7$ b12:=-1/7$ b13:=2/7$ b14:=-3/7$ b15:=-7/7$ b16:=7/7$ b17:=6/7$ b18:=-2/7$ % Here are the matrix forms of the elements of $\cD$ corresponding % to the above sequences of coefficients: write "Here is the matrix for the element AA of the division algebra:"$ AA:= a1*ZMAT^0*SIGI +a2*ZMAT^0*ID3 +a3*ZMAT^0*SIG+ a4*ZMAT^1*SIGI +a5*ZMAT^1*ID3 +a6*ZMAT^1*SIG+ a7*ZMAT^2*SIGI +a8*ZMAT^2*ID3 +a9*ZMAT^2*SIG+ a10*ZMAT^3*SIGI+a11*ZMAT^3*ID3+a12*ZMAT^3*SIG+ a13*ZMAT^4*SIGI+a14*ZMAT^4*ID3+a15*ZMAT^4*SIG+ a16*ZMAT^5*SIGI+a17*ZMAT^5*ID3+a18*ZMAT^5*SIG; write "Here is the matrix for the element BB of the division algebra:"$ BB:= b1*ZMAT^0*SIGI +b2*ZMAT^0*ID3 +b3*ZMAT^0*SIG+ b4*ZMAT^1*SIGI +b5*ZMAT^1*ID3 +b6*ZMAT^1*SIG+ b7*ZMAT^2*SIGI +b8*ZMAT^2*ID3 +b9*ZMAT^2*SIG+ b10*ZMAT^3*SIGI+b11*ZMAT^3*ID3+b12*ZMAT^3*SIG+ b13*ZMAT^4*SIGI+b14*ZMAT^4*ID3+b15*ZMAT^4*SIG+ b16*ZMAT^5*SIGI+b17*ZMAT^5*ID3+b18*ZMAT^5*SIG; %% Here are AA, BB and CC, as matrices with entries in \Q(z): %% AA:=(1/5)*mat( %% (6*z^5+2*z^4+4*z^3+4*z^2-z,-2*z^5-4*z^4+2*z^3-4*z,-z^5-z^4+3*z^3+2*z^2-4*z-3), %% (-2*z^5-4*z^4-4*z^3-8*z^2-2*z-4,-4*z^5+2*z^3-5*z^2-2*z-4,-2*z^5-2*z^4-4*z^3-6*z^2-6*z-2), %% (5*z^5-z^4+2*z^3+2*z^2+2*z+5,4*z^5-4*z^4+2*z^3+2*z^2,-2*z^5-7*z^4-6*z^3-4*z^2-2*z-6))$ %% BB:=(1/7)*mat( %% (6*z^5-3*z^4-6*z^3-3*z^2-z,-2*z^5-7*z^4-z^3-5*z^2-5*z-1,7*z^5+5*z^4+z^3+2*z^2+8*z+5), %% (z^5+6*z^4+8*z^3+7*z^2+3*z+3,6*z^5+3*z^4+12*z^3+5*z^2+3*z+6,z^5-4*z^4-z^3-4*z^2-6*z), %% (1/2*(5*z^5-z^4+3*z^3-4*z^2-z+12),-8*z^5-z^4-7*z^3-5*z^2-2*z-5,-12*z^5-7*z^4-6*z^3-9*z^2-9*z-6))$ % Here are the inverses of AA and BB: AI:=(1/5)*mat( (5*z^5+5*z^4+3*z^3+7*z^2+z+1,2*z^5+2*z^3-2*z+2,2*z^5+5*z^4+3*z^3+2*z^2+z+2), (2*z^3+4*z,-3*z^5+4*z^4+2*z^3-2*z^2+2*z-2,-2*z^5-2*z^4-4*z^2-2*z), (-z^5-3*z^4-z^3-z+2,-2*z^5-2*z^4-2*z^3+2*z^2-2*z-2,-2*z^5-4*z^4-5*z^3+2*z-4))$ BI:=(1/7)*mat( (-2*z^5-5*z^4-2*z^3+7*z^2+z+1,-3*z^5+5*z^4+3*z^3-2*z^2+4*z+7,1/2*(11*z^5-3*z^4-7*z^3+6*z^2-6*z-15)), (7*z^5+4*z^4+5*z^3-4*z^2-2*z-3,2*z^5+9*z^4+3*z^2-3*z+3,-3*z^5-5*z^4-6*z^3+z^2+2*z+4), (z^5+7*z^4-3*z^3+6*z^2-z+4,-5*z^5-9*z^4+2*z^3-7*z^2-z-8,3*z^4+2*z^3-3*z^2+9*z+3))$ AASTAR:=sub(z=z^6,tp(AA))$ BBSTAR:=sub(z=z^6,tp(BB))$ % Checking that the elements $\xi$ satisfy $\iota(\xi)\xi=1$: % The following are zero: write "The following are zero, checking that AA and BB are unitary with respect to FF:"; AASTAR*FF*AA-FF; BBSTAR*FF*BB-FF; % Therefore, the inverses of AA and BB can be calculated using AAI:=FFI*AASTAR*FF$ BBI:=FFI*BBSTAR*FF$ % The following are zero: AAI-AI; BBI-BI; avec:=mat((a1),(a2),(a3),(a4),(a5),(a6),(a7),(a8),(a9),(a10),(a11),(a12),(a13),(a14),(a15),(a16),(a17),(a18))$ bvec:=mat((b1),(b2),(b3),(b4),(b5),(b6),(b7),(b8),(b9),(b10),(b11),(b12),(b13),(b14),(b15),(b16),(b17),(b18))$ % Checking the integality conditions: The following are zero: CondMtxDM3Type1*avec-(1/5)*mat((-2),(0),(0),(-6),(-1),(-4),(-2),(4),(0),(2),(4),(2),(0),(2),(-4),(-2),(6),(-2)); CondMtxDM5Type2*avec-mat((-12),(-42),(-15),(-50),(-14),(-6),(-10),(10),(-12),(-22),(-15),(-14),(3),(-38),(-18),(-9),(-32),(-27)); CondMtxDM7Type1*avec-(1/5)*mat((103),(-252),(233),(-90),(62),(240),(-24),(216),(137),(-224),(208),(256),(-133),(72),(47),(41),(-294),(-19)); CondMtxDM3Type1*bvec-(1/7)*mat((2),(0),(-1),(6),(-1),(-5),(5),(-3),(-5),(-1),(-6),(-1),(2),(-3),(-7),(7),(6),(-2)); CondMtxDM5Type2*bvec-(1/7)*mat((51),(-285),(30),(162),(-170),(139),(-127),(-101),(-486),(132),(-318),(-186),(-130),(10),(-160),(-15),(-183),(-179)); CondMtxDM7Type1*bvec-mat((40),(61),(-16),(67),(-63),(-15),(-52),(-65),(-33),(-71),(8),(-45),(-34),(-78),(-3),(-44),(50),(-12)); % Relations: The following are zero: BI*AI^3*BB^2*AA*BB^3*AI^2*BB^2*AA*BB^3*AA^2*BB*AI*BB^2*AA*BB*AA*BB*AI^2*BB^2*AA*BB^3*AA*BI - gendt^6*ID3; BB*AA*BB*AI*BB^2*AA*BB*AA*BB*AI^2*BB^2*AA*BB^2*AI*BI^2*AA*BI*AI^2*BI^3*AI*BI^2*AA^4*BB*AI*BB^2*AA*BB - gendt^2*ID3; AI*BI^2*AA*BI*AI*BI^2*AI*BI^2*AA*BI*AI*BI^2*AI*BI^2*AA*BI*AI*BI*AI^3*BB^2*AA*BB^3*AA^2*BB*AI*BB^2*AA*BB*AA*BB*AA*BI*AI*BI - gendti^2*ID3; AI*BI^3*AI*BI^2*AA^2*BI*AI*BI*AI*BI*AA*BB*AI*BB^2*AA*BB^2*AI^3*BB^2*AA*BB^3*AA^2*BB*AI*BB^2*AA*BB*AA*BI^2*AA^2*BB^2 - gendt^2*ID3; AI*BB^2*AA*BB^3*AA*BI^2*AA^2*BB^2*AI*BI^3*AI*BI^2*AA^2*BI*AI*BI*AI*BI^2*AI^3*BB^2*AA*BB^3*AA^2*BB*AI*BB^2*AA*BB*AA*BB - gendt^2*ID3; AA*BI^3*AI*BI^2*AA^2*BB^2*AI*BI^3*AI*BI^2*AA*BI^3*AI*BI^2*AA^2*BI*AI*BI*AI*BI^2*AA*BI*AI*BI*AA*BB*AI*BI*AI^2*BI^3*AI*BI^2*AA - gendti^8*ID3; BI*AA*BB*AI^2*BB^2*AA*BB^3*AA*BI^2*AI*BB^2*AI*BI^3*AI*BI^2*AA^2*BB*AI^2*BB^2*AA*BB^3*AA*BI^2*AI*BI^3*AI*BI^2*AA^3*BB^2*AI*BI - ID3; AA*BI^2*AA^2*BB^2*AI*BI^3*AI*BI^2*AA^2*BI^2*AI*BB*AI*BI^3*AI*BI^2*AA^2*BI^3*AI*BI^2*AI*BB^2*AA*BB^3*AA^2*BB*AI*BB^2*AA*BB*AA*BB - gendti^2*ID3; AA*BI*AI^3*BB^2*AA*BB^3*AI^2*BB^2*AA*BB^3*AA*BI*AA*BB*AA*BB^2*AI*BI^3*AI*BI^2*AA^2*BI^2*AI*BI*AI*BI^2*AA*BI*AI*BI^2*AI*BI^2*AA*BI*AI*BI - gendti^2*ID3; BI^2*AI*BI^2*AA*BI*AI*BB*AI*BI^3*AI*BI^2*AA^2*BI^3*AI^3*BB^2*AI^2*BB^2*AI^2*BB^2*AA*BB^3*AI^2*BB^2*AA*BB^3*AA*BI^4*AI*BI^2*AA*BI*AI*BI - gendti^2*ID3; BB^2*AI*BI*AI*BI*AI*BI^2*AA*BI*AI^2*BI^3*AI*BI^2*AA^3*BB^2*AA*BB^3*AI^2*BB^2*AA*BB^3*AI*BB^2*AA*BB^3*AI^2*BB^2*AA*BB^3*AA*BI*AA*BB*AI - gendt^4*ID3; AI^2*BB^2*AA*BB^3*AA^2*BB*AI*BB^2*AA^2*BB*AI*BB^2*AA*BB^2*AA*BB*AI*BB^2*AA*BB*AA*BB*AI*BI*AI*BI*AA*BB*AI*BB^2*AA*BB^2*AA*BB*AI*BB^2*AA*BB*AA*BB*AI*BI*AI*BI*AI - gendt^8*ID3; BI^2*AI*BI^2*AA^2*BI^2*AA*BI*AI*BB*AA*BB*AA*BI*AI*BB*AI*BI^3*AI*BI^2*AA^2*BI^3*AI*BI^2*AA^2*BB*AA*BB*AI*BB^2*AA*BB*AA*BB^2*AI^2*BB^2*AA*BB^3*AA*BI^2*AI*BI - gendti^2*ID3; AA^2*BB^3*AI^2*BB^2*AA*BB^3*AA*BI*AA*BB*AI*BB^2*AA*BB^2*AI*BI^2*AA*BB*AI^2*BB^2*AA*BB^3*AA*BI^2*AI^5*BB^2*AA*BB^3*AA^2*BB*AI*BB^2*AA*BB*AA*BB - gendt^8*ID3; BI*AA^2*BB^2*AI*BI^3*AI*BI^2*AA^2*BI*AI*BI*AI*BI*AA*BB^2*AI^2*BB^2*AA*BB^3*AA*BI^2*AI^2*BB^4*AI*BI^3*AI*BI^2*AA^2*BI^2*AI*BB*AA*BB*AI*BB^2*AA*BB*AA - ID3; AA*BB*AI^2*BB^2*AA*BB^3*AA*BI^2*AI^2*BB^2*AI^2*BB^2*AA*BB^3*AA*BI^2*AA*BB^2*AI*BI^3*AI*BI^2*AA^2*BI*AI*BB*AI*BI^2*AA*BI*AI^2*BI^3*AI*BI^2*AA^3*BB*AA*BB - ID3; BI*AA*BI*AI^2*BI^3*AI*BI^2*AA^3*BI^2*AI^3*BB^2*AA*BB^3*AA*BB^2*AI*BI^3*AI*BI^2*AA^2*BI^2*AI*BB*AA*BB*AI*BB^2*AA*BB^2*AA*BB*AI*BB^2*AA*BB*AA*BB*AI*BI*AI*BI - ID3; AI^2*BB^2*AA*BB^3*AI^2*BB^2*AA*BB^3*AA*BI*AA*BB*AI*BB^2*AA*BB^2*AI*BI*AI*BI^2*AA*BI*AI^2*BI^3*AI*BI^2*AA^4*BB^2*AI^2*BB^2*AA*BB^3*AA*BI^2*AI^2*BB^2 - gendt^4*ID3; AA*BB^2*AI*BI^3*AI*BI^2*AA^2*BI*AI*BB^2*AI^2*BB^2*AA*BB^3*AA^2*BB*AI*BB*AI*BI^2*AA*BI*AI^2*BI^3*AI*BI^2*AA^3*BB*AI*BI^3*AI*BI^2*AA^2*BI^3*AI*BI^2*AA^3 - gendti^4*ID3; BB*AI*BI^3*AI*BI^2*AA^2*BI*AI*BI*AI*BI^2*AA*BI*AI*BI*AA*BB*AI^4*BB^2*AA*BB^3*AI^2*BB^2*AA*BB^3*AA*BI*AA*BB*AI*BI*AI*BI*AI^3*BB^2*AA*BB^3*AA^2*BB*AI*BB^2*AA*BI*AA - gendt^2*ID3; BI*AI*BI*AA*BB^2*AI^2*BB^2*AA*BB^3*AA*BI^2*AI^2*BB^2*AI*BI*AI*BB*AA*BB*AI*BB^2*AA*BB*AA*BB*AI^2*BB^2*AA*BB^3*AA*BI*AI^3*BB^2*AA*BB^3*AI^2*BB^2*AA*BB^3*AA*BI*AA*BB*AI - gendt^8*ID3; AI*BB^2*AA*BB^3*AI^2*BB^2*AA*BB^3*AA*BI*AA*BB*AI*BI*AI*BI^2*AA^2*BB^2*AI*BI^3*AI*BI^2*AA^2*BI^2*AI^2*BI^3*AI*BI^2*AA^3*BB*AA*BB*AI*BB^2*AA*BB^2*AI*BI^2*AA*BI*AI^2 - ID3; AI^3*BB^2*AA*BB^3*AA^2*BB*AI*BB^2*AA*BB*AA*BI^2*AI*BI^2*AA*BI*AI*BI*AI*BI^2*AA*BB*AI^2*BB^2*AA*BB^3*AA*BI^2*AI^2*BB^2*AA*BB*AI*BB*AA*BB*AI*BB^2*AA*BB^2*AA*BB*AI*BB^2*AA*BB - gendt^6*ID3; AI*BB*AA*BB*AI*BB^2*AA*BB*AA*BB*AI*BI^3*AI*BI^2*AA^2*BI*AI*BI*AI*BI^2*AA*BI*AI*BI*AA*BI^2*AI*BI^2*AA^3*BB^2*AI*BI^2*AA*BB*AI*BI^3*AI*BI^2*AA^2*BI*AI*BI*AI*BI^2*AA*BI*AI*BI*AA*BB*AI - gendti^6*ID3; BI*AI*BB*AI*BI^3*AI*BI^2*AA^3*BI^2*AI*BB^2*AA*BB^3*AI^2*BB^2*AA*BB^3*AA^2*BB*AA*BB^2*AI*BI^3*AI*BI^2*AA^2*BI*AI*BB^2*AA^2*BB*AI*BB^2*AA*BB^2*AA*BB*AI*BB^2*AA*BB*AA*BB*AI - gendt^4*ID3; AI^2*BB^2*AA*BB^3*AA^2*BB*AI*BB^2*AA*BB*AA*BB*AA*BI^2*AA^2*BI^2*AA^2*BB^2*AI*BI^3*AI*BI^2*AA^2*BI*AI*BB^2*AA*BB^2*AA*BB*AI*BB^2*AA*BB*AA*BB*AI*BI*AI^2*BI^3*AI*BI^2*AA^2*BI^3*AI*BI^2 - ID3; BI^2*AI*BI^2*AA^3*BB^2*AI*BI^2*AA*BI*AI^2*BI^3*AI*BI^2*AA^2*BI^2*AA*BB*AI^2*BB^2*AA*BB^3*AA*BI^2*AI^2*BI^2*AA^2*BB^2*AI*BI^3*AI*BI^2*AA^2*BI*AI*BB^2*AA*BB^2*AA*BB*AI*BB^2*AA*BB*AA - gendti^2*ID3; AA^2*BB^2*AI*BI^3*AI*BI^2*AA^2*BI*AI*BI^3*AI*BI^2*AA*BI*AI*BB*AI*BI^3*AI*BI^2*AA^3*BI^2*AI*BB^2*AA*BB^3*AI^2*BB^2*AA*BB^3*AA^2*BB*AI^2*BB^2*AA*BB^3*AI^2*BB^2*AA*BB^3*AA^2*BB - gendt^2*ID3; AI^2*BB^2*AA*BB^3*AA*BI^2*AA*BB^2*AI*BI^3*AI*BI^2*AA^2*BI*AI*BB*AA*BB*AI*BB^2*AA*BB^2*AA*BB*AI*BB^2*AA*BB*AA*BB*AI*BI*AI*BI^2*AA*BB*AI*BI^3*AI*BI^2*AA^2*BI*AI*BI*AI*BI^2*AA*BI*AI*BI*AA*BB*AI*BB^2 - ID3; BI*AI^3*BB^2*AA*BB^3*AI^2*BB^2*AA*BB^3*AA*BI*AA*BB*AA^2*BB^3*AI^2*BB^2*AA*BB^3*AA*BI*AA*BB*AI*BB^2*AA*BB^4*AI*BI^3*AI*BI^2*AA^3*BI^2*AA^2*BB^2*AI*BI^3*AI*BI^2*AA^2*BI*AI - gendt^4*ID3; AA*BB^2*AI*BI^3*AI*BI^2*AA^2*BI*AI*BB^2*AA*BB*AA*BB*AI*BB^2*AA*BB^3*AA*BI*AI*BI*AI*BI^2*AA*BI*AI*BI^2*AI*BI^2*AA*BI*AI*BI*AA*BB*AI*BI*AI*BI*AI*BI^2*AA*BI*AI^2*BI^3*AI*BI^2*AA^4*BI*AI*BI^2*AA - gendti^6*ID3; AI^2*BB^2*AA*BB^2*AI*BI*AI*BI^2*AA*BI*AI*BI^2*AI*BI^3*AI*BI^2*AI^3*BB^2*AA*BB^3*AA^2*BB*AI*BB^2*AA*BB*AA*BB*AA^2*BB^2*AA*BB*AI*BB^2*AA*BB*AA*BB*AA*BI^2*AA^2*BB^2*AI*BI^3*AI*BI^2*AA^2*BI*AI*BB^2 - gendt^2*ID3; AI^4*BB^2*AA*BB^3*AA^2*BB*AI*BB^2*AA*BB*AA*BB*AA*BI^2*AI*BB^2*AA*BB^3*AA^2*BB*AI*BB^2*AA*BB*AA*BB*AA*BB^2*AI*BI^3*AI*BI^2*AA^2*BI^2*AI*BI*AI*BI^2*AA*BI*AI*BI*AA*BB*AI^2*BB^2*AA*BB^3*AA*BI^2 - gendt^4*ID3; AI*BI*AI^2*BI^3*AI*BI^2*AA^2*BI^3*AI*BI^2*AA*BB^2*AA*BB^3*AI^2*BB^2*AA*BB^3*AA^2*BB*AI^3*BB^2*AA*BB^3*AI^2*BB^2*AA*BB^3*AA*BI*AA*BB*AI*BI*AI*BI*AA*BB*AI*BB^2*AA*BB^2*AA*BB*AI*BB^2*AA*BB*AA*BB - gendt^6*ID3; BB*AI^2*BB^2*AA*BB^3*AA*BI*AA*BB*AI*BB^2*AA*BB^2*AI^3*BB^2*AA*BB^3*AA^2*BB*AI*BI*AI*BI^2*AA^2*BI^3*AI*BI^2*AA^3*BB^3*AA*BI*AI*BI*AI*BI^2*AA*BI*AI*BI^2*AI*BI^2*AA*BI*AI*BI*AA*BB*AI^2*BB^2*AA*BB^3*AA - gendt^2*ID3; AI*BB^2*AA*BB^3*AA^2*BB*AI*BB^2*AA*BB*AA*BB*AI*BB^2*AI*BI*AI*BI*AI*BI^2*AA*BI*AI^2*BI^3*AI*BI^2*AA^4*BB^2*AI*BI^3*AI*BI^2*AA*BI^3*AI*BI^2*AA*BI*AI*BB*AI*BI^3*AI*BI^2*AA^2*BI^3*AI*BI^2*AA^2*BI^2 - gendti^6*ID3; BI^2*AA^2*BB^2*AI*BI^3*AI*BI^2*AA^2*BI*AI*BB^2*AA*BB^2*AI*BI^2*AA*BB*AI^2*BB^2*AA*BB^3*AA*BI^2*AI^4*BB^2*AA*BB^3*AA*BB^2*AI*BI^3*AI*BI^2*AA^2*BI*AI*BI^3*AI*BI^2*AA^2*BB*AI^2*BB^2*AA*BB^3*AA*BI^2 - ID3; AA^2*BB^2*AI*BI^3*AI*BI^2*AA^2*BI^2*AI*BI*AI*BI^2*AA*BI*AI*BI*AA*BB*AI*BI*AI*BI*AI*BI^2*AA*BI*AI^2*BI^3*AI*BI^2*AA^3*BI*AI*BI^2*AA*BI*AI*BI*AA^2*BI*AI*BB*AA*BB*AI*BB^2*AA*BB*AA*BB*AI^2*BB^2*AA*BB^3*AA*BI*AI*BI*AI*BI^2*AA - gendti^6*ID3; BB^2*AA*BB^3*AI^2*BB^2*AA*BB^3*AA^2*BB*AA^2*BI^2*AA^2*BB^2*AI*BI^3*AI*BI^2*AA^2*BI*AI*BB^2*AI^2*BB^2*AA*BB^2*AI*BB*AA*BB*AI*BB^2*AA*BB*AA*BB*AI^2*BB^2*AA*BB^3*AA*BI*AI*BB*AI*BI^3*AI*BI^2*AA^2*BI^3*AI*BI^2*AA - gendt^4*ID3; BB^2*AI*BI*AI*BI^3*AI*BI^2*AA^2*BI*AI*BI*AI*BI^2*AA*BI*AI*BI^4*AI^3*BB^2*AA*BB^3*AA*BB^2*AI*BI^3*AI*BI^2*AA^2*BI*AI*BI*AI*BI*AI*BI^2*AA*BI*AI^2*BI^3*AI*BI^2*AA^5*BB*AI^2*BB^2*AA*BB^3*AA*BI^2*AI^2 - gendti^6*ID3; BB*AI*BI^3*AI*BI^2*AA^2*BI^3*AI*BI^2*AA*BI*AI*BB*AA*BB*AI*BB^2*AA*BB*AA*BB*AI^2*BB^2*AA*BB^3*AA*BI*AA*BB*AI^2*BB^2*AA*BB^3*AA*BI^2*AI^2*BB^2*AI^3*BB^2*AA*BB^3*AA*BI^2*AA*BB*AI*BB^2*AA*BB^2*AA*BB*AI*BB^2*AA*BB*AA*BB*AI*BI*AI - gendt^6*ID3; AI*BB^2*AA*BB^3*AI^2*BB^2*AA*BB^3*AA^2*BB*AI*BI*AI*BI^2*AA*BI*AI*BB*AA*BB^3*AA*BB^2*AA*BB*AI*BB^2*AA*BB*AA*BB*AA*BI^2*AA^2*BB^2*AI*BI^3*AI*BI^2*AA^2*BI*AI*BB^2*AI^2*BB^2*AA*BB*AI*BI*AI*BI^2*AA*BI*AI*BI^2*AI*BI^2*AA*BI*AI*BI*AA*BI - gendt^2*ID3; AA^2*BB^2*AI*BI^3*AI*BI^2*AA^2*BI*AI*BB^2*AI^2*BB^2*AA*BB^3*AA^3*BB^2*AI*BI^3*AI*BI^2*AA^2*BI*AI*BB^2*AA*BI^2*AI*BI^2*AA*BI*AI*BI*AA^2*BB^2*AI*BI^3*AI*BI^2*AA^2*BI*AI*BB^2*AA*BB*AA*BB*AI*BB^2*AA*BB^2*AI*BI^2*AA*BI*AI*BI^2 - gendti^2*ID3; AA*BB*AI^2*BB^2*AA*BB^3*AA*BI^2*AI*BI*AI*BI*AI*BI^2*AA*BI*AI*BI^2*AI^3*BB^2*AA*BB^3*AI*BB^2*AI*BI*AI*BI*AI*BI^2*AA*BI*AI^2*BI^3*AI*BI^2*AA^4*BB^2*AI*BI^3*AI*BI^2*AA^2*BI*AI^4*BB^2*AA*BB^3*AA^2*BB*AI*BB^2*AA*BB*AA*BB - ID3; AI^2*BB^2*AI^2*BB^2*AA*BB^3*AI^2*BB^2*AA*BB^3*AA*BI*AA*BB*AA*BI*AI*BI*AI*BI^2*AA*BI*AI*BI*AA*BB*AA*BB^2*AI*BI^3*AI*BI^2*AA^2*BI*AI*BI^3*AI*BI^2*AA*BI*AI*BI*AI*BI^2*AA*BB*AI*BI^3*AI*BI^2*AA^2*BI*AI*BI*AI*BI^2*AA*BI*AI*BI*AA*BB*AI*BI*AI*BI^2 - gendti^6*ID3; BB^2*AA*BB*AI*BB^2*AA*BB*AA*BB*AA*BB^2*AI*BI^3*AI*BI^2*AA^2*BI^2*AI*BB*AA*BB*AI*BB^2*AA*BB*AA*BB*AI*BI^3*AI*BI^2*AI*BB^2*AA*BB^3*AA*BI^2*AI^6*BB^2*AA*BB^3*AA^2*BB*AI*BB^2*AA*BB*AA*BB*AA*BI^3*AI*BI^2*AI*BI^3*AI*BI^2*AA^3 - gendt^2*ID3; BB*AI*BI^3*AI*BI^2*AA^2*BI^3*AI*BI^2*AA^2*BB^2*AI^2*BB^2*AA*BB^3*AI^2*BB^2*AA*BB^3*AA*BI*AA*BB*AA*BI^2*AA^3*BB^3*AI^2*BB^2*AA*BB^3*AA*BI*AA*BB*AI*BB^2*AA*BB^4*AA*BB*AA*BI*AI*BB*AI*BI^3*AI*BI^2*AA^2*BI^3*AI*BI^2*AA^2 - gendt^2*ID3; AI*BB^2*AA*BB^3*AI^2*BB^2*AA*BB^3*AA^2*BB*AI*BI*AI*BI^2*AA*BI*AI*BB*AI*BI^3*AI*BI^2*AA^2*BI^3*AA*BB^2*AI*BI^3*AI*BI^2*AA^2*BI*AI*BB^2*AA*BI^2*AI*BI^2*AA*BI*AI*BB*AA*BB^3*AA*BB^3*AI^2*BB^2*AA *BB^3*AA*BI*AA*BB*AI*BB^2*AA*BB^2*AI*BI^2*AA*BI - gendt^2*ID3; AI*BB^2*AA*BB^3*AI^2*BB^2*AA*BB^3*AA^2*BB*AA^2*BB^2*AI*BI^3*AI*BI^2*AA^3*BB*AI^2*BB^2*AA*BB^3*AA*BI^2*AI^5*BB^2*AA*BB^3*AI^2*BB^2*AA*BB^3*AA*BI*AA*BB*AI*BI*AI*BI*AI*BI^2*AA*BB*AI*BI^3*AI*BI^2*AA^2*BI*AI*BI*AI*BI^2*AA*BI*AI*BI*AA*BB*AI*BI*AI*BI^2 - gendt^2*ID3; BI^2*AA*BB*AI^2*BB^2*AA*BB^3*AA*BI^2*AI^2*BB^2*AI*BI*AI*BI^3*AI*BI^2*AA^2*BI*AI*BI*AI*BI^2*AA*BI*AI*BI*AA*BI*AI*BB*AI*BI^3*AI*BI^2*AA^2*BI^3*AI*BI^2*AA^5*BB^2*AI*BI^3*AI*BI^2*AA^2*BI*AI*BI^3*AI^3*BB^2*AA*BB^3*AA*BB^2*AI*BI^3*AI*BI^2*AA^2*BI - gendti^8*ID3; BI*AA*BB*AI*BI*AI*BI*AI*BI^2*AA*BI*AI^3*BB^2*AA*BB^3*AI^2*BB^2*AA*BB^3*AA*BI*AA*BB*AI*BI*AI*BI^2*AA*BB^2*AI*BI^3*AI*BI^2*AA^2*BI*AI*BB*AA*BB*AI*BB^2*AA*BB^2*AA*BB*AI*BB^2*AA*BB*AA*BB^2*AA*BB*AI^2*BB^2*AA*BB^3*AA*BI^2*AI^5*BB^2*AA*BB^3*AI^2*BB^2*AA*BB^3*AA - gendt^8*ID3; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % The generators for $\bar\Gamma$ in the case $(a=7,p=2,\{7\})$: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Firstly, the sequences of coefficients: b1:= 5/7$ b2:=-3/7$ b3:=-1/7$ b4:= 3/7$ b5:= 1/7$ b6:=-9/7$ b7:=-6/7$ b8:=-2/7$ b9:=-3/7$ b10:=-1/7$ b11:=-5/7$ b12:= 3/7$ b13:= 4/7$ b14:=-8/7$ b15:=-5/7$ b16:= 2/7$ b17:=-4/7$ b18:=-6/7$ z1:=0$ z2:=0$ z3:=0$ z4:=0$ z5:=1$ z6:=0$ z7:=0$ z8:=0$ z9:=0$ z10:=0$ z11:=0$ z12:=0$ z13:=0$ z14:=0$ z15:=0$ z16:=0$ z17:=0$ z18:=0$ % Here are the matrix forms of the elements of $\cD$ corresponding % to the above sequences of coefficients: write "Here is the matrix for the element BB of the division algebra:"; BB:= b1*ZMAT^0*SIGI +b2*ZMAT^0*ID3 +b3*ZMAT^0*SIG+ b4*ZMAT^1*SIGI +b5*ZMAT^1*ID3 +b6*ZMAT^1*SIG+ b7*ZMAT^2*SIGI +b8*ZMAT^2*ID3 +b9*ZMAT^2*SIG+ b10*ZMAT^3*SIGI+b11*ZMAT^3*ID3+b12*ZMAT^3*SIG+ b13*ZMAT^4*SIGI+b14*ZMAT^4*ID3+b15*ZMAT^4*SIG+ b16*ZMAT^5*SIGI+b17*ZMAT^5*ID3+b18*ZMAT^5*SIG; write "Here is the matrix for the element ZZ of the division algebra:"; ZZ:= z1*ZMAT^0*SIGI +z2*ZMAT^0*ID3 +z3*ZMAT^0*SIG+ z4*ZMAT^1*SIGI +z5*ZMAT^1*ID3 +z6*ZMAT^1*SIG+ z7*ZMAT^2*SIGI +z8*ZMAT^2*ID3 +z9*ZMAT^2*SIG+ z10*ZMAT^3*SIGI+z11*ZMAT^3*ID3+z12*ZMAT^3*SIG+ z13*ZMAT^4*SIGI+z14*ZMAT^4*ID3+z15*ZMAT^4*SIG+ z16*ZMAT^5*SIGI+z17*ZMAT^5*ID3+z18*ZMAT^5*SIG; % Of course, ZZ is simply ZMAT. write "The following is zero, checking that ZZ equals ZMAT:"; ZZ-ZMAT; ZZSTAR:=sub(z=z^6,tp(ZZ))$ BBSTAR:=sub(z=z^6,tp(BB))$ % Checking that the elements $\xi$ satisfy $\iota(\xi)\xi=1$: % The following are zero: write "The following are zero, checking that BB and ZZ are unitary with respect to FF:"; BBSTAR*FF*BB-FF; ZZSTAR*FF*ZZ-FF; % Therefore, the inverses of ZZ and BB can be calculated using ZZI:=FFI*ZZSTAR*FF$ BBI:=FFI*BBSTAR*FF$ % Explicitly: %% BB:=(1/7)*mat( %% (-4*z^5-8*z^4-5*z^3-2*z^2+z-3,-6*z^5-5*z^4+3*z^3-3*z^2-9*z-1,-2*z^5+3*z^4+z^3-8*z^2-3*z+2), %% (z^5-5*z^4+3*z^3+4*z^2+5*z+6,5*z^5+3*z^4+z^3+6*z^2-3*z+2,-3*z^5-6*z^4-9*z^3-12*z^2-8*z-4), %% (1/2*(17*z^5-z^4+9*z^3+12*z^2+z+18),-3*z^5+z^4-2*z^3+2*z^2-8*z+3,-z^5+5*z^4+4*z^3-4*z^2+2*z+1))$ %% BBI:=(1/7)*mat( %% (-3*z^5-6*z^4-9*z^3-5*z^2-z-4,6*z^5+5*z^4+4*z^3+3*z^2+9*z+1,1/2*(-3*z^5+z^4+5*z^3+2*z^2-8*z+3)), %% (-z^5-2*z^4-3*z^3-4*z^2+2*z+1,9*z^5+4*z^4+6*z^3+8*z^2+3*z+5,-4*z^5-z^4+2*z^3+5*z^2+z-3), %% (-5*z^5-3*z^4-8*z^3-6*z^2-4*z-9,3*z^5-z^4+2*z^3+5*z^2+z+4,-6*z^5+2*z^4+3*z^3-3*z^2-2*z-1))$ zvec:=mat((z1),(z2),(z3),(z4),(z5),(z6),(z7),(z8),(z9),(z10),(z11),(z12),(z13),(z14),(z15),(z16),(z17),(z18))$ bvec:=mat((b1),(b2),(b3),(b4),(b5),(b6),(b7),(b8),(b9),(b10),(b11),(b12),(b13),(b14),(b15),(b16),(b17),(b18))$ write "The following are zero, checking that BB and ZZ satisfy the integrality conditions:"; condmtxdm3type1*zvec - mat((0),(0),(0),(0),(1),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0)); condmtxdm5type1*zvec - mat((0),(0),(0),(0),(1),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0),(0)); condmtxdm7type2*zvec - mat((1),(0),(48),(2),(0),(0),(0),(0),(1),(0),(1),(0),(1),(0),(44),(3),(46),(1)); condmtxdm3type1*bvec - (1/7)*mat((5),(-3),(-1),(3),(1),(-9),(-6),(-2),(-3),(-1),(-5),(3),(4),(-8),(-5),(2),(-4),(-6)); condmtxdm5type1*bvec - (1/7)*mat((5),(-3),(-1),(3),(1),(-9),(-6),(-2),(-3),(-1),(-5),(3),(4),(-8),(-5),(2),(-4),(-6)); condmtxdm7type2*bvec - mat((-156),(-61),(-121),(-136),(-131),(-200),(-159),(-82),(-116),(-102),(-30),(-135),(-77),(-161),(22),(-69),(-57),(-89)); % Relations. Write BI and ZI in place of BBI and ZZI: BI:=BBI$ ZI:=ZZI$ BB^3 - gendt*ID3; ZZ^7 - ID3; (BB*ZI^2*BB*ZI)^3 - gendt^2*ID3; BI*ZZ*BB*ZZ^2*BB*ZZ^2*BI*ZI*BB*ZZ^2*BI*ZZ - ID3; BB*ZZ^2*BI*ZI*BB*ZI*BB*ZZ^2*BI*ZI*BB*ZI*BB*ZI^3 - gendt*ID3; BB*ZZ^2*BB*ZZ*BB*ZI^2*BI*ZZ*BB*ZI*BB*ZI^2*BI*ZZ^2 - gendt*ID3; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % The generators for $\bar\Gamma$ in the case $(a=7,p=2,\{3,7\})$: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Firstly, the sequences of coefficients: a1:=13/21$ a2:=2/21$ a3:=-11/21$ a4:=12/21$ a5:=-10/21$ a6:=20/21$ a7:=4/21$ a8:=-8/21$ a9:=9/21$ a10:=10/21$ a11:=-6/21$ a12:=-9/21$ a13:=9/21$ a14:=3/21$ a15:=8/21$ a16:=-13/21$ a17:=12/21$ a18:=18/21$ b1:=0/3$ b2:=-1/3$ b3:=1/3$ b4:=4/3$ b5:=1/3$ b6:=-5/3$ b7:=3/3$ b8:=-3/3$ b9:=-2/3$ b10:=1/3$ b11:=-4/3$ b12:=0/3$ b13:=6/3$ b14:=-4/3$ b15:=-4/3$ b16:=7/3$ b17:=1/3$ b18:=-4/3$ % Here are the matrix forms of the elements of $\cD$ corresponding % to the above sequences of coefficients: write "Here is the matrix for the element AA of the division algebra:"$ AA:= a1*ZMAT^0*SIGI +a2*ZMAT^0*ID3 +a3*ZMAT^0*SIG+ a4*ZMAT^1*SIGI +a5*ZMAT^1*ID3 +a6*ZMAT^1*SIG+ a7*ZMAT^2*SIGI +a8*ZMAT^2*ID3 +a9*ZMAT^2*SIG+ a10*ZMAT^3*SIGI+a11*ZMAT^3*ID3+a12*ZMAT^3*SIG+ a13*ZMAT^4*SIGI+a14*ZMAT^4*ID3+a15*ZMAT^4*SIG+ a16*ZMAT^5*SIGI+a17*ZMAT^5*ID3+a18*ZMAT^5*SIG$ write "Here is the matrix for the element BB of the division algebra:"$ BB:= b1*ZMAT^0*SIGI +b2*ZMAT^0*ID3 +b3*ZMAT^0*SIG+ b4*ZMAT^1*SIGI +b5*ZMAT^1*ID3 +b6*ZMAT^1*SIG+ b7*ZMAT^2*SIGI +b8*ZMAT^2*ID3 +b9*ZMAT^2*SIG+ b10*ZMAT^3*SIGI+b11*ZMAT^3*ID3+b12*ZMAT^3*SIG+ b13*ZMAT^4*SIGI+b14*ZMAT^4*ID3+b15*ZMAT^4*SIG+ b16*ZMAT^5*SIGI+b17*ZMAT^5*ID3+b18*ZMAT^5*SIG$ % Explicitly: %% AA:=(1/21)*mat( %% (12*z^5+3*z^4-6*z^3-8*z^2-10*z+2,18*z^5+8*z^4-9*z^3+9*z^2+20*z-11,-22*z^5-9*z^4-3*z^3-4*z^2-5*z+8), %% (-10*z^5-6*z^4-23*z^3+2*z^2-z+3,6*z^5-2*z^4+18*z^3-4*z^2+9*z+8,9*z^5+18*z^4+27*z^3+29*z^2+17*z-2), %% (-22*z^5-9*z^4-10*z^3-25*z^2-5*z-34,23*z^5+25*z^4+13*z^3+22*z^2+17*z+26,-18*z^5-22*z^4-12*z^3-9*z^2-20*z-10))$ %% BB:=(1/3)*mat( %% (z^5-4*z^4-4*z^3-3*z^2+z-1,-4*z^5-4*z^4-2*z^2-5*z+1,6*z^5+9*z^4+5*z^3+4*z^2+7*z+4), %% (-z^5+2*z^4+6*z^3+3*z^2+5*z-1,4*z^5+z^4+5*z^3+5*z^2+3,-2*z^4-4*z^3-5*z^2-4*z+1), %% (1/2*(10*z^5+4*z^4+7*z^3+8*z^2+5*z+15),-6*z^5-3*z^4-7*z^3-z^2-4*z-7,-5*z^5-z^3-5*z^2-4*z-2))$ % Here is the inverse of AA: AI:=(1/21)*mat( (2*z^5+4*z^4+13*z^3+22*z^2+10*z+12,-11*z^5-15*z^4-12*z^3+5*z^2-20*z-24,-13*z^5-12*z^4-11*z^3-17*z^2-9*z-8), (3*z^5-8*z^4-5*z^3+5*z^2-6*z+4,-13*z^5+9*z^4-11*z^3-3*z^2-9*z-1,12*z^5+17*z^4+z^3-8*z^2-3*z-12), (15*z^5-5*z^4+24*z^3+4*z^2+12*z-1,5*z^5+10*z^4+8*z^3-z^2-3*z+9,11*z^5+8*z^4-2*z^3+2*z^2+20*z+10))$ % Here is the inverse of BB: BI:=(1/3)*mat( (-4*z^5-5*z^4-5*z^3-z-2,z^5+z^4+3*z^3+2*z^2+2*z+5,1/2*(9*z^5+6*z^4+2*z^3+10*z^2+7*z+1)), (z^5+4*z^4+3*z^3+z-2,5*z^5+5*z^4+z^3+4*z^2+3,-3*z^5-z^4-2*z^3-z^2-2*z+2), (z^5+z^4-2*z^3+2*z^2+2*z+3,-3*z^5-3*z^4-2*z^3-2*z^2+z-5,-z^5+3*z^4+4*z^3-z^2+4*z+2))$ AASTAR:=sub(z=z^6,tp(AA))$ BBSTAR:=sub(z=z^6,tp(BB))$ % Checking that the elements $\xi$ satisfy $\iota(\xi)\xi=1$: % The following are zero: write "The following are zero, checking that AA and BB are unitary with respect to FF:"; AASTAR*FF*AA-FF; BBSTAR*FF*BB-FF; % Therefore, the inverses of AA and BB can be calculated using AAI:=FFI*AASTAR*FF$ BBI:=FFI*BBSTAR*FF$ % The following are zero: AAI-AI; BBI-BI; avec:=mat((a1),(a2),(a3),(a4),(a5),(a6),(a7),(a8),(a9),(a10),(a11),(a12),(a13),(a14),(a15),(a16),(a17),(a18))$ bvec:=mat((b1),(b2),(b3),(b4),(b5),(b6),(b7),(b8),(b9),(b10),(b11),(b12),(b13),(b14),(b15),(b16),(b17),(b18))$ write "The following are