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ABSTRACT. Prasad and Yeung [21] gave a short explicit list of real fields k
(either Q or a quadratic extension of Q), complex quadratic extensions ¢ of k,
and central simple algebras D of degree 3 over its center £, such that the
fundamental group of any fake projective plane must be a torsion-free co-
compact subgroup of a unitary group PU(h) associated with (k, ¢, D) and an
essentially unique nondegenerate hermitian form h on D. They produced a
fake projective plane in each of the cases for which D is a division algebra, and
we have subsequently found all the fake projective planes in those cases (see
[7]), and shown that none can arise from the cases when D is a matrix algebra,
as conjectured in [21]. The purpose of this paper is to explain how the matrix
algebra cases were excluded.

1. INTRODUCTION

A fake projective plane (abbreviated fpp below) is a smooth compact complex
surface M which is not the complex projective plane but has the same Betti numbers
as the complex projective plane P?(C) (namely 1, 0, 1, 0, 1, and thereafter 0). An
fpp is known (see [21]) to have the form

M = B(C?)/11, (1.1)

where B(C?) = {(21,22) € C? : |z1|*> + |22|> < 1} is the unit ball in C?, and where
IT is a torsion-free cocompact arithmetic subgroup of PU(2, 1), isomorphic to the
fundamental group of M. The well-known action of PU(2,1) on B(C?) is described
in Section 4.1 below.

Let ¢ : SU(2,1) — PU(2,1) be the natural surjection. Its kernel is equal to
{w’I :v =0,1,2}, where w = >™/3, Let II = ¢~ (II).

As explained in [21], because II is an arithmetic subgroup of SU(2,1), there is a
pair (k,¢) of fields, with k totally real and £ a totally complex quadratic extension
of k, and there is a central simple algebra D of degree 3 with center ¢, and there is
an involution ¢ of the second kind on D such that k = {x € £ : «(x) = x} and so
that IT is commensurable with IT N G(k), where

Gk)={£eD*:&(§) =1 and Nrd(§) = 1}.

The G here is a simple simply connected algebraic k-group, with the property
that G(ky,) = SU(2,1) for one real place vg of k, and such that G(k,) = SU(3)
for all other archimedean places v of k. These conditions determine G up to k-
isomorphism. The commensurability can be described more precisely: there is a
principal arithmetic subgroup A of G(k) so that II C T', where I is the normalizer
of A in SU(2,1), which satisfies [I" : A] < co and [I" : TI] < oo.

Prasad and Yeung in [21] showed that the k, ¢ and D here must come from a
short list of possibilities. By the well-known classification of central simple algebras,
D is either the matrix algebra M3, 3(¢) or is a division algebra (of dimension 9 over
its center ¢). They found at least one fpp for each (k, ¢, D) in their list for which
D is a division algebra. As we reported in [7], we have found all the fpps, and

1



2 D. CARTWRIGHT T. STEGER

there are precisely 50 of them (up to homeomorphism; there are 100 up to bi-
holomorphism). We did this by going through the list in [21] of possible (k, ¢, D)’s,
determining all the possibilities for A, and by sometimes very lengthy computer-
assisted calculations, determining all the possible fundamental groups of fpps that
can arise from (k,¢, D). As conjectured in [21], all the fpps come from (k, ¢, D) in
the list in [21] for which D is a division algebra.

A significant part of the effort reported in [7] was to show that no fpps arise from
the six (k, ¢, D) in the list of [21] for which D is the matrix algebra M5x3(¢). The
six pairs (k, ) are named Cy, Cs, Cs, C11, C1s and Coy in [21], and are as follows:

name k 14 defining polynomial for ¢
Ci | Q(5) Q(¢s) GG+ +1
C; | QW5H) | Q(v5,i) =Q(z) 4322+ 1
Cs | Q(v2) | Q(v2,i) = Q(G) ¢t+1
Cii | QW3) | Q(V3,7) = Q(¢i2) ¢t—¢?+1
Cis | Q(W6) | Q(v6,(3) = Q(z) 2t —22° +4
Cor | Q(V33) | Q(V33,5) =2 Q(2) | 2% —2%—222—-32+9

Table 1.

The case C3 had been culled from the list in [21], but the argument in [21, Propo-
sition 8.8] relies on the existence of elements of order 5 which were not explicitly
given there. We shall exclude Cs by giving these elements below.

Particular properties of these six C;’s are given in Section 3. For now, note that
each k is a real quadratic extension Q(r) of Q, where 7> = 5, 5, 2, 3, 6 and 33,
respectively. The rings of integers in k and ¢ are denoted oj and oy, respectively.
For Cy, C3 and Ca, oy is Z[(r+1)/2], and o = Z[r] in the other three cases. Let Vo
and Vy denote, respectively, the sets of archimedean and nonarchimedean places v
of k. Then V,, = {vg,v}}, where vy and v{ correspond to the embeddings of k
into R mapping = to the positive and negative square root of r2, respectively. Let
k., denote the completion of k with respect to v, and for v € Vy, let 0, denote the
valuation ring of k,, and let ¢, denote the order of the residue field of k,.

In each case, we define a 3 x 3 symmetric matrix F' = Fic, gy with entries in oy
and determinant 1 such that the hermitian form h :  + x*Fz on ¢2 is indefinite
at vg and definite at v{,. In terms of the numbers x € oy in the table

Ci Cs Cs Ci1 | Cis Ca1
r? 5) ) 2 3 6 33
z | (r+1)/2|(r+1)/2|r+1|r+1|r+2]|(r+5)/2
Table 2.

and for the cases Cy, C3 and Cg, respectively Ci1, C1g and Cap, we define

-z 0 0 - 1 0
Fe,oy=| 0 —27' 0], respectively Fe,gp={ 1 —2z7' 0]. (12)
0 0 1 0 0 1

Each z is positive when r is taken as the positive square root of 2, and negative
when 7 is taken as the negative square root, so that h is indefinite at vg and definite
at v}. In the cases Cy, C3 and Cs, z is invertible in oy, with inverse (r—1)/2, (r—1)/2
and 7 — 1, respectively. In the cases C11, Cig and Car, 227! is in oy, and equals
r—1,r—2and (r — 5)/2, respectively. So the entries of F¢, ¢y are all in 0.
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Writing F' = Fic, gy, the map g — F~1¢*F is an involution of the second kind
on D = M3y3(¢), and for the corresponding special unitary group G = SU(h),
G(k) ={g9 € M3x35({) : g Fg = F and det(g) = 1}.
Since the Euler-Poincaré characteristic x(M) of a topological space M is the
alternating sum of its Betti numbers, x(M) = x(P?(C)) = 3 when M is an fpp.

If IT is any torsion-free cocompact subgroup of PU(2,1)), define M by (1.1).
Then for an appropriate normalization of the hyperbolic volume vol on B(C?),

X (M) = 3vol(Fn), (1.3)

where Fi; C B(C?) is a fundamental domain for the action of IT on B(C?). This is
a result of Chern (or the Hirzebruch Proportionality theorem).
Applying (1.3) to the case an fpp M, we have 3 = x(M) = 3vol(F), and so
vol(Fip) = 1. (1.4)

Starting from appropriately normalized Haar measure on SU(2, 1), invariant mea-
sures m can be defined on quotients SU(2,1)/T of SU(2,1) by cocompact discrete
groups I'; so that

(a) if I'y C Iy, then m(SU(2,1)/T'1) = [I'2 : T1Jm(SU(2,1)/T2), and

(b) if wl € T, then m(SU(2,1)/T) = gvol(Fyry).
Applying (b) to the case I' = II, and using (1.4), and applying (a) to the inclusions
A CT and IT C T', where I" is the normalizer of the principal arithmetic subgroup
A of G(k), as above, we obtain

[ : A
SU(2,1)/A) = —=—— 1.5
m(SU(2.1)/4) = 354 (1.5
where T' = o(T'), and we have used the simple fact that [I': II] = [T : II].
The principal arithmetic subgroup A has the form G(k)N]], ev, Do, where Vy is

the set of non-archimedean places of k, and where each P, is a parahoric subgroup
of G(ky). By Prasad’s Covolume Formula (equation (11) in [21, §2.11]), we have

m(sU(2,1)/8) = 5 [] (P, (16)
veT

where D, the denominator of the rational number p of [21, §8.2]), is as in the
following table:

Ci | C3 | Cs |Cin|Cisg|Co
D | 600| 32 | 128| 864 | 48 | 12
Table 3.

and the numbers €'(P,) are integers defined in [21, §2.5], and where 7 = 7' U T"
for

T' = {v € V; : P, is not maximal},

T" ={v € V; : v is unramified in ¢ and P, is not hyperspecial}.
Comparing (1.5) and (1.6), and using the fact proved in [21, §5.4] that [T": A] =3
in our situation (see Corollary 2.1 below), we have

C:0] [[ ¢(P,) = D. (1.7)

veT
If p is a prime number divides the right hand side of (1.7), then p € {2,3,5}. This
strongly limits the possibilities for 7, and we shall see in Section 2 that 7 must be

empty or a singleton set. Moreover, we show in Section 2 that P, can be chosen
maximal for each v € Vy. When v splits in ¢, any two maximal parahorics in G(k,)
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are conjugate by an element of G(k,). When v does not split in ¢, there are two
G (k,)-conjugacy classes of maximal parahorics in G(k, ), which we shall call type 1
and type 2, respectively (see below). Then using [21, Proposition 5.3], we see that
A may be assumed to be one of 13 possibilities — two for each C;, j # 21, and
three for Ca;. These are indexed by C; and

71 = {v € Vy : v does not split in ¢ and P, is of type 2}. (1.8)
These are the 13 possibilities:
(C;,0) (for j =1, 3, 8, 11, 18 and 21), and (C,{5}), and
(Cj,{2}) (for j =3, 8, 11 and 18), and (Ca1,{2+}) and (Ca1, {2—}).
Here “5” denotes the unique 5-adic place of k in the C; case, “2” denotes the unique
2-adic place of k in the cases C; for j = 3, 8, 11, 18, and “24” and “2—" denote
the two 2-adic places of k in the Cy; case. For each of these 13 possible (C;,71)’s,

using the matrices ¢ € GL(3, ) given in Section 3 when 77 # ), and setting ¢ = I
if 71 = 0, we define Fi¢, 1) = c*F¢, pyc. We shall show that

=T, 1) = {9 € Maxs(00) : g"Fie, 119 = Fie;m)}/ 2, (1.10)

where Z = {tI : t € 0, and [t| = 1}. Equation (1.7) takes the form [T : II] = D
except in the cases (C11,{2}), (Cis,{2}), (Ca1,{2+}) and (Ca1, {2—}), when it takes
the form [[ : II] = D/3. To show that there are no fpps arising from the matrix
algebra case C;, it is enough to show that for each of the 2 or 3 possibilities (C;, T1),
there are no torsion-free subgroups II of f(cj,Tl) satisfying this index condition. A
basic tool for this is the following simple lemma:

(1.9)

Lemma 1.1. Suppose that 11 is a torsion-free subgroup of finite index in a group I.
Let K be a finite subroup of I'. Then |K| divides [T : II].

Proof. There is an action gII — kgII of K on the set T'/II of cosets. No k € K \ {1}
can fix any gII. For kgIl = gII implies that g kg €11, contradicting the torsion-
free hypothesis. So if I'/II is the union of s K-orbits, then [I": II] = s|K]|. O

In eight of the 13 cases, we are able to produce a finite subgroup K such that
|K| does not divide the required index [I" : II], thus eliminating those cases.

In the remaining five cases, (C1,0), (C1,{5}), (C11,0), (C11,{2}) and (Cis,0),
we show that no fpp’s can arise by first finding further elements of . In fact,
we can find a generating set for T', and can find enough relations amongst these
generators to get a presentation of I, but we don’t use this information, except
in the case (C11,0). While algebra packages such as Magma are able to find all
(conjugacy classes of) subgroups of low index in finitely presented groups, in our five
cases the required index [I : II] is not nearly “low” enough. We wrote specialized C-
programs, described below, to eliminate these cases. They showed that no torsion-
free subgroup of the required index can exist in ', except in the (Ci1,0) case.
We showed that there is (up to conjugation) a unique torsion-free subgroup II
of T'(c,, ¢y having index D = 864. For the surface M = B(C?)/II, we find that the
Betti number b; is 2, not 0.

2. RESTRICTING THE POSSIBLE A’S
We start by verifying the hypothesis of [21, §5.4] in our situation.

Lemma 2.1. Let q be an integer.
(i) If ¢ > 2, then ¢* + q + 1 is divisible by a prime p & {2,3,5}.
(ii) If ¢ >3, then ¢ + 1 and ¢*> — g+ 1 are divisible by a prime p & {2,3,5}.

Proof. Tt is easy to check that neither ¢ 4+ ¢ + 1 nor ¢> — g + 1 is divisible by 2,
5 or 9, though they may be divisible by 3. Since ¢> + ¢+ 1 > 7 for ¢ > 2 and
¢> —q+ 1> 7 for ¢ > 3, the result follows. O
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Corollary 2.1. For each of the cases Cj under consideration, we have [I' : A] = 3
and T C {v € V} : v does not split in £}.

Proof. As explained in [21, §2.3], [I" : A] must be a power 3% of 3, and it was shown
in [21, §5.4] that [I" : A] = 3 provided that {v € 7" : v splits in £} = (). From
37t [T A
[C:10]  3[: 10

= m(sU(21)/8) = 5 [] ¢(P),
veT

we see that [] ., e/(P,) is a divisor of 3*~'D. For each of the cases C; under
consideration, if a prime p divides 3%~ D, then p € {2,3,5}. So by Lemma 2.1(i),
no number ¢2+¢,+1 can divide 3*~1D. This excludes there being any v € T of type
described in [21, §2.5(i)]. There are no v € T of type described in [21, §2.5(ii)],
because Ty = ) in this matrix algebra case (see [21, §5.1]). So T is contained
in {v € V; : v does not split in £}, and the hypothesis of [21, §5.4] is satisfied. O

Lemma 2.2. With the notation of (1.9),

(a) in the case Cy, T must be O or {5};
(b) for cases Cs, Cs, C11 and Cig, T must be () or {2};
(c) in the case Co1, T must be O, {2+} or {2—}.

Proof. By Corollary 2.1, we can use (1.7), and see that any v € T is as described
in [21, §2.5(iii) or §2.5(iv)]. By Lemma 2.1(ii), ¢> — ¢, + 1 can only divide D if
G¢» = 2. Now g, = 4 for the unique 2-adic place v of k in cases C; and C3. While
¢» = 2 holds for the unique 2-adic place v of k in case Cg, for this v, £, = k, Q£ is
a ramified extension of k,. So if v € T is of the type described in [21, §2.5(iii)], we
must be in cases C11, C1g or Ca1, with either v the unique 2-adic place in cases C11
and Cig, or one of the two 2-adic places of k in the Co; case. Only in the C1; case
is D divisible by 9, and so in case Ca1, the places 2+ and 2— cannot both be in T,
and only in case C1; might P, be an Iwahori subgroup.

If v is a place of k of the type described in [21, §2.5(iv)], then v ramifies in
and so we must be in case Cq, with v the unique 5-adic place of k, or in case Cs
or Cg, with v the unique 2-adic place of k. In these cases, v does not split in ¢ and
l, = k, ®, £ is a ramified extension of k,, and so v will be in 7/ C T if P, is not
maximal. O

We can restrict the choice of A, but first need to describe more concretely the
parahoric subgroups P, associated with G, as defined above for ' = F, g).

(a) If v € V; and o splits in £, then G(k,) = PGL(3,k,) and the vertices of the
associated building X,,, which is if type A, can be viewed as homothety classes
of o0,-lattices in kg, where o0, is the valuation ring of k,. It is well-known that
PGL(3,k,) acts transitively in the set of vertices of X,, which means that any
two maximal parahoric subgroups of G(k,) are conjugate by an element of G(k,).
We can choose the vertex to be the hypothety class of 03, and the corresponding
maximal parahoric subgroup of G(k,) is SL(3,0,).

(b)If v € V¢ does not split in ¢, denote also by v the unique place of £ over v.
Then ¢, = k, ® £ is a quadratic extension of k,, and the complex conjugation
automorphism of ¢ extends to an automorphism of /¢, fixing the elements of k,,
and is still denoted z ~ Z. Then G(k,) = {g € M3x3(ly) : g*Fg = F}/{tl : t €
¢, and tt = 1}. The associated building X, is a tree, which is semi-homogeneous
if £, is an unramified extension of k,, and is a homogeneous tree if ¢, is a ramified
extension of k,. Writing 9, for the valuation ring of ¢,, the vertices of X, are
O,-lattices £ in €3 of one of two types, which we now describe (see [6] for more
details). Given a lattice £, the lattice dual to £ with respect to F' is by definition

L ={xcOd y"Fxrec,foralyc L}
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Let m, € O, be a uniformizer of ¢, i.e., an element such that 7,9, is the unique
prime ideal of 9,. A vertex of X, of type 1 is a lattice £ such that £’ = L,
while a vertex of type 2 is a lattice M such that m,M" & M G M’. The edges
of the tree X, are the pairs £, M of lattices of types 1 and 2 respectively such
that 7, M’ C L C M’. When v is unramified in ¢, each type 1 vertex has ¢o + 1
type 2 neighbors, and each type 2 vertex has g, + 1 type 1 neighbors. When v
is ramified in ¢, each vertex of one type has ¢, + 1 neighbors of the other type.
If g € Msx3(¢,) and g*Fg = F, then (g£) = g(L'), so if £ is of type 1 or 2,
then g(L£) is as well. It is well-known that G(k,) acts transitively on the sets
of vertices of each type. If g € GL(3,9,), then (g(932)) = (¢*F)1(D3). So
O3 is a type 1 lattice if F € GL(3,9,). Also g(D3) is a type 2 vertex if and
only if g*Fg and 7,(g*Fg)~! have entries in O,, but are not in GL(3,9,). Now
F =Fe, 7)€ SL(3,0,) C SL(3,9,), so that O3 is a type 1 vertex of X,, and the
corresponding parahoric subgroup is {g € SL(3,9,) : g*Fg = F}. Fori =1,2, a
maximal parahoric subgroup of G(k,) is called type i if it the stabilizer of a vertex
of the type i.

Lemma 2.3. Given the fundamental group IL C PU(2,1) of an fpp, let I be the
inverse image in SU(2,1) of II. Then in cases C1, C3 and Cs, a principal arithmetic
subgroup A = G(k) N Hvevf P, of G(k) such that T1 is contained in the normalizer
of A in SU(2,1) can be chosen so that T = 0.

Proof. Assume that we are in case C1, as the proof for the cases C3 and Cg is similar.
Let A= G(k)N Hvevf P, be a principal arithmetic subgroup of G(k) such that II is
contained in the normalizer I' of A in SU(2,1). Then 7 = 0 or {5}, by Lemma 2.2.
Suppose that 7 = {5}. Then from the definition of 7, we see that the unique
5-adic place vs of k is in T, so that the parahoric subgroup P,. of G(k,,) is not
maximal. Let IBU5 D P, be a maximal parahoric subgroup of G(k,,). Let Pv =P,
for all other v € V¢, and form A= G(k)n Hvevf P, and let T be the normalizer

of A in SU(2,1). Then A C A, and the “T” of A is 0. Applying Corollary 2.1 to
both A and A, we have [[': Al =3 and [ : A] = 3. But as w ¢ £ in case C; (and
also in case C3 and Cg), the diagonal matrix wl belongs to ' and T, but not to A
or A. Hence ' = AZ and T = AZ, where Z is the group of order 3 generated by wl.
Thus I c ' = AZ c AZ =T. So we can replace A by A. ]

Let us refer to the 5-adic place in k£ in the C; case, the 2-adic place in k in the
cases C3, Cg, C11 and Cyg, and both 2-adic places in k in the case Ca1, as the special
places. For each special place v, we fix a type 2 neighbor c(932) of the type 1
vertex £ = O3 where ¢ € GL(3, /) has the form

ci1 c2 0
Cc = C21 C29 0 . (2 1)
0 0 C33

The matrices ¢, which are listed in Section 3, are chosen so that

(a) ¢*Fcand 7,(c*Fc)~! have entries in 9, but are not in GL(3,9,,), and
(b) c and m,c~! have entries in O, but are not in GL(3,9,),
(¢) c € GL(3,9,,) for each place w of ¢ other than v.

where, as before 7, is a uniformizer of ¢,. The conditions (a) ensure that M =
c(O3) satisfies m, M’ & M G M’, so that M is a vertex of type 2 in X,. The
conditions (b) ensure that 7,M’' G L G M’, so that £ and M are neighbors in X,.
Condition (c¢) will be used in the proof of Lemma 2.5 below.

We now show that to deal with all six cases C; under consideration, we may
assume that the principal arithmetic subgroup A is one of 13 possibilities, and give

the value of the product [], . €'(P,) in each case.
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Lemma 2.4. Suppose that 11 is the fundamental group of a fpp, and let I denote
its inverse image under ¢ : SU(2,1) — PU(2,1). Then conjugating 11 by an
element of G (k) if necessary, we may choose the principal arithmetic subgroup A =
G(k)n Huevf P, such that 11 is contained in the normalizer T of A in SU(2,1) to
have the following properties (where F' = Fic, gy is as in (1.2)):

(i) P, = SL(3,0,) for every v € Vy which splits in {;

(i) P, = {g € SL(3,9,) : ¢* Fg = F} for everyv € V; which does not split in ¢,
except that for the above special places, P, may instead be the following particular
type 2 maximal parahoric subgroup:

{9 € SL(3.4,) : g"Fg = F and g(c(9%)) = c(93)}. (2.2)

In cases Cy, Cs, Cs, C11 and Cig write A = N, 9 if Py for the special place v is
of type 1, and write A = N, (v}) if Py for the special place v is as in (2.2). The
same notation applies in the case Ca1, noting that at most one of the P,’s for the
two special places can be of type 2. Thus A = A, 77), in the notation of (1.8).

The product [ [, €' (P,) equals 1 except in the four cases (C11,{2}), (Cis,{2}),
(Co1,{2+}) and (Ca1,{2—}), when [], o€ (Py) = 3.

Proof. If v € Vy splits in ¢, then v € T by Corollary 2.1. and so P, is maximal
(as 7' C T). By the discussion before Lemma 2.3, P, is conjugate by an element
of G(ky) to SL(3,0,).

Suppose now that v € Vy does not split in /.

If we are in one of the cases C1, C3 and Cg, then by Lemma 2.3, we may suppose
that 7 =0. As 7" C T, P, must be hyperspecial except for the v which ramifies
in £, which is the special place in each of these three cases. By the discussion
before Lemma 2.3, for this v, P, is conjugate by an element of G(k,) to either
{g € SL(3,9,) : g*Fg = g} or to the group (2.2).

If we are in one of the cases Ci1, Ci1g and Ca1, then by Lemma 2.2, T is either
empty or consists of a single 2-adic place of k. As no v ramifies in ¢, and as
T" C T, either v is a 2-adic place or P, is hyperspecial. In the latter case, P, is
again conjugate by an element of G(k,) to {g € SL(3,9,): g*Fg = g}. When v is
a 2-adic place, P, is either maximal hyperspecial, maximal and non-hyperspecial,
or Iwahori. In the first two of these three cases, P, is conjugate by an element
of G(k,) to either {g € SL(3,9,) : g*Fg = g} or to the group (2.2). As we saw
in the proof of Lemma 2.2, in cases C1g and Ca1, P, cannot be Iwahori, because 9
does not divide D.

If, for the 2-adic place of k in the Cq; case, P, is an Iwahori subgroup of G(k,),
then P, fixes both endpoints of some edge of the tree X,,. Now G(k,) acts transi-
tively on the edges of the tree X,. So conjugating, we may assume that the edge
fixed by P, is the one with endpoints O3 and ¢(93). If P, is not Iwahori, it is
conjugate by an element of G(k,) to either {g € SL(3,9,) : g*Fg = g} or to the
group (2.2).

Since the class number of £ is 1, the number hy 3 (see [21, §2.1]) is also 1, and so
by [21, Proposition 5.3], there is a g € G(k) which conjugates all the P,, v € V;\ T,
to the above particular maximal parahorics. Replacing II by gIlg~!, we may assume
that the P,’s are the above particular ones.

We can now identify the normalizer T of A in SU(2,1). In the cases C1, C3 and Cg
we have already seen in the proof of Lemma 2.3 that I' = AZ, where Z is the group
of order 3 generated by wl. Assume that we are in of the cases C11, C1g and Co;.
Then w € £ and so Z C A. Since [T : A] = 3, to find T, it is sufficient to show that

= ¢?™/3 and t = 727/ (2.3)

o = O

1 0
y=t|0 0], where w
0 w



8 D. CARTWRIGHT T. STEGER

normalizes A, as 7y is not in A because t € £. If g = (g,;), then

g11 g1z wlgis
Yoy ' = 921 g2 wlges
wgs1 Wgs2 933

It is clear from this that v normalizes any SL(3, 0, ), when v splits in ¢, and normal-
izes {g € SL(3,9,) : g*Fg = F} when v does not split in ¢ because v commutes
with any of our matrices Fic, ). Moreover v normalizes the group (2.2) because 7y
commutes with any c of the form (2.1).

‘We can now see that for the 2-adic place v of k in the Cq;1 case, P, can be chosen
not to be Iwahori. For if P, is the Iwahori subgroup fixing the edge from O3 to
c(9?), then P, € P, = {g € SL(3,9,) : ¢*Fg = F}. Let A be the principal
arithmetic subgroup obtained by replacing P, by P,, and leaving the other P,’s
unchanged. Then the normalizer T of T is equal to /~\<7>, and so contains A{y) =T,
and hence contains II. So we can replace A by A.

Finally, the above shows that in formula 1.7, the product Hvevf e'(P,) is 1 except

for the four cases listed at the end of this lemma’s statement, when it equals 3. [

Lemma 2.5. Let A = A(c; 1,) denote the particular principal arithmetic subgroup
of G(k) described in Lemma 2.4. Then

A,y ={9 € SL(0r) : 9" Fie; )9 = Fieym)}- (2.4)

Proof. Let g € G(k). Then g = (gij) € M3x3(¢) and g*Fg = F for F' = Fi¢, p)-
When v splits in ¢, then we have P, = SL(3,0,), and under this isomorphism,
g € G(k) N P, if and only if the entries g;; are in the valuation ring O, for both
places v' over v. When v does not split in ¢, and P, = {g € SL(3,9D,) : g*Fg = F},
then g € G(k) N P, if and only if the g;;’s are in O,. Hence g € A(c, gy if and only
if g;; € Oy for all ¢ and j and all places w of ¢, and so if and only if the g;;’s are
in 0y. This completes the proof when 71 = ().

When 71 = {v} # 0, then in the same way, g € A, 7 if and only if gi; € O,
for all 7 and j and all places w # v of £, and also ¢~ !gc has entries in O,. But by
the condition (c) imposed on the matrix c after 2.1, ¢~!gc also has entries in 9,
for each place w # v of £. Hence ¢~ !gc has entries in o, and is unitary with respect
to ¢*Fie, nc= Fic,; 1), and g — ¢ lgc gives the desired isomorphism. O

Lemma 2.6. Let A = A(c, 1;) denote the particular principal arithmetic subgroup
of G(k) described in Lemma 2.4, and let I' denote its normalizer in SU(2,1), and
T the image in PU(2,1) of T' under ¢ : SU(2,1) — PU(2,1). Then

L =T, 1) =1{9 € Msxs(00) : g"Fic, 719 = Fie;m)}/ 2,
where Z ={tl :t €0y : |t| = 1}.

Proof. Let A/(cj 7,) denote the group on the right in (2.4). The map g — ¢gZ from
A/(C,-,Tl) to f(cj,ﬂ) is an isomorphism for cases Cy, C3 and Cg, in which 3 does not
divide | Z| = |o}|, so that w € ¢, in the notation of Lemma 4.3 below. In cases Ci1,
Cis and Cay, in which w € ¢, the map has kernel {w"I : v = 0,1,2} and image a
normal subgroup of index 3.

We also have an isomorphism g + cge™!, AI(Cj,Tl) — A(c; 71, and an embedding
h— ARA™! of G(k) into SU(2,1), where A = Ac, gy, as in (4.16) below. Write
G = Acgc ' AL, In the cases Cy, C3 and Cg in which w ¢ ¢, the normalizer I' of A
in~ SU(2,1) is {g(w”I) : g € A’(ij) and v = 0,1, 2}, and so its image under ¢ is
{GZ20:9g € AZC]-,Tl)}’ where Zo = {t/ : t € C and |t| = 1}.



ELIMINATING THE MATRIX ALGEBRA CASES 9

We also have an embedding I'¢, 7,y — PU(2,1) which maps gZ to §Zy. So we
have seen that in the cases Cy, C3 and Cg, the image of this map is exactly the image
under ¢ of I', proving the lemma in these cases.

In the cases C11, C1g and Ca1 in which w € ¢, the normalizer T' of A in SU(2,1)
is {g(v"I) : g € A/(Cj,Tl) and v = 0, 1,2}, where 7 is as in (2.3), and so its image
under ¢ is {§g77 20 : g € Azcj,Tl) and v = 0, 1,2}, where 7, is the diagonal matrix
with diagonal entries 1, 1 and w. Noting that 12 € f(cj,ﬂ)a we see that again
the image of f(cj,Tl) under the above embedding into PU(2, 1) is exactly the image
under ¢ of I', proving the lemma also in these cases. 0

3. DETAILS ABOUT THE SIX PAIRS (k,{) OF FIELDS

The class number of both k£ and ¢ is 1 in each of these cases. Let di and d;
denote the field discriminants of k and /.

Complex conjugation induces an automorphism of ¢, and so if « € o0y then
|a|? € og, and so in cases Cj, C3 and Co1 can be written Py(a) + Q(a)(r + 1)/2,
where Py(«), Q(«) € Z, and in cases Cs, C11 and Cis can be written P(a) 4+ Q(a)r,
where P(a),Q(a) € Z. In cases Cy, C3 and Ca1, it will be convenient to write
P(a) = 2Py(a) + Q(a), so that |a|? = (P(a) + Q(a)r)/2.

Lemma 3.1. For any o € oy,
(i) P(a) > 0, with P(a)) =0 if and only if « = 0;
(i) 1Q(a)] < LP(a);

Proof. Choose an automorphism 3 of £ mapping r to —r. This commutes with
conjugation. Hence, in cases Cg, C11 and Cig, applying 1 to both sides of |a|? =
P(a) + Q(a)r, we get [1(a)|?> = P(a) — Q(a)r. Hence

P(a) = 5 (|of +[4(2)?) and Q(a) = 5 (laf? + [p(a)P),

and these formulas clearly imply (i) and (ii) in those cases. In cases Cy, C3 and Cay,
we apply 1 to both sides of |a|? = (P(a) + Q(a)r)/2, and get

P(a) = |al* + [ (a)]* and Q(a) = %(|04|2 + (),
and again (i) and (ii) follow. O

We choose an integral basis vy, vs,vs,v4 for 0, and writing o = ajv1 + agve +
asvs + aqvg, we calculate P(a) and Q(«). In the three cases Cq1, Cg and C11 when
¢ is a cyclotomic field Q(¢), we have oy, = Z[(] (see [1, Theorem 46], for example),
and so we take v1 = 1, v2 = ¢, v3 = ¢% and vy = 3.

3.1. The case C;. We realize the embedding of k into £ mapping r to —2¢%2—2¢3 -1
(this equals the positive square root of 5 when ¢ = ¢2™/5). With respect to the
integral basis v; = 1, vo = (, v3 = ¢ and vy = (3 of oy, we have P(a) =
2Py (a) + Q(«v) for

2 2 2 2
Py(a) = af — aras + a5 — asas + a3 — azaq + ay and
Q(a) = araz — ajas — aray + aza3 — asay + azay.

The smallest eigenvalue A, of the form associated with P = 2P, + @ is 1/2, and
so P(a) > 332 a5.

We have di, =5 and d; = 125.

The only prime p which ramifies in & is 5, and 505 = p? for p = roy.

The only place of & which ramifies in ¢ is the 5-adic one. In fact, the prime 5
ramifies totally in £, and since Ny/q(¢ —1) = 5 we have 50y = P* for P = (¢ —1)oy,
and ¢ — 1 is a uniformizer for the 5-adic place of ¢.
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For the 5-adic place of k, ¢ — 1 is uniformizer of ¢, = Q5(¢), and we set

¢B3-¢2 1 0
c= 0 -1 0
0 0 1

Then c¢ has the form (2.1), and the properties (a) and (b) described after (2.1), as

¢ 0
C=Det=(0 1-¢C 0 [,
0 0 (-1

203 4+2¢24+1 -3 -¢2-2(-1 0
CFe=|C++20+1 2833+2¢2+1 0

0 0 1
and
—3 -2 -¢—1 ! 0
(= 1)(c"Fe)™ = (+1 —3-202-¢-1 0
0 0 (-1

3.2. The case Cs3. We realize the embedding of k into ¢ = Q(z) and the field
isomorphism Q(r,7) = ¢ by mapping r to 3 + 222 and i to 2z + z3. Magma verifies
that v1 =1, va = (r +1)/2, v3 = 7 and vy = i(r + 1)/2 is an integral basis of oy,
and we calculate that

P(a)=a}+a3+a3+ai and Q(a)=2aiaz + a3+ 2azay + a3.
We have dj, = 5 and d; = 400 = 2* x 52. Note that the k of C3 equals that of C;.

Only the 2-adic place v of k ramifies in ¢, and 20, = B2 for P = (i + 1)o,. So
i+1=2%+2z+1is a uniformizer of ¢, = Qz(i), and we set

24+z41 2241 0
c= 0 1 0
0 0 1

This ¢ has the required properties, as

22 +2 -1 0
(i+1)ct= 0  22+2z+1 0 :
0 0 23 4+22+1

—222-2 —224:-1 0

FFPe=[-22—-2-1 —222-2 0
0 0 1
and
—23 22322 2242 0
(i+1)(c*Fe)™t = 2%+ 3z —23—22-32-2 0

0 0 242241
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3.3. The case Cs. We realize the embedding of k into £ = Q(¢) and the isomor-
phism Q(r,4) = ¢ by mapping r to ( + (™! = ¢ — ¢ and i to (2. Using the integral
basis 1, ¢, ¢ and ¢3, we calculate

P(a) =ai + a3 +a5+a3 and Q(a) = aga; — apaz + ajas + asas.

We have di, = 8 and dy = 256.The only prime p which ramifies in &k is 2, and
205 = p? for p = rog.

Only the 2-adic place v of k ramifies in ¢, and 70, = B2 for B = ({—1)o, because
r=(C—1>2(*+¢*—1), and ¢ + (% — 1 has inverse —(? + ¢ — 1, also in 0. So
¢ — 1 is a uniformizer of £, = Q2(¢) for this v, and we set

(-1 1 0
c=| 0 10
0 0 1

This ¢ has the required properties, as

1 -1 0 G-¢  G+¢ 0
C—=Dct=[0 ¢-1 0 |, Fe=|[--¢ 2¢3-2¢ 0
0 0 (¢—-1 0 0 1

and
—2¢3—2¢2 -C+¢+1 0

(=) Fe) = -C-¢-1 —¢-¢ 0
0 0 -1

3.4. The case C1;. We realize the embedding of k into ¢ = Q(¢) and the isomor-
phism Q(r,7) = ¢ by mapping r to ( +¢ 1 = 2¢ —¢3 and i to ¢3. Using the integral
basis 1, ¢, ¢? and (3, we calculate

Pla) = a% + agaz + a® + ajas + a3 + ag and Q(«a) = agay + ajas + azas.

Calculating eigenvalues, we find that P(a) > 3 > as.

We have di, = 12 and dy = 144.The only primes p which ramify in k£ are 2 and 3.
No v € Vy ramifies in £. The 2-adic place of k is inert in ¢, and in particular does
not split in £. The z of the Table 2, namely 2 = r+1, is a uniformizer of £, = Q2(2)
(and so is 2071 =7 — 1), and we set

r —1 0
zet=10 1 0]},
0 0 =«
—z 0 0 -1 0 0
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3.5. The case C15. We realize the embedding of k into £ = Q(2) and the isomor-
phism Q(r,(3) = ¢ by mapping r to 22/2 — 2z and (3 to —22/2. Magma verifies
that v1 = 1, vo = 2, v3 = 22/2 and vy, = 23/2 form an integral basis of 0y, and
calculate that

P(a) = a? + ajaz + 243 + 2aza4 + a3 + 243 and  Q(a) = —(a1az + agaz + azay).

Calculating eigenvalues, we find that P(a) > 33 a?.

We have dy = 24 and d; = 576 = 25 x 32. The only primes p which ramify in &k
are 2 and 3.

No v € Vy ramifies in ¢. In particular, the 2-adic place of k is inert in ¢, while
the 3-adic place of k splits in £.

As for the Ci; case, for the 2-adic place v of k, the x of the Table 2, namely
x =7+ 2, is a uniformizer of £, = Qo(z) (as is 227! = r — 2), and we define c as
in the Cy1 case, except that z = r + 2 now.

3.6. The case Cy;. We realize the embedding of k into £ = Q(2) and the isomor-
phism Q(r, (3) = ¢ by mapping r to (223 — 222 — 102 —3)/3 and (3 to (=23 — 222 +
2z+3)/6. Magma verifies that v; = 1, va = (r+1)/2, v3 = (3 and vy = 1 — z, form
an integral basis of 0, and we calculate that

Py(a) = a% —ajas +ajaq + 8a§ + 8agay + ag — azaq + Bai,

Q(a) = 2a1a2 + araq + a% — axas3 + 2a9a4 — agay + ai.

We have P(a) = 2Py(a) + Q(a) > Amin D a? for Apin = 0.772....

We have dj, = 132 = 22 x 3 x 11 and d; = 1089 = 32 x 112. The 2-adic place
of Q splits in k, and so there are two 2-adic places 2+ and 2— of k, corresponding
to the prime ideals Z£2

80;, and “F2o; of o) = Z[(r + 1)/2], respectively. Indeed,
2= 28 with ZH8, 555 € Z[(r 4+ 1)/2) and (r £5)/(r £5) = (29 +£5r)/4 ¢
Z[(r 4+ 1)/2]. The 3-adic and 11-adic places of Q ramify in k. Explicitly, 3 =
(6+7)(6—7),and (6 £7)/(6 Fr)=23+4r, while 11 = (2r — 11)(2r + 11), with
(2r £ 11)/(2r F 11) = (23 + 4r).

No v € Vy ramifies in ¢. In particular, the two 2-adic places of k are inert in /,
the 3-adic valuation on k splits in £, and the 11-adic valuation on k is inert in £.

Both 2-adic places 2+ and 2— are inert in ¢, and in particular do not split

in £. The x of the Table 2, ie., x = ”'{5, = x4, say, is a uniformizer of ¢, and
2071 = %, = x_, say, is a uniformizer of ¢_, and we set
1 1 0 z— 0 0
ct =0 24 O and cc=1|1 1 0
0 0 1 0 0 1
Then ¢y and c_ have the required properties, as
zy —1 0 1 0 O
x+cjrl =10 1 0 and z_c¢'=|—-1 z_ 0], and
0 0 =z 0 0 =x_
-z, 0 O -1 0 0
c;Fee=1 0 -z O and z(c’Fe)'=[0 -1 0] fore==
0 0 1 0 0 =

4. FINDING ELEMENTS OF [

So far, we have seen that the fundamental group II of an fpp must be a torsion-
free subgroup of the group I' = I'(¢; 7;) defined in (1.10) of index D in 9 of 13 cases
(C;,T1), and of index D/3 in the other 4 cases. Our method of eliminating a case
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depends on finding enough elements of I_‘(ijq—l) to show that this group contains no
torsion-free subgroup of that index.

4.1. PU(2,1) and its action on B(C?). Let

1 0 0

F=(0 1 o], (4.1)
0 0 -1

and let U(2,1) denote the group of complex 3 x 3 matrices g such that g*Fyg = Fp,

and let P(2,1) denote the quotient of U(2,1) by its center, {tI : |¢| = 1}. Then

PU(2,1) acts on the unit ball B(C?) = {(21,22) € C? : |z1|> + |22]? < 1} in C2.

The action of the image of g € U(2,1) is given by

Z1 w1
(21,22) — (w1,we) ifand only if g | 22 | = A [ w2 for some .
1 1

This action preserves the hyperbolic metric d on B(C?), which satisfies

11— (2, w)|?
(1 =122 = [w]?)’
(see [3, Page 310] for example) where (z, w) = 211 + 20W2 and |z| = \/|21]% + |22|?
for z = (21, 22) and w = (wy,ws) in B(C?).

In particular, writing 0 for the origin in B(C?), and using 9.0 = (g13/933, 923/933)
for g = (gi;) € U(2,1) and (4.5) below, we see that

cosh?(d(0, g.0)) = [gas|*. (4.3)

If a matrix g = (g;;) satisfies g* Fog = Fy, then it is invertible, and its inverse
also satisfies the condition. So for F' = Fj, the following three matrices are zero

M=g"Fg—F, R=gF '¢*—F ! and N=0"1'¢* —Flg*F  (4.4)

cosh?(d(z,w)) = (4.2)

where 6 = det(g) and ¢g®Y = fg~! is the transpose of the cofactor matrix of g.
While of course F~1 = F when F = Fy, we shall also use the equations (4.4) for g
satisfying g* F'g = F for the matrices F' = F{¢, 7;). Now (4.4) gives many conditions
on the entries g;; of ¢g. In particular, when F' = Fp, from M3z = 0 we see that

13> + [g2s]® = lgas|® — 1, (4.5)
and from Ri; = 0 we see that
lg11* + [g12]* = lgus]* + 1. (4.6)

Lemma 4.1. Given complex numbers gi1, gi2, ¢13, 923, g3 and 0, so that |0] =1
and the g;;’s satisfy (4.5) and (4.6), there is a unique matriz g satisfying g*Fog =
Fy and det(g) = 0 with the given entries gi1, 912, 913, 923, 933 in its first row and
third column.

Proof. From Ms; = 0 and M3, = 0, we must have

a1 - + . — + —
g = JUGIB T 9NG28 q g, — J12018 T 922923 (4.7)
933 933
respectively. From Ny; = 0 and N7; = 0, we must have
o1 = 0912933 — 911923713 and gy = 0911933 — 912923713 (4.8)

92312 — |g3s|? |g23|? — |g3a|?
respectively. Notice that the denominators appearing here cannot be zero, since by
by (4.5), |gss| > 1 and |gas|* — |g33]* = —(|g13[> + 1) < 0.

Defining first go; and goo using (4.8), then gs; and gso using (4.7), we have a
matrix g, and must check that g*Fog = Fy and det(g) = 0. Write r; = [g11]® +
l912/* — |g13/|* — 1 and ¢35 = |g13|*> + |g23]* — |g3s|* + 1. Then Mgy = Mz = 0
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and Mzz = c3 = 0, by (4.5). Also, M1y = (r1 + (1 — [g11]*)c3)/(|g2s* — |gas]*),
My = grigiacs/(lgasl? — gssl?), and May = (r1 + (1 — |g12/?)es) /(|g2s|* — lgas]?),
and M;; = M;;. So M =0 is a consequence of (4.5) and (4.6). We see that det(g)
equals 0 by writing det(g)/0 = c3 + (r1 + ¢3)(cz — 1) /(|923]* — |g33]?)- O

4.2. Column 3 and row 1 conditions for F'. Suppose that g is a 3 x 3 matrix
satisfying g* F'g = F, where I is one of the thirteen matrices Fic, ;) defined above.
Each such F has the form

fir fiz O
F = f21 f22 0 . (49)
0 0 fs3

Forming matrices M, R and N as in (4.4), from the equations M33 = 0 and Ry = 0,
we find the following conditions on the entries in column 3 and row 1 of g:

(fi1faa — fr2fo1)lgual?® + | f21913 + fages|® = — faz f23(|gas|* — 1) (4.10)

(firfoz — frafor)lgnn|? + | frzgin — fr1g12)* = *&(fnfzz — fiafa1)|g13® + fi1 foo.

f33
(4.11)
In all our cases, we have f33 = 1, and for the cases (C;, 71) with 71 # (), we have
fi1f22 — fiafo1 = |8]% for 6 = det(c). Dividing both sides of the equations (4.10)
and (4.11) by |§]2, the equations become

gl 12 g1 4 22557 = |{;| (lgssl® — 1) (412)
and f f fuuf
2
lgui > + ‘%911 - %1912 = —fulgs” + 1|(15|222' (4.13)

We find that f21/(5 = flg/g, f22/5, fll/g € o0 in each case. Equations (410)
and (4.11) also have the form (4.12) and (4.13) for the cases (C;,0), with § =
det(c) = 1. We list the equations (4.12) and (4.13) in the next two tables:

name | r T Column 3 condition
Ci V5 0 913> + | 552 9231 = 5 (lgss]* — 1)
C3 V5 0 13?4+ |51 g3l = 52 (lgas|* — 1)
Cs | V2| 0 |g13/* 4+ |(r — D)gas|* = (r — 1)(|gas|* — 1)
Cii | V3 0 lg131> + |g13 — (r — 1)gas|®> = (r — 1)(lgss* — 1)
Cis | V6 0 lg13]* + 913 — (r — 2)923|2 (7” —2)(|gss* — 1)
Cor [ V33| 0 l913]* + |91 =5 (|gss|* — 1)
C1 V5 | {5} lg13]* + |T§1913 +(¢C—=¢ gasl* = %(|933|2 —1)
Cs V5 | {2} 91317 + 1913 + (1 — 22 — 2%)gas|* = "+ (|gas]> — 1)
Cs | v2 | {2} |lgusl® +1(r + 1)gas — 2(¢* + ¢)gasl® = 2(r + 1)(|gss|* — 1)
C1 V3 | {2} lg1s|® + lg23® = 5 (lgssl* — 1)
Cis | V6 | {2} lg1s|® + lg23® = 52 (lgss|* — 1)
Ca1 | V33| {2+} |g13]% + lg23]* = "7 (lgas|* — 1)
Cn | V33| {2} lg1s]® + [g23]® = =2 (lgss|® — 1)
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name r T Row 1 condition

c 5 0 9112 + |2t g1af? = T [gusf? + 1

Cs V5 0 lg11]? + ng ? = Tél lg13]* + 1

Cs | V2| 0 lg11|* 4+ |(r + Dgial* = (r + 1)[g1a]* + 1

Ciu | V3| 0 lg11]® + 911 4 (r + D) gro|? = (r + 1)]g13]* + 2
Cis | V6 0 l9111% + 911 + (r + 2)g12|* = (7 + 2)|g13]* + 2
Cor | V33 0 lg11|* + g11 + T+5912\2 = H2_5|913|2 +2

Ci | V5| {5} 911 + |5 g1 + (€ = ¢V gual® = rlgus|* + =2

C: | V5| {2 lg11|* + |91 — (1 + 22 + 2%)gra|* = (r — 1)|913|2+2

Cs | V2| {2} |lgul® +1(r+ g1 — (¢® + ¢*)gual® = rlgus? +2(r + 2)
Cu | V3| {2} 9111 + [g12]* = (r + 1)]g1a]* + 1

Cis | V6 | {2} g1 |* + |g12/* = (r + 2)|g13]* + 1

Cor | V33| {2+} lg11? + lg12* = "2 |g1s]® + 1

Cor | V33| {2—} l911]2 + [g12]* = 552 |g1s)* + 1

These column 3 and row 1 conditions are equations of the form appearing in (i)
and (ii) of the next result.

Lemma 4.2. For aq1,Q12,013, 23, (33 S (W write ‘Oéij|2 :pij +qijr Zf 0 = Z[’I‘],
and | |* = (pij +qij7)/2 if o), = Z[(r+1)/2], where pij, qij € Z, as in Lemma 3.1.
(i) If a3, a3, aiss satisfy an equation

a1z + |azs]? = (co + e1r)(Jass|* — 1)

where cog + c1r € k and ¢ < cir, then q33 = HpggJ.
(i) If a1, 12, 13 satisfy an equation

la11]? + |ova|® = (do + dir)|ass]® + eo + err,
where dog+dyr,eg+err € k, dg < dir and (eg—rer)/(rdi —dy) < 2r when o, = Z[r]
and (eg —re1)/(rdy — dp) < r when o, = Z[(r +1)/2], then 13 < %p13 < q3+2.
Proof. Assume first that o, = Z[r]. Since r? = N € Z, we have

P33C1 +q33C0 = q13 + @23 + C1

4.14
Ngzzcr + p3zcg = p13 + pa3 + co. (4.14)

By Lemma 3.1,

—_

r

1
D33C1 + q33co < (p13 +P23) +c = ;(NQ3301 + p3zco — Co) +a

Rearranging, we have
Co Co
D33 (61 - 7) < (rer —co)gs3 +c1 — .
By our assumption that ¢y < cyr, we can divide through by rc; — ¢y and get
1pss < gs3+ =, from which (i) follows. When o;, = Z[(r+1)/2], similar calculations
lead to %pgg < q33 + %, and again (i) follows, since 72 = 5 or 33.
The equation in (ii) leads to equations

p13dy + qi3do + €1 = qi1 + q12

4.15
Nqi3dy + p1ado + eo = p11 + p12. (4.15)
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By Lemma 3.1 again,

1 1
pi3di + qisdo + e1 < = (p11 + P(B)) = ;(7“2(113051 + p13do + €o)

r
Rearranging, and using rd; > dy, we have

1 < n eg — req
P13 = Q13 77“(7“(11 ~do)

By our assumption, we have %plg < @¢13 + 2 and (ii) holds. In the case when
o, = Z[(r+1)/2], similar calculations lead to 1p13 < q13+2(eg —re1)/(r(rdi —dp))
and again (ii) follows. O

4.3. The action of I on B(C?). With z is as in the Table 2, for the cases Cy, C3
and Cg, respectively Cq11, C1s and Ca1, we define A(Cj,@) by

z 0 0 z —1 0
Ac,my=(0 1 0 |, respectively Ac,9p=10 1 0 1. (4.16)
0 0 x 0 0 x
In each case, AZ‘C],’@)FOA(CJ,,@) = —zF(c, p)- For the seven singleton sets 7; listed

in (1.9), and for the seven matrices c listed in Section 3, let Fe, 7y = ¢"Fyc, as
before. Then defining A, 7y = Ac, p)¢, we have

A?cj,Tl)FOA(Cj,Tl) = —xFc; 11)s (4.17)
so that (4.17) holds for all thirteen cases listed in (1.9). So if g*Fi¢, 71)9 = F(c, 1)>
then g = A(ijﬂ)gA(Ci,ﬂ) is in U(2,1). So if g € M3zx3(0r) and g*Fe, 77)9 =
Fie, 1), and (z1, 22) € B(C?), we write

z1 w1
(92).(21,22) = (w1, we) ifandonly if §|z2 ]| =X | ws for some A,
1 1

where Z = {tI : t € oy and |t| = 1}, as before. This defines an action of the
group L'¢, 73y of (1.10) on B(C?).

Because of the block form (4.9) of F¢, 7;), and similarly that of A, 1), the
(3,3) entry of g is the same as that of §. Hence cosh?(d(0, (92).0)) = |gs3|?.

Lemma 4.3. The group o} = {t € o, : |t| = 1} is cyclic, generated by —Cs, i, Cs,
(12, —C3 and —(3 in the cases C1, Cs3, Cg, C11, C1s and Coy, respectively. Hence
|Z| = |ot] is equal to 10, 4, 8, 12, 6 and 6, respectively.

Proof. If a € 04 and |a]? = 1, then (P(a),Q(a)) = (1,0) if o = Z[r], and
(P(a),Q()) = (2,0) if o, = Z[(r + 1)/2]. Write & = a1v1 + azvz + azvs + a4v4,
where vq, ..., v4 is the integral basis of 0, chosen in Section 3. Then |a;| < 1/v/Amin
for each j if o = Z[r] and |aj| < \/2/Amin for each j if op = Z[(r +1)/2]. So

we run through all (ag,...,a4) € Z* satisfying this condition and calculate P(c)
and Q(«), counting the number of a’s for which (P(a), Q(«) = (1,0) if o5 = Z]r],
and for which (P(«a), Q(a)) = (2,0) when o, = Z[(r +1)/2]. O

Lemma 4.4. Let K = K, 1;) denote the group of gZ € f(cj,Tl) such that
(92).0 = 0. Then for the thirteen cases (Cj,T1), |K| is as in the following ta-
bles, which also give the index (either D or D/3) which II must be in T':

(C1,0) | (C3,0) | (C3,0) | (C11,0) | (C1s,0) | (C21,0) | (C1,{5})
|K‘ 200 32 128 288 48 24 600
C:1]| 600 | 32 | 128 | s64 | 48 12 600




ELIMINATING THE MATRIX ALGEBRA CASES 17

(Cs,{2}) | (Cs,{2}) | (C11,{2}) | (Cas,{2}) | (Cor, {24}) | (Car,{2-})
K| 96 128 288 72 72 72

C:m)| 32 128 288 16 4 4

Proof. Since (9Z).0 = (§13/933, G23/Gs3), we see that (¢Z).0 = 0 if and only if
13 = gas = 0. Because A = A(¢, 7;) has the form

011 d12 O
A =021 092 0 s (418)
0 0 &

(where d;; € o, for each i,7), 13 = o3 = 0 is equivalent to g13 = gog = 0. Now
with the M of (4.4), we see from Ms3 = 0 that |g33]?> = 1. Replacing g by tgss,
where ¢t = g33, we may assume that g3z = 1. From Ms; = 0 = Mss, we see that
g31 = g32 = 0. Hence we may assume that

g1 g2 O
g=1921 g2 0]. (4.19)
0 0 1

For N asin (4.4), using F* = F and assuming that fos # 0, as we may, we can use
Ni2 =0 and Ny; = 0 to express g21 and gs2 in terms of g7 and gio:

_ —f21911 + 021511 — 0f11G12 a _ 0f22011 — f21912 — 0 f12012

nd 4.20
g2 fa2 922 fa2 ( )
Moreover, g1 and g2 must satisfy the equation
f12 f11 2 f11f22
lgn1|® + |T911 Ty 92l = e (4.21)

where § = det(c), which is just the row 1 condition (4.13) in the case g13 = 0.

The condition that the g;;’s be in 0, must be imposed. The simplest cases are
(Cll,{Q}), (Clg,{Q}) and (6217{2:‘:}), for which f11 = f22 and f12 = f21 = 0.
Then (4.20) implies that go; = —60g12 and g2 = 0§11, and the condition (4.21) is
just |g11]* + |g12|* = 1. Thus (P(g11) + P(g12), Q(911) + Q(g12)) equals (1,0) in
the cases C11 and Cis, and equals (2,0) in the cases (Ca1,{2+}). Calculating the
possible (P(a), Q(«)) with P(a) < 2, we see that g12 =0 or g11 =0, and so

gu g2 _ (t O or 0t
921 922 0 ¢ t 0)°
where t,t' € 0y and |t| = |[t/| = 1. Thus |K| = 2|Z]? in these four cases.
The next simplest cases are (C1,0), (Cs,?) and (Cs, ?), For these, (4.20) implies
that go; = —02%g12 and geo = 0711, and the condition (4.21) is just |g11|>+|zg12]? =

1, where z is as in the table of the Introduction, and is an invertible element of oy
in these cases. Arguing as in the previous cases, we find that

g1 912 t 0 0 ta!
(921 922> B (0 t/> o (t’x 0 > ’ (4.22)

where ¢, € 0y and |t| = [t/| = 1. So also in these three cases, |K| = 2|Z|%.

For the cases (C11,0), (C15,0) and (Co1,0), (4.20) implies that
x
2
and the condition (4.21) is just |g11|>+|g11+2g12|* = 2. For o, 8 € 0y, |a*+|B|> = 2
holds if and only if that (P(a)+P(8), Q(a)+Q(5)) equals (2,0) in cases C11 and Cyg,
and equals (4,0) in case Ca;.

(i) In case (C11,0), for the o € 0y such that P(a) < 2, we have (P(a), Q(a)) =
(0,0), (1,0), (2,0), (2,1) or (2,—1). Hence (P(a),Q(), P(B),Q(B)) = (2,0,0,0),

1
921 = 5 (911 — 0911 — x0g12) and  gao = 5(295711 + zg12 + 20712),
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(1,0,1,0) or (0,0,2,0), giving (o, 8) = (¢(¢* +1),0), (¢,¢*) or (0,¢¥(¢* +1)).
Setting g11 = «, g12 = (8 — a)/x and 6 = (¥, substituting these into the above
formula for g and running through the possible «, 8 and 6, checking that the entries
of g are all in 04, we find that K has 288 elements. In fact, it is generated by the
elements uZ and vZ, where

¢GCH+¢-¢ 1-¢ 0 ¢ 0 0
u=|C+¢-1 ¢-¢ 0| and v=|C+¢-¢C-1 1 0], (423
0 0 1 0 0 1

which satisfy
ud =1, v* =1, and (uwv)? = (vu)?.

Magma shows that an abstract group with presentation (u,v : u® = v* = 1, (uw)? =
(vu)?) has order 288, and so K has this presentation.

(ii) In case (C1s,0), for the a € o, such that P(«) < 2, we have (P(a), Q(a)) =
(0,0), (1,0) or (2,0). Hence (P(a),Q(a), P(8),Q(8)) = (2,0,0,0), (1,0,1,0) or
(Oa 07 270)7 glVIHg (0‘75) = ((_w)y270)’ ((_w)y7 (_w)A) or (Oa (_w)uz). Settlng
911 = @, g12 = (B —a)/z and 0 = (—w)H, substituting these into the above formula
for g and running through the possible «, 8 and 6, checking that the entries of g are
all in 0y, we find that K has 48 elements. In fact, it is generated by the elements
uZ and wZ, where

25—22 2842%2-22-4
L2 + 5 0 -1 0 0
u= | 2=z 2244 0 0 and v=|—(r+2) 1 0 (4.24)
0 0 1 0 0 1
They satisfy the relations u?* = v2 = 1, vuv™! = u™®. These generators and

relations give a presentation of K.

(ii) In case (Ca1,0), if @ € 0y and P(«) < 4, then (P(a),Q(a)) = (0,0) or (2,0).
Hence (P(a), Q(a), P(8), Q(8)) = (2,0,2,0), and (a, ) = ((~w)”, (—w)*) for some
v,A € {0,...,5}. Setting g11 = a, g12 = (8 — a@)/z and § = (—w)", substituting
these into the above formula for g and running through the possible «, 8 and 6,
checking that the entries of g are all in oy, we find that K has 24 elements. It is
generated by the elements uZ, vZ, dZ for

1 -5 0 1 0 0 —w 0 0
u= |2 -1 0|, v=[Z2 -1 0] and d=[ 0 -w 0],
0 0 1 0 0 1 0 0 1

and (omitting the Z’s) a presentation for K is given by the generators u,v and d
and the relations u* = v? = (vu)? = 1, du = ud, dv = vd and d* = u?.
In the case (C1,{5}), we use (4.20) to express g1 and go2 in terms of g1; and g;,
which must satisfy
r+1
2

r—+95

9114‘((—(_1)912‘2: 5

lg11]? + |

If a, B € o, and |af? + [B]? = Z£2, then P(a) + P(B) = 5 and Q(a) + Q(B) = 1.
We find that (P(a), Q(«), P(8), P(B8)) must equal (5,1,0,0), (3,1,2,0), (2,0,3,1)
or (0,0,5,1). The « for which (P(«a),Q(a)) = (2,0) are the (—=¢)”, v =0,...,09.
Those for which (P(a),Q(a)) = (3,1) are (—()”(¢ + 1), and those for which
(P(a),Q(a)) = (5,1) are (—¢)¥(¢?> — 1). Running through the possibilities for
a, B and 0, and checking when the g;;’s are in o;, we find that K has 600 elements,
and is generated by the elements uZ and vZ for

-1 ¢ 0 ¢t ¢ 0
u=|-¢C> 0 0 and v=|0 ¢ 0],
0 0 1 0 0 1
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3 =% = (w?)® = 1 and u(vu?v) = (vu?v)u, which

which satisfy the relations u
give a presentation for K.

In the case (Cs, {2}), we use (4.20) to express g1 and go2 in terms of g1 and g2,
which must satisfy |gl1|2+|g11—(1+2z+z3)g12’2 =2. Ifa, B € og and |a|?+|8]? = 2,
then P(a)+P(8) =4 and Q(a)+Q(8) = 0. We find that (P(«), Q(«), P(8), P(B))
must equal (4,0,0,0), (2,0,2,0) or (0,0,4,0). The a for which (P(a), Q(c)) = (2,0)
are the ¥, v = 0,...,3, while those for which (P(a),Q(«)) = (4,0) are “(i + 1),
v =0,...,3. Running through the possibilities for «, # and 6, and checking when
the g;;’s are in o4, we find that K has 96 elements, and is generated by the elements
uZ and vZ corresponding to the matrices

0 0 1 10
u=|-1 0 and v= (-1 0 0]. (4.25)
0 1 0 0 1

O O =

These satisfy v® = 1 = (vu)?*, u?v = vu? and v® = u*, and these generators and

relations give a presentation for K.

In the case (Cs, {2}), we use (4.20) to express g1 and g9 in terms of g11 and gy,
which must satisfy [g11]? + [(r + 1)g11 — ((* + 43)912}2 =2(r+2). If ,8 € 0y
and |a|? + 8|2 = 2(r + 2), then (P(a),Q(a), P(8),Q(8B)) equals either (4,2,0,0),
(3,2,1,0), (2,1,2,1), (1,0,3,2) or (0,0,4,2). The a € o, for which (P(a), Q(«))
equals (1,0), (2,1), (3,2) and (4, 2) are the elements (" ayg, for ag equal to 1, 1+,
r+1and 14 ¢+ %+ ¢3, respectively. Running through the possibilities for o, 3
and 0, and checking when the g;;’s are in oy, we find that K has 128 elements, and
is generated by the elements uZ and vZ corresponding to the matrices

¢ 10 G+C+¢ 2 -3 0
u={0 1 0 and v= ¢+1 —-3-C-¢ 0. (4.26)
0 0 1 0 0 1
These satisfy u® = v'6 = 1, wv? = v?u and wv3u = v3, and these generators and

relations give a presentation for K. (|

At this point, we can show that in five of the thirteen cases, there cannot be
a torsion-free subgroup II of T' of the index needed for II to be the fundamental
group of an fpp. Indeed, for the cases (C21,0), (C3,{2}), (C1s,{2}), (Ca1,{2+}) and
(C21,{2-}), |K]| is bigger than the required [I" : I}, and so by Lemma 1.1, these
cases cannot give rise to an fpp.

In three more of the cases (C;,71), we shall produce an element g of T' of finite
order n which does not divide the required [ : II]. Applying Lemma 1.1 to K = (g)

shows these cases cannot give rise to an fpp.

4.4. Method for finding all the g € T with d(0,¢.0) < C.

Lemma 4.5. In each case, K contains diZ and k., Z for the matrices

t 00 —f21/0 —f2/0 O
dt = 0t O and kw = f11/(5 f12/5 0 y (427)
0 0 1 0 0 1

for any t € o such that |t| =1, and where 6 = det(c) is as in (4.12) and (4.13).

Proof. For g = d, it is clear from the form (4.9) of F' = F¢, 7;) that g*Fg = F.
For g = ky, we use (4.9) together with fi1foo — fiafo1 = |62, and @ = « for
a = f11, fo2, f21/9 and f12/d to see that g*Fg = F. O

Corollary 4.1. ]fg S f = f(Cj,ﬂ)7 let o = g13 and ﬁ = (1/(5) (fglglg + f22923) be
as in (4.12), and for ¢’ = kyg, define o' and ' similarly. Then (/,8') = (=0, a).
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Simalarly, let « = g11 and = (1/5) (flggll — fllglg) be as in (4.13), and for
9 = gkw, define o and B’ similarly. Then (o', 8") = (-8, a).

Let K = K, 7;) be as in Lemma 4.4. We wish to find representatives of the
double cosets KgK of all the g € ' for which d(0, g.0) is less than a chosen bound.
Let us write down the details of our method for the cases when o, = Z[r]. With
small modifications, it can be used in the case oy = Z[(r + 1)/2] too.

Step 1. For the chosen integral basis v1,...,v4 of 04 as in Section 3, we find all
t € oy such that |[t| = 1 by calculating P(«) and Q(«) for o = aqv1 + - - - + aqvy for
all a;’s satisfying |a;| < /1/Amin-

Step 2. Having chosen a bound B, we form a list of all pairs (p, q) of integers
such that 0 < p < B, and p = P(«) and ¢ = Q(«a) for some « € oy, by calculating
P(a) and Q(a) for o = av1 + - - - + aqvq for all a;’s satisfying |a;| < v/B/Amin.

Step 3. We choose a set Rp of equivalence class representatives for the a’s of
Step 2, where a ~ S if 8 = ta for some ¢ € 0, with |t| = 1.

Step 4. Form a list of the 10-tuples (p11, q11, P12, @12, P13, 413, P23, 423, P33, q33) for
which (i) (pij, ;) is in the list of Step 2 for each of the five (7,7)’s here, (ii) the
first six of these ten numbers satisfy, for N = 72, (cf. (4.15))

p13di + qi3do + e1 = q11 + q12,
Nqizdy + piado + eg = p11 + p12;

(iii) the last six of these ten numbers satisfy, for N = r? (cf. (4.14))

P33C1 + q33Cco = q13 + q23 + c1,
Ngs3c1 + p3zco = p13 + p23 + co.

(iv) p13 < pa3 and p11 > pra.

Step 5. For each 10-tuple (p11,q11, P12, q12, P13, 413, P23, 423, P33, ¢33) from Step 4,
and any o1, 12, 13, 093, 33 € Rp so that |Oé¢j|2 = Pij + qi;T, and any s,t € oy
such that |s| = [t| = 1, set g11 = a11, g12 = (fiean1 — sdai2)/ f11, g13 = aus,
go3 = (téazz — fa1013)/ f22 and g33 = asz. Discard any such (g11, 912, 913, 923, 933)
if g12 or go3 are not in oy.

Step 6. For any 6 € o, such that |#|> = 1, we can form a unique matrix
g = (9i5) € Mzx3(f) so that g*Fg = g for ' = F(¢, 7;) and so that det(g) = 0,
and so that g11, g12, 913, g23 and ¢33 are as in Step 5. This is done by solving
the equations M31 = 0, Mgg = O, N11 =0 and N12 = 0, for g31, 932, g21 and g292,
respectively, where M and N are as in (4.4). We retain g only if the g;;’s so found
are all in oy.

Step 7. We choose representatives for the double cosets KgK of the ¢g’s found
using Steps 1 to 6. The union of these double cosets is the set of all gZ in f(cj,ﬂ)

for which |g33|? = p33 + 337, with p33 satisfying the constraints in (4.28) below.

Here are some comments on these steps:
Steps 1 and 2. We are using P(a) > Awmin ), a? here. When o = Z[(r +1)/2],

we must use the bounds 1/2/Amin and \/2B/Amin on the |a;|’s.

Step 4. When oy, = Z[(r +1)/2], the terms e; and ey on the left of the equations
in (ii) are replaced by 2e; and 2eg, respectively. The second equation in (ii) implies
that p11 + p12 < (do + di7)p13 + €o, and the second equation in (iii) implies that
p13 + pas < (co + c17)p33 — co, with “+ep” and “—co” replaced by “+2ep” and
“—2¢”, respectively, when oy = Z[(r + 1)/2]. Note that pi3 < $(p13 + p23). To
ensure that all the p;;’s appearing satisfy p;; < B (and thus appear in the list of
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Step 2), we need ps3 to satisfy
p33 < B,

(co+c1r)pss —co < B and (4.28)

1
§(d0 + di7)((co + e17)pss — co) + €0 < B,

2 )

replacing “+eg” and “—cy” replaced by “42ey” and “—2c¢y”, respectively, when
o =Z[(r+1)/2].

The restrictions in (iv) of Step 4 may be imposed because of Corollary 4.1.

Step 5. We may suppose that gi1, g13 and g33 € Rp because firstly, we can
replace g by tg for some ¢t € o, with |t| = 1 to arrange that gs3 € Rp. This
doesn’t change gZ. Then we can replace g by k,g if necessary to ensure that
lg13] < [(1/0)(f21913 + fo2923)|, and then replace g by d:g if necessary to ensure
that g3 € Rp. Finally, replacing g by gk, if necessary, we may arrange that

lg11] > [(1/0)(fi2g11 — f11912)], then replace g by gd; to ensure that g3 € Rp.

5. ELIMINATING THREE MORE CASES (C;,T1)

5.1. The case (Cs,(). To eliminate this case, we simply have to check that the
matrix

0 1 1
g=|—= 0 0 (5.1)
0 1 =z

where x = (r 4 1)/2 is as in the Table 2, satisfies g*Fg = F for F' = F¢, ¢) and
g° = 1. Applying Lemma 1.1 to the finite subgroup (9Z) of T'(c, g), we see that
f(c&w) cannot contain a torsion-free subgroup II of the index 32 required for II to
be the fundamental group of an fpp.

Although the case (Cs, {2}) has already been eliminated, let us mention here that
also in that case, I' contains an element of order 5. For the method of Section 4.4
yields the following element of I':

1 22 +3 2243
a=[0 —222—22-52—2 —223-22_-52—-3
0 —23—22-32—-2 —23—-22-32-3

We can show that in this case, ' is generated by u and v (as given in (4.25)) and
by a, but we omit the proof. The element g = auv?uauvuavv?uauv?auv?au?v?

of T' has order 5.
5.2. The case (Cs,). To eliminate this case, we simply have to check that the

matrix
—-¢—1 0 ¢
g= 2€24+3¢C+2 -1 =203 -C+(¢+2 (5.2)
G2 +20+1 -1 —P+(+2

satisfies g*Fg = F for ' = Fic, 9) and ¢ = I. Applying Lemma 1.1 to the
finite subgroup (¢Z) of f(c&w), we see that f(c&@) cannot contain a torsion-free
subgroup II of the index 128 required for II to be the fundamental group of an fpp.

5.3. The case (Cg, {2}). To eliminate this case, we simply have to check that the
matrix
202 4+2C+1 —2¢3 -2 4+1 (?24+20+1
g=|-C+¢+1 -2 —¢ - +C+1 (5.3)
—2 ¢ G-1 (-1
satisfies g*Fg = F for F' = Fic, 12}) and g3 = I. Applying Lemma 1.1 to the
finite subgroup (¢Z) of f(Cg,{Q})? we see that 1:‘(537{2}) cannot contain a torsion-free
subgroup II of the index 128 required for II to be the fundamental group of an fpp.
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6. ELIMINATING THE CASE (Cis,0)
We start by applying Lemma 4.2. In this case, the second equation in (4.14) is
6g33 = p13 + P23 + 2p33 — 2,

and so if a3 and agg are not both 0 (or equivalently, if p13 + pas > 1), then
|ass] > 1, so that pss > 1 and therefore ¢33 > 0. Performing Step 2 of the
procedure of Section 4.4, with B = 3, say, we find that the smallest integer p such
that p = P(«) for some a € oy with Q(a) > 0 is p = 3, and by Step 3 of that
procedure, we find that |a|? = 3+ for a = t(z — 1) or a = t(z — 1) for some
t € oy with |t| = 1. Completing the procedure, we find that the g € Msx3(0,) with
g*Fg=F for F'= F,, ¢ and lg33|? = 3 + r are the elements of the double cosets
KaK and Ka 'K for

1 0 0
%(—224—27;—2) 1—2z 2(—2%+42z2-2) (6.1)
3(—224+22-2) —z 1(—2%+2z)

(recall that —22/2 is in oy, being a cube root of 1).

Let u and v be the generators of K = K¢, ¢y given in (4.24). The above shows
that the g € T for which d(0, g.0) > 0 is minimal are the elements of KaKUKa ' K.
While we do not need this here, we can show that I' is generated by u, v and a.
Relations satisfied (mod Z) by these elements include

u? =0 =1, vuv ' =u?,  av=wa, (aut) =v, a® = (au ') =1. (6.2)
We do not claim that these relations give a presentation of I'. One can show that
if we add the relations (au’a='u?)3 = (au’a='u?®)® = 1 to those listed in (6.2), we
do get a presentation of I', but we do not need this here.

To show that there are no fpps in the case (Cis,0), it is sufficient to prove the
following result:

Proposition 6.1. The group T’ = f‘(cmm) does not have any torsion-free subgroups
of index 48.

Proof. If 11 is a torsion-free subgroup of ', then the 48 cosets kII, k € K, are
distinct, and so [[" : II] > 48. Assume that II is torsion-free and [[ : II] = 48. The
elements of K form a transversal for II. Each element of K may be written vcu®,
where ¢ € {0,1} and « € {0,...,23}. Write aw/TT = v*D)u®U1I in this way. Then
avu? IT = v 1y O because av = va. If a(j) = a(j’), then

awd T = oDy = <) @G = e —<6) ' T1

because v and a commmute. Hence j' = j. So « is a permutation of {0,...,23}. If
a(j) = j, then u=Iv=<Wau € II, contradicting the torsion-free property of II. So
« has no fixed points.

Applying the formula a(vou/II) = v<@)+34*UII three times, we find that

VT = a®® T = a(a(a(v’w’IN))) = ¥ W/ T,
where
o' = e(a(a(f)) +e(a(f)) +e(j) +0 and j' = a(a(a()))).

So the permutation a has order 3, and therefore has cycle type 3%. Moreover, the
sum of €(7) is zero (mod 24) over the j’s in each of the eight cycles, though we do
not need this below.

We next use the relation (au Let 7, be the permutation j — j +n

v.
(mod 24) of {0,...,23}, and write a,,(j) = a(7,(j)). Now u? is in the center of K,
and so

4)4

(au4)(v’8ujﬂ) = D8, G+ = () +Bea)T (6.3)
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where €4(j) = €(74(j)). The element au® has order 8, and commutes with v. As
IT is torsion-free, ay(j) can never equal j. Similarly, ay(a4(j)) can never equal j.
Applying (6.3) four times, we get v(vou/Tl) = (au*)* (vOu/TI) = v¥ w11 for

0" = ea(as(aa(u(4)))) + ea(aa(a(y))) + ea(a(y)) + €a(j) + 0

and j' = ay(asa(as(aqa(4)))). So the permutation ay has order 4, and as neither ay
nor ayoay has a fixed point, ay has cycle type 45. Moreover, the sum of e4(j) is
zero (mod 24) over the j’s in any of the six cycles of ay.

The number of permutations « of {0, 1,...,23} such that a has cycle type 3% and
a4 has cycle type 4% may be calculated using a standard formula from the character
theory of finite groups, which we state below as Lemma 6.1. Such calculations can
be done in Magma using its SymmetricCharacterValue function, for example.
This finds that the number of such a’s is 1649 021 328, and so these a’s form a very
small proportion of the roughly 6 x 10%* permutations of {0,1,...,23}. The group
of permutations of {0,...,23} commuting with 74 has order 4! x 6* = 31104 and
acts by conjugation of this set of a’s.

We now use the relation (au~!)® = 1. Firstly, using u~*v = vu®, we have

(au™1) (W TD) = v U~ Yyal=b17
(au_l)(vujH) — € +3)+1,,a(+5) 1]

It is routine to show that for each j, w/II = (au=1)((au™1)((au=1)(w’1I))) equals
v u'TI, where ¢ € {0,1} and j' = B(j) for one of the following four permutations 3:

Q_jo¥_jol¥_1, Q_jolx5oX_1, aox_100d_1 and Qoo _1 . (64)

Thus ¢’ = 0, and one of these 5’s must fix j.
Similarly, vu/II = (au~1)((au™1)((au=1)(vu’Il))), equals v u’/ II, where €’ €
{0,1} and j” = B(j) for one of the following four permutations /:

& _10x_1005, _1005005, Q5o _1005 and Q5o 00ly. (65)

Thus ¢’ = 1, and one of these 3’s must fix j. Thus the permutation o must have
the three properties (1) « has cycle type 3%; (2) a4 has cycle type 4%, and (3) for
each j, one of the permutations in (6.4) and one of the permutations in (6.5) fixes j.

We wrote a C-program which ran through the set of o’s satisfying (1) and (2),
organized into orbits under the above action of the centralizer of 74, and checked
that none of them satisfied property (3). This search was made more efficient using
the fact that the group of order 48 generated by 7 and the permutation j — —5j
(mod 24) acts by conjugation on the set of a’s satisfying all three properties.

This proved the proposition. O

Let G be a finite group. Let G denote a full set of pairwise inequivalent irre-
ducible representations of G. For 7 € G, let xx (z) = Trace(w(x)) and dr = x«(1)
denote the character and degree of 7. If C' is a conjugacy class in G, write x,(C)
for the constant value taken by x.(x) for z € C.

Lemma 6.1. Let C, D and E be conjugacy classes in G. Then for any d € D,

ICHE| 5~ X (C)xx (D)X (E)
G| 2 dr

H{ceC:cde E} = (6.6)

weé

7. ELIMINATING THE CASE (C1, )

We use the diagonal form F' = Fi¢, g given in (1.2), where here x = (r +1)/2
and 72 = 5. As we saw in the proof of Lemma 4.4, the stabilizer K of 0 in " consists
of the 200 elements with matrix representatives (4.19), where (4.22) holds. Since



24 D. CARTWRIGHT T. STEGER

{t € 0y : |t| = 1} consists of the 10 elements (—¢)?, j = 0,...,9, we see that K is
generated by the elements

—¢ 0 0 1 0 0 0 z=' 0
di=10 1 0|, do=(0 —C O and w=1[|z 0 O0f, (7.1)
0 0 1 0 0 1 0o 0 1
and, with respect to these generators, has the presentation
d%o = d%o =1= wz, d1d2 = dgdl, and wdlw_l = dg. (72)
Using the method described in Section 4.4, we find the following element of I':
-1 0 0
a=|(0 -z z|. (7.3)
0 -1 =z
One may check that, mod Z,
dia = ady, a* = (adid3)® = (adiw)® = (adiwady*w)® = 1. (7.4)

We can show that (mod Z), the matrices dy, da, w and a generate I, and that they,
together with the relations in (7.2) and (7.4), form a presentation of T'. It is not
necessary to know this in order to eliminate there being any torsion-free subgroup I1
of T of index N = 600. All we need to know is that a, d;, d2 and w belong to I', and
satisfy the above relations (we do not in fact need the relation (ad3wad, *w)? = 1).

For any set T', let Perm(7T') denote the group of permutations of 7. We shall use
the following refinement of Lemma 1.1.

Lemma 7.1. Suppose that 11 is a torsion-free subgroup of finite index N in a
group I'. Let T' denote the set of cosets g'IL of I in I'. Then there is a homomor-
phism ¢ : T' — Perm(T') such that

(a) (g,t) = @(g)(t) is a transitive action of I' on T, and
(b) if g € T\ {1} is of finite order, the permutation ©(g) fixes no points of T.

Conwersely, if T is any set of size N, and if ¢ : T — Perm(T) is a homomorphism
satisfying (a) and (b), then for any to € T, {g € I' : g.to = to} is a torsion-free
subgroup of I' of index N.

Proof. Define ¢ by ¢(g)(¢'lI) = gg’TI. Then (a) clearly holds, and so does (b),
for if g € T'\ {1} has finite order, and ¢(g) fixes ¢'II, then gg'Il = ¢'II, so that
¢ 'gg’ € 11, contradicting the torsion-free hypothesis on IL.

Given ¢ : I' — Perm(T) satisfying (a) and (b), {g € T : g.tg = to} has index N
because of (a), and is torsion-free because of (b). O

Note that in the context of Lemma 7.1, if ¢ € T' has order n, then n must
divide N, and ¢(g) has cycle type n?, where d = N/n. That is, the cycle decom-
position of ¢(g) consists of d cycles of length n.

In the present situation, if II is a torsion-free subgroup of index N = 600 in T,
and if ¢’ € T', then the 200 cosets k¢'Il, k € K, are distinct. So we can choose a
transversal T = Tgop of IT in T of the form

T600 ES {kta ke Kand o € {07 1,2}},

for suitable to,t1,t2 € ['. So identifying the set I'/II of cosets with Ts00, the above
transitive action of T' on T'/II gives us a homomorphism ¢ : I' — Perm(Tpo0) with
the property that ¢(k)(k'ty) = (kk')t, for k, k' € K and « € {0, 1, 2}.

We can write

9
Tooo = U diTso where Tgo = {dhwts :j € {0,1,...,9} and e € {0,1}}.
1=0



ELIMINATING THE MATRIX ALGEBRA CASES 25

The action ¢ of T' on Tggp induces an action ¢’ of the subgroup Cp(dy) = {g €T :
gdy = dlg} on Tgo. For t,t/ € Tho,

©'(g)(t) =t ifand only if ¢(g)(t) = dit' for some i.

Note that a, d; and dy are all in Cy(dy). The action of dy on Ty is trivial, and
the action of do on Ty is simply d%wﬁta — d%+1w6ta. Let A, Dy € Perm(Tg)
denote ¢'(a) and ¢'(dy), respectively. If g € Cp(d;) has finite order, and is not in
{d} :i=0,...,9} then ¢/(g) fixes no point of Tso. Now b = adids € Cp(dy) has
order 3. Then B = ¢'(b) equals AD3. Hence the permutations A, B and D of Tgo
have cycle types 230, 320 and 10°, respectively, and A = BDy5 3,

Let

B ={B € Perm(Ty) : B® = id = (BD;*)* and B, BD,* have no fixed points}
and
C= {C S Perm(TGo) :CDy = DQC}

Note that C acts on B by conjugation. It has 6! x 10° elements, consisting of the
permutations _ '

dht v d, T p(t), (7.5)
where p is a permutation of Ts = {wts : € € {0,1} and « € {0,1,2}}, and where
7t € {0,1,...,9} for each t € T.

Lemma 7.2. There are exactly 77826 756 x 10° permutations B € B, and B is the
union of exactly 12212 distinct C-orbits.

Proof. A full set {By,..., Bx} of orbit representatives was found using a back-track
computer search, and N was found to be 12212. The reader may find the B;’s in
the file “.../gpcl_empty_blist.txt”. For each 4, the centralizer C; in C of B; was
found. It turned out that the centralizer sizes |C;| were as in the following table:

Centralizer size 1 2 3 4 6 & 10 12 20 36 60 72 200
Number of i’s 9658 2106 59 244 72 11 5 36 11 3 3 3 1

Since |C| = 6! x 10°, we find that
IB] = 61 x 109 (9658 + 2106/2 + 59/3 + 244/4 + 72/6 + 11/8 + 5/10 + 36/12+
11/20 + 3/36 + 3/60 + 3/72 + 1/200) = 77826 756 x 10°.

The value of |B| was confirmed independently by Lemma 6.1, applied to G =
Perm(Tg0), d = Dy 3 and C and F the conjugacy classes consisting of permutations
of cycle type 320 and 230, respectively. The irreducible representations of Perm(Tg0)
are indexed by the 966467 partitions P of 60 (this count found by Magma’s
command NumberOfPartitions(60)). Using the SymmetricCharacterValue(P, )
command for calculating the value xp(7) of the character corresponding to P at
the element 7 € Perm(Tg0), Magma was not able to calculate the sum in (6.6) in a
reasonable time. Since we only need y p(7) for m having cycle type k™, a specialized
routine was written for efficiently calculating xp(7) in this case, and the sum was
calculated, and found to be 77 826 756 x 10°, as expected. O

We now show that for each i € {1,...,12212} we need only consider 15 conju-
gates of B; by elements of C. It is easy to see that the group S of s € Perm(Tg00)
which commute with the action of each k € K are the maps kto — kkatr(a), where
7 is a permutation of {0,1,2} and kg, k1, ke € K. Each s € § commutes with the
action of d; and ds on Tjyog, and so induces a permutation of Tyy belonging to C.
The subgroup Cy of C consisting of the maps (7.5), where p € Perm(Ts) permutes
the three doubleton sets {t,,wty}, has index 15. Each s € S induces a C' € Cy,
and each C € Cy is induced by an s € S. With this notation we have proved the
following result:



26 D. CARTWRIGHT T. STEGER

Lemma 7.3. Suppose that an action off on Tgoo = KtogU Kt1 U Kty is given such
that (i) each nontrivial element of finite order acts without fixed points, and (i)
the action of each k € K is (k,k'ty) — kk'to. Write C as a union of cosets CoCj,
j =1,...,15. Then the action of T' on Tgoo is conjugate by an element of S to
an action satisfying (i) and (ii) for which the element b € T induces on T a
permutation C’jBZ-C;l for some i € {1,...,12212} and j € {1,...,15}.

Theorem 7.1. There is no torsion-free subgroup of index 600 in f‘(cl’@).

Proof. Suppose that 1I is a torsion-free subgroup of I of index 600, and consider
the action of I' on a transversal Tgoo of II in I'. By Lemma 7.3, we may assume
that this action satisfies (i) and (ii) of that lemma, and that the action of b € T’
on Tgoo has the form
b.(dit) = d TV B@),

where B is one of the 183 180 permutations C; B,»C’j_1 described above, and where f :
Tso — Z/10Z. The conditions that b and bdl_4d2_ 3 have order 3 and 2, respectively,
can be expressed in terms of f. This gives 50 conditions on the 60 values f(t), which
in all cases can be solved with either 11 or 12 free variables. Then the condition that
bdidy 3w = adjw induces a permutation of Tygo of cycle type 5120 can be tested.
In all cases this test eliminated each choice of f. The elimination is speeded up by
noticing that not all the free variables have to be chosen before f(t) is known for
sufficiently many ¢ € T to eliminate the B in question. O

8. ELIMINATING THE CASE (Cy,{5})

We use the form Fi¢, (51) given the matrix ¢*F'c in Subsection 3.1. As we saw
in the proof of Lemma 4.4, the stabilizer K of 0 in T is generated by

-1 ¢ 0 1 ¢ o
u= |- 0 0 and v=|0 ¢* 0],
0 0 1 0 0 ¢

has order 600, and has presentation given by these generators and the relations
u? = v® = (uw?)® = 1 and u(vu?v) = (vu?v)u. Note that we have multiplied the v
appearing in the proof of Lemma 4.4 by ( to arrange that det(v) = 1.

Using the method described in Section 4.4, we find the following element of I':

-1 0 0
a=|-22-2(-1 —-¢G-C+1 —(+1)
—(?-20-2 —¢-3C-¢ C+¢-1

One may verify that det(a) = 1, and that

a® = (V¥uvua)® = (wwa)® = 1 and a(vu®v?) = (vu®v?)a.

We can show that the matrices u, v and a generate I', and that with ‘the above
relations of K, the above relations involving a give a presentation of I'. This is
however not needed to prove the following result, which excludes there being a fake
projective plane arising from the case (C1, {5}).

Theorem 8.1. There is no torsion-free subgroup of index 600 in I_‘(cl’{{)}).

Proof. Suppose that II is a torsion-free subgroup of T' of index 600. The hypothesis
that II is torsion-free implies that K NII = {1}, and so we can choose K as a set
of representatives for the cosets ¢gII of II in G. So the natural action of I on the
coset space ['/II induces a homomorphism ¢ : T' — Perm(K) such that

(a) ¢(k)(k') = kK for all k, k' € K,

(b) if g € T has finite order, then ¢(g) fixes no point of K.
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Let A € Perm(K) denote ¢(a). Then A? = (V3UVUA)? = id and A(VU?V?) =
(VU?V?2)A, where U = ¢(u) and V = ¢(v), and neither A nor V3UVUA has
any fixed points. More generally, if k& € K and if ka has finite order, then ¢(k)A
can have no fixed points. A back-track search was used to show that there is no
permutation A of K with these properties.

The size of the space to be searched was reduced by observing that, when K
is viewed as a K-set under left multiplications, its automorphism group consists
precisely of the right translations by elements of K. So if k1 € K, and if A €
Perm(K) satisfies the above conditions, then the permutation A : k ~ A(kk;)k;*
does as well. Another way of thinking of this is to consider the change in the action
of a when the subgroup II is replaced by kll_[kl_l.

In particular, if A(1) = ko, then taking k; = (vu?v?)” for any v € {0,...,4},
we have ak, = kia and so /1(1) = klkokfl. So we can start our back-track search
by assuming that A(1) is one of the 160 representatives of the (vu?v?)-conjugacy
classes in K. Note that {k € K : kvu?v? = vu?v?k} has order 50, and is generated
by vu?v? and uv.

Now A(1) = ko cannot hold if k;'a has finite order, and there are 95 such
elements kg, comprising 31 (vu?v?)-conjugacy classes. So of the 160 conjugacy
classes, 31 can be excluded immmediately.

Here are some other ideas used in the back-track search. The idea was to fill in
values for A, that is, set Az = y, one z at a time, considering all possible values for ,
and eliminating possibilities as soon as possible. Whenever Ax = y, also Ay =«
must hold, as A% = id, and A(VU?V?)*z = (VU?V?)"y and A(VU?V?)"y =
(VU2V?)?z must hold for v = 0,...,4, as A(VU?V?) = (VU?V?)A. The order
of VU?V? is 5, and the 10-element subgroup generated by A and VU?V? must act
freely. Thus, the 10 points A(VU2V?)Yx and A(VU?V?)"y for v = 0,...,4 must
all be different. So from the single value y = Az we can immediately deduce 9 other
values for the action of A. We call these linear deductions. Thus as we proceed to
construct our possible A, we always fill in 10 values at a time.

Taking A’ = V3UVUA, the relation (v3uvua)® = 1 implies that A”® =id. If
we know Az =y, we also know A’z = V3UVUAz = V3UV Uy, and vice versa —
filling in values for A is equivalent to filling in values for A’. If we have filled in the
values A’z = x and A’z = y, then the further value A’y = z may be deduced. We
call these deductions quadratic. Choices such that A’x = z can be excluded, as A’
must act without fixed points.

In the back-track search, suppose that we arrive at the point where certain
values A’z have been determined, either by previous choices or by deductions from
those choices, and where various other values A’z remain to be determined. We
must choose some z; for which A’z is still unknown and consider all possibilities
for y; = A’xy.

Once y; is chosen, certain quadratic deductions may be available. For instance,
if it is already known that A’2; = z1, then any chosen value for y; allows us to
deduce A’y; = z;. The available linear deductions mean that any choice for y; =
A’z; will determine 9 other values A’z, and 10 values A’ 'z, and these too may
lead to possibilities for quadratic deductions.

Suppose that all possibilities with A(1) = ko have already been considered,
and suppose that while looking at additional possibilities (with different values
for A(1)) we need to choose A(k), for some k. Then the choice A(k) = kok can
be excluded, for otherwise, on conjugated by right-translation by k~', we would
obtain A satisfying A(1) = k. O

9. ELIMINATING THE CASE (Ci1,0)

We use the form Fe,, gy