zero, checking that AA and BB satisfy the integrality conditions:"; condmtxdm3type2*avec - (1/7)*mat((96),(106),(139),(64),(121),(156),(83),(181),(91),(183),(28),(133),(65),(65),(62),(69),(24),(121)); condmtxdm5type1*avec - (1/21)*mat((13),(2),(-11),(12),(-10),(20),(4),(-8),(9),(10),(-6),(-9),(9),(3),(8),(-13),(12),(18)); condmtxdm7type2*avec - (1/3)*mat((330),(529),(121),(171),(89),(221),(28),(302),(22),(175),(5),(153),(189),(71),(147),(208),(295),(245)); condmtxdm3type2*bvec - mat((10),(17),(19),(25),(-41),(20),(-2),(8),(-1),(12),(-27),(-8),(-12),(2),(-17),(-13),(25),(-9)); condmtxdm5type1*bvec - (1/3)*mat((0),(-1),(1),(4),(1),(-5),(3),(-3),(-2),(1),(-4),(0),(6),(-4),(-4),(7),(1),(-4)); condmtxdm7type2*bvec - (1/3)*mat((-12),(200),(-239),(-250),(-392),(-343),(-190),(54),(-19),(-192),(214),(-159),(-106),(-276),(551),(-206),(328),(-60)); % Relations: The following are zero: (AI*BB*AA*BB^3)^3 - gendt^4*ID3; (BB*AI*BI*AI*BB^2*AA*BI^2*AI^2*BB*AA)^3 - gendt*ID3; AI*BB^2*AI*BB*AI*BI*AI^2*BB*AA*BB*AA*BB*AA*BI^2 - gendt*ID3; AA*BB*AI*BI*AA^2*BB^2*AI*BI*AA*BI*AI*BI*AA^2*BB*AA - ID3; BI^2*AI^2*BB*AI*BI*AI*BI^2*AA*BB^2*AI*BB*AI*BI*AI*BI - gendti*ID3; BI*AI*BB^2*AI*BB*AA*BB*AI^2*BI*AI*BI^2*AA*BB^2*AI*BI*AI*BB^2*AI - gendt*ID3; AA*BB^2*AI*BI*AI*BB^2*AI*BB*AI*BB*AI*BI^3*AI^2*BB*AA*BB*AI*BI - gendt*ID3; AI*BI*AA^2*BB^2*AI*BI^2*AA^2*BB*AI*BI*AA^2*BB^3*AA*BI*AA^2*BB^2 - gendt*ID3; AI*BI^3*AI*BI^2*AA*BB^2*AI*BI*AI^3*BI^3*AI^2*BB*AA*BI*AI^2*BB - gendti^2*ID3; BI*AA*BI*AI*BI*AA^2*BB^2*AI*BI^2*AA^2*BB^2*AI*BI*AI*BB^2*AA*BB*AA*BI*AA - ID3; AA*BB*AI*BI*AA^2*BB^3*AI^2*BB^2*AA*BB*AA*BI*AA*BI*AA*BI^2*AI^2*BI*AI^2*BI*AI*BB^2*AI*BB - gendt*ID3; AA*BB^2*AI*BB*AI*BB*AI*BI*AI*BI^2*AA^2*BI*AI*BI*AA^2*BI*AA^2*BB^2*AI*BB*AI*BB*AI*BI*AI*BI^5*AI^2*BB*AA^2 - gendti*ID3; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % The generators for $\bar\Gamma$ in the case $(a=7,p=2,\{5,7\})$: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Firstly, the sequences of coefficients: a1:=-2/5$ a2:= 0/5$ a3:= 0/5$ a4:=-6/5$ a5:=-1/5$ a6:=-4/5$ a7:=-2/5$ a8:= 4/5$ a9:= 0/5$ a10:= 2/5$ a11:= 4/5$ a12:= 2/5$ a13:= 0/5$ a14:= 2/5$ a15:=-4/5$ a16:=-2/5$ a17:= 6/5$ a18:=-2/5$ b1:=-29/35$ b2:= 30/35$ b3:= 10/35$ b4:= -2/35$ b5:=-17/35$ b6:= -8/35$ b7:= 11/35$ b8:=-22/35$ b9:= -5/35$ b10:=-11/35$ b11:=-27/35$ b12:= 19/35$ b13:= -5/35$ b14:=-11/35$ b15:= 22/35$ b16:= 36/35$ b17:=-23/35$ b18:=-24/35$ d1:=-4/7$ d2:= 8/7$ d3:=-2/7$ d4:=-8/7$ d5:= 2/7$ d6:= 3/7$ d7:=-5/7$ d8:= 3/7$ d9:= 1/7$ d10:=-9/7$ d11:=-3/7$ d12:=-8/7$ d13:=-6/7$ d14:=-2/7$ d15:= 4/7$ d16:=-3/7$ d17:=-1/7$ d18:= 2/7$ A:=(1/5)*mat( (6*z^5+2*z^4+4*z^3+4*z^2-z,-2*z^5-4*z^4+2*z^3-4*z,-z^5-z^4+3*z^3+2*z^2-4*z-3), (-2*z^5-4*z^4-4*z^3-8*z^2-2*z-4,-4*z^5+2*z^3-5*z^2-2*z-4,-2*z^5-2*z^4-4*z^3-6*z^2-6*z-2), (5*z^5-z^4+2*z^3+2*z^2+2*z+5,4*z^5-4*z^4+2*z^3+2*z^2,-2*z^5-7*z^4-6*z^3-4*z^2-2*z-6))$ AINV:=(1/5)*mat( (5*z^5+5*z^4+3*z^3+7*z^2+z+1,2*z^5+2*z^3-2*z+2,2*z^5+5*z^4+3*z^3+2*z^2+z+2), (2*z^3+4*z,-3*z^5+4*z^4+2*z^3-2*z^2+2*z-2,-2*z^5-2*z^4-4*z^2-2*z), (-z^5-3*z^4-z^3-z+2,-2*z^5-2*z^4-2*z^3+2*z^2-2*z-2,-2*z^5-4*z^4-5*z^3+2*z-4))$ B:=(1/35)*mat( (-23*z^5-11*z^4-27*z^3-22*z^2-17*z+30,-24*z^5+22*z^4+19*z^3-5*z^2-8*z+10,48*z^5+33*z^4+11*z^3+24*z^2+37*z-6), (11*z^5+22*z^4+47*z^3+9*z^2+6*z-18,27*z^5+5*z^4+4*z^3+10*z^2+16*z+57,-19*z^5-24*z^4-43*z^3-27*z^2+3*z-9), (1/2*(40*z^5+31*z^4+8*z^3+83*z^2-17*z+30),-47*z^5-38*z^4-36*z^3-41*z^2-25*z-65,-4*z^5+6*z^4+23*z^3+12*z^2+z+53))$ BINV:=(1/35)*mat( (-5*z^5-10*z^4+6*z^3-6*z^2+17*z+47,24*z^5+20*z^4+9*z^3+5*z^2+36*z+39,1/2*(-47*z^5-10*z^4+27*z^3-27*z^2-11*z+68)), (-25*z^5-15*z^4-26*z^3+5*z^2+8*z+25,-6*z^5-12*z^4-11*z^3+11*z^2-16*z+41,-9*z^5-4*z^4+15*z^3+27*z^2+11*z+30), (-27*z^5+9*z^4-32*z^3-10*z^2-2*z-1,26*z^5+31*z^4+z^3+34*z^2+11*z+51,11*z^5+22*z^4+5*z^3-5*z^2-z+52))$ D:=(1/7)*mat( (-z^5-2*z^4-3*z^3+3*z^2+2*z+8,2*z^5+4*z^4-8*z^3+z^2+3*z-2,3*z^5-z^4-5*z^3-2*z^2-6*z-3), (9*z^5+4*z^4+6*z^3+z^2+3*z+5,3*z^5+6*z^4+2*z^3+5*z^2+z+11,8*z^5+9*z^4+10*z^3+11*z^2+12*z+6), (1/2*(-15*z^5+5*z^4+4*z^3-4*z^2+2*z-13),-6*z^5-5*z^4+3*z^3-3*z^2-2*z-1,-2*z^5+3*z^4+z^3-z^2+4*z+9))$ DINV:=(1/7)*mat( (z^5-5*z^4-4*z^3-3*z^2-2*z+6,-9*z^5-11*z^4+z^3-8*z^2-10*z-5,1/2*(-6*z^5-19*z^4-11*z^3+4*z^2+5*z-8)), (-2*z^5+3*z^4-6*z^3-z^2-10*z-5,4*z^5+z^4+5*z^3+2*z^2-z+10,-z^5-9*z^4-10*z^3-11*z^2-12*z-6), (11*z^5+z^4+5*z^3+2*z^2-z+10,6*z^5+5*z^4+4*z^3-4*z^2+9*z+1,-5*z^5-3*z^4-z^3-6*z^2-4*z+5))$ % Here are the matrix forms of the elements of $\cD$ corresponding % to the above sequences of coefficients: write "Here is the matrix for the element AA of the division algebra:"$ AA:= a1*ZMAT^0*SIGI +a2*ZMAT^0*ID3 +a3*ZMAT^0*SIG+ a4*ZMAT^1*SIGI +a5*ZMAT^1*ID3 +a6*ZMAT^1*SIG+ a7*ZMAT^2*SIGI +a8*ZMAT^2*ID3 +a9*ZMAT^2*SIG+ a10*ZMAT^3*SIGI+a11*ZMAT^3*ID3+a12*ZMAT^3*SIG+ a13*ZMAT^4*SIGI+a14*ZMAT^4*ID3+a15*ZMAT^4*SIG+ a16*ZMAT^5*SIGI+a17*ZMAT^5*ID3+a18*ZMAT^5*SIG$ write "Here is the matrix for the element BB of the division algebra:"$ BB:= b1*ZMAT^0*SIGI +b2*ZMAT^0*ID3 +b3*ZMAT^0*SIG+ b4*ZMAT^1*SIGI +b5*ZMAT^1*ID3 +b6*ZMAT^1*SIG+ b7*ZMAT^2*SIGI +b8*ZMAT^2*ID3 +b9*ZMAT^2*SIG+ b10*ZMAT^3*SIGI+b11*ZMAT^3*ID3+b12*ZMAT^3*SIG+ b13*ZMAT^4*SIGI+b14*ZMAT^4*ID3+b15*ZMAT^4*SIG+ b16*ZMAT^5*SIGI+b17*ZMAT^5*ID3+b18*ZMAT^5*SIG$ write "Here is the matrix for the element DD of the division algedra:"$ DD:= d1*ZMAT^0*SIGI +d2*ZMAT^0*ID3 +d3*ZMAT^0*SIG+ d4*ZMAT^1*SIGI +d5*ZMAT^1*ID3 +d6*ZMAT^1*SIG+ d7*ZMAT^2*SIGI +d8*ZMAT^2*ID3 +d9*ZMAT^2*SIG+ d10*ZMAT^3*SIGI+d11*ZMAT^3*ID3+d12*ZMAT^3*SIG+ d13*ZMAT^4*SIGI+d14*ZMAT^4*ID3+d15*ZMAT^4*SIG+ d16*ZMAT^5*SIGI+d17*ZMAT^5*ID3+d18*ZMAT^5*SIG$ AASTAR:=sub(z=z^6,tp(AA))$ BBSTAR:=sub(z=z^6,tp(BB))$ DDSTAR:=sub(z=z^6,tp(DD))$ % Checking that the elements $\xi$ satisfy $\iota(\xi)\xi=1$: % The following are zero: write "The following are zero, checking that AA, BB and DD are unitary with respect to FF:"; AASTAR*FF*AA-FF; BBSTAR*FF*BB-FF; DDSTAR*FF*DD-FF; % Therefore, the inverses of AA, BB and DD can be calculated using AI:=FFI*AASTAR*FF$ BI:=FFI*BBSTAR*FF$ DI:=FFI*DDSTAR*FF$ % The following are zero: AI-AINV; BI-BINV; DI-DINV; avec:=mat((a1),(a2),(a3),(a4),(a5),(a6),(a7),(a8),(a9),(a10),(a11),(a12),(a13),(a14),(a15),(a16),(a17),(a18))$ bvec:=mat((b1),(b2),(b3),(b4),(b5),(b6),(b7),(b8),(b9),(b10),(b11),(b12),(b13),(b14),(b15),(b16),(b17),(b18))$ dvec:=mat((d1),(d2),(d3),(d4),(d5),(d6),(d7),(d8),(d9),(d10),(d11),(d12),(d13),(d14),(d15),(d16),(d17),(d18))$ write "The following are zero, checking that AA, BB and DD satisfy the integrality conditions:"; CondMtxDM3type1*avec - (1/5)*mat((-2),(0),(0),(-6),(-1),(-4),(-2),(4),(0),(2),(4),(2),(0),(2),(-4),(-2),(6),(-2)); CondMtxDM3type1*bvec - (1/35)*mat((-29),(30),(10),(-2),(-17),(-8),(11),(-22),(-5),(-11),(-27),(19),(-5),(-11),(22),(36),(-23),(-24)); CondMtxDM3type1*dvec - (1/7)*mat((-4),(8),(-2),(-8),(2),(3),(-5),(3),(1),(-9),(-3),(-8),(-6),(-2),(4),(-3),(-1),(2)); CondMtxDM5type2*avec - mat((-12),(-42),(-15),(-50),(-14),(-6),(-10),(10),(-12),(-22),(-15),(-14),(3),(-38),(-18),(-9),(-32),(-27)); CondMtxDM5type2*bvec - (1/7)*mat((-167),(-6),(-197),(-67),(-140),(-166),(-140),(-38),(-220),(-284),(-337),(-169),(-79),(-206),(-81),(-13),(-170),(85)); CondMtxDM5type2*dvec - (1/7)*mat((-295),(-246),(-503),(-570),(-413),(-352),(-469),(-438),(-361),(-395),(-440),(-223),(-215),(-410),(-325),(-435),(-173),(-302)); CondMtxDM7type2*avec - (1/5)*mat((103),(-252),(-216),(278),(62),(240),(-118),(60),(137),(-224),(-27),(-82),(-133),(72),(-162),(-355),(-294),(-19)); CondMtxDM7type2*bvec - (1/5)*mat((-272),(-467),(-246),(-292),(-238),(-315),(157),(5),(-133),(-84),(-7),(-307),(-208),(-28),(-162),(-280),(-254),(-114)); CondMtxDM7type2*dvec - mat((-116),(-176),(-56),(-98),(-62),(-93),(-95),(-121),(-153),(-158),(-149),(-138),(-69),(-124),(-147),(-57),(-92),(-71)); % Relations: The following are zero: AI*DD*BI*DD^2*AI*DD*AI*DD*BI*AA*DI*BB*DI*BB*DI*AA*DI*AA*DI - ID3; DI*AA*DI*BB*DD*BI*DD*AI*DD*BB*AA*BB*AI^2*BI*DI*AA*DI*BB*DI*AI - ID3; DI*BB*DI*AI^2*BI*DI*AA*DI*BB*DI*AI*DD*BB*DI*AI^2*BI*DI*AA*DI*BB*DI - gendti^2*ID3; DI*AA*DI*BB*DD*AI*DD*AI*DD*AA^3*BI*DD*AI*DD*BB*AI*DI*AA*DI*AA*DI^2*BB*DI - ID3; AI*BI*DI*AA*DI*BB*DI^2*BB*DI*AA*DD*BI*DD*AI*DD*BB*AA^2*BI*AA^2*BI*DD*AI*DD*BB - ID3; DI*AA*BI*DD*AI*DD*BB*AA*BI*AA*BB*AI^2*BI*DI*AA*DI*BB*DI*BB*AI^2*BI*DI*AA*DI*BB - gendti*ID3; DI*AA*DI*AA*BI*DD*AI*DD*BB*AA*DI*AI*BB*AI^2*BI*DI*AA*DI*BB*DI*AI*BB*AA^2*BI*AI - gendti*ID3; BB*AA^3*BI*DD*AI*DD*BB*AA^2*DI*BI*DD*AI*DD*BB*AI^2*BI*DI*AA*DI*BB*DI^2*BB*DI - ID3; DD*AA^3*BI*DD*AI*DD*BB*AA^2*DI*AI*DD*AI*DD*BI*DD^3*BI*DD*AI*DD*BB*AA^2*DD*AI - gendt^3*ID3; BB*DI*AA*DI*AA*DI^2*BB*DI*AA*DI*BB*DI*BB*DI*AA*DI*AA*DI^2*BB*DI*AA*DI*BB*DI*AA*DI*BB*DI - gendti^3*ID3; DD*AI*DD*AA*BB*AI^2*BI*DI*AA*DI*BB*AI*DD*AI*DD*BI*DI*BB*DI*AA*DI*AA*DD*BI*DD*AI*DD*BB*AA - gendt*ID3; AA*BI*DD*AI*DD*BB*AA*BI*AI*DD*BI*DI*BB*AA*BI*DI*AA*DI*BB*AI^3*BI*DD*BB*DI*AA*DI*AA*DI - gendti*ID3; BI*DI*AA*DI*BB*DI^2*BB*DI*AA*DI*AA*DD*BI*DD*AI*DD*BB*AA^2*DD*AI^2*BI*DI*AA*DI*BB*AI^3 - gendti*ID3; AI*DD^4*BI*DD*AI*DD*BB*AA^2*DD*AI*DD*BI*DI*BB*AA*BI*DI*AA*DI*BB*AI^3*DI*AA*DI*AA*BI*DD - gendt*ID3; BI*DI*AA*DI*BB*AI^2*BI*DI*AA*DI*BB*AI^2*BI*DI*AA*DI*BB*AI^3*DI*AA*DI*AA*BI*DD*AI*DD*BB*AA - gendti^2*ID3; BI*AI*DI*AA*DI*BB*DD*BI*DD^2*BI*DD*AI*DD*BB*AA^3*BI*DI*AA*DI*BB*DI*BI*AA*BI*DD*AI*DD*BB*AA - ID3; BI*DD*AI*DD*AA*DI*AA*DD*BI*DD*AI*DD*BB*AA^2*DD*AI^2*DI*AI^2*BI*DI*AA*DI*BB*DI^2*AI*DD*BI*DD - ID3; DI*AI^2*BI*DI*AA*DI*BB*DI^2*AA*BI*DD*AI*DD*BB*AA*BI^2*DI*AA*DI*BB*DI*BI*AA*BI*DD*AI*DD*BB*AA - gendti^2*ID3; AA*BB*AI*BI*DI*AA*DI*BB*AI*BB*AI^2*BI*DI*AA*DI*BB*DI*AI*BB*DI*AA*DI*BB*DI*BB*DI*AA*DI*AA*DI^2*BB - gendti^2*ID3; BB*AI*BI*DI*AA*DI*BB*AI*DD*AI^3*BI*DI*AA*DI*BB*DI^2*BB*DI*AA*BB*AI*BI*DI*AA*DI*BB*AI*DD*AI*DD - gendti*ID3; AA^2*BI*DD*AI*DD*BB*AA*BI*DI*AA*DI*BB*DD*BI*DD*AI*DD*BB*AI*BI*DD^2*AI*DD*AI*DD*BI*DD*BI*DD*AI*DD*BI - gendt^2*ID3; AA*DD*AI^2*BI*DI*AA*DI*BB*AI^3*BI*DI*AA*DD*BI*DD*AI*DD*BB*AA^2*BI*DD^2*AI*DD*AI*DD*BI*DD*BI*DD*AI*DD*BI - gendt*ID3; DI*AI^2*BI*DI*AA*DI*BB*DI^2*AI*DD*BI*DD^3*BI*DD*AI*DD*BB*AA*BB*DI*AA*DI*BB*DI*BB*DI*AA*DI*AA*DI^2*BB*AA - gendti*ID3; DI*AA*BI*DD*AI*DD^2*BB*DI*AA*DI*AI^2*BI*DI*AA*DI*BB*DI^3*BB*AI^2*BI*DI*AA*DI*BB*DI^2*BB*DI^2*BB*DI*AA - gendti^3*ID3; DD*AI*DD*BI*DD^2*AI*DD^3*BI*DD*AI*DD*BB*AA^2*DD*AA^2*BI*DD*AI*DD*AI*DD*BI*DI*BB*DI*AA*DI*AA*BI*DD*AI*DD - gendt^3*ID3; BI*DI*AA*DI*BB*AI*DD*AI*DD*BI*DD*BB*DI*AA*BI*DI*AA*DI*BB*DI*BI*AA^2*BI*DD*AI*DD*BB*AA*BI*DI*AA*DI*BB*DD*AI^3 - gendti*ID3; AI^2*BI*DI*AA*DI*BB*DI^2*BB*DI*BB*DI*AA*DI*AA*BI*DD*AI*DD*BB*AA^2*BI*AI*BI*DD^2*AI*DD*AI*DD*BI*DD*BI*DD*AI*DD - ID3; DI*AI^2*BI*DI*AA*DI*BB*DI^2*AI*BI*DD^2*AI*DD*AI*DD*BI*DD*BI*DD*AI*DD*BI*DI*AA*DI*BB*AI*DD*AI*DD*BI*DD*BB*DI*AA*BB - ID3; BB*AI^2*DI*AI^2*BI*DI*AA*DI*BB*DI^3*AA*BI*DD*AI*DD*AA*DI*BB^2*DI*AA*DI*AI^2*BI*DI*AA*DI*BB*DI^3*BB*AA^2 - gendti^3*ID3; BI*DI*AA*DI*BB*AI*DD*AI*DD*AA*BB*AI*BI*DI*AA*DI*AA*BI*DD*AI*DD*BB*AA*BI*AI*DD*BI*DD*AI*DD*BB*DI*AA*BI*DD*AI*DD*BB*AA - gendt*ID3; BI*DI*AA*DI*BB*DI^2*AA*DI*BB*DI*BB*DI*AA*DI*AA*DI^2*BB*AA^3*DI*BI*AA*BI*DD*AI*DD*BB*AA*BI*AI*DI*AA*DI*BB^2*DI*AA - gendti^3*ID3; AI*BI*DI*AA*DI*BB*AI*DD*AI*DD*AA*BB*AA*BI*DD*AI*DD*BB*AA^2*BI*DD*AI*DD*BB^2*AI*BI*DI*AA*DI*BB*AI*BB*AI^2*BI*DI*AA*DI*BB - gendt*ID3; DI*AA*DI*BB^2*DI*AA*DI*AI^2*BI*DI*AA*DI*BB*DI^3*BB*AA*DI*AA*DI*BB*DD*BI*DD*AI*DD*BB^2*AI^2*BI*DI*AA*DI*BB*DI^2*BB - gendti^2*ID3; DD*AI^2*BI*DI*AA*DI*BB*AI*BI*AI*DI*AA*DI*AA*BI*DD*AI*DD*BB*DD*AA*BB*AI^2*BI*DI*AA*DI*BB*DI^2*AA*DD*BI*DD*AI*DD*BB*AA^2*DD - ID3; AI*DD*BI*DD*AI*DI*AA*DI*BB*DD*BI*DD*AI*DD^3*AI*DD*AI*DD*BI*DD*BI*DD*AI*DD*BI*DI*AA*DI*BB*DD*BI*DD*AI*DD*BB^2*AI^2*BI*DI*AA*DI*BB*DI - gendt^2*ID3; AA*BI*AI*BI*DD^2*AI*DD*AI*DD*BI*DD*BI*DD*AI*DD*AA*DI*AI^2*BI*DI*AA*DI*BB*DI*AI*DD*AI*DD*BI^2*DD*AI*DD*AA*DD^2*BI*DD*AI*DD*BB*AA^2*DD - gendt^2*ID3; AI*DD*BI*DD*BI*DD^2*BI*DD*AI*DD*BB*AA^5*DI*BI*DD*AI*DD*BB*AI*BI*DI*AA*DI*BB*AI*BI*DD*AI*DD*BB*AA*BI*DD*BI*DD*AI*DD*BB*AA^2*BI*AI - gendt^2*ID3; AI^2*BI*DI*AA*DI*BB*DI*BI*DD^2*BI*DD*AI*DD*BB*AA^3*BI*DI*AA*DI*BB*AI^2*BI*DI*AA*DI*BB*AI^5*BI*DI*AA*DI*BB*DI^2*BB*DI*BB*DI*AA*DI - gendti^3*ID3; AA*DD*AI^2*BI*DI*AA*DI*BB*AI^3*DI*BI*DI*AA*DI*BB*AI*BB*DI*AA*DI*BB*DI*BB*DI*AA*DI*AA*DI^3*AA*DI*BB*DD*BI*DD*AI*DD*BB^2*AI^2*BI*DI*AA*DI*BB*DI^2 - gendti^3*ID3; BI^2*DD^2*AI*DD*AI*DD*BI*DD*BI*DD*AI*DD*AA*BI*DI*AA*DI*BB*AI^5*BI*DI*AA*DI*BB*DI^2*BB*DI*BB*DI*AA^4*BI*DD*AI*DD*BB*AA^2*DI*AA*BI*DD*AI*DD*BB*AA - ID3; ;end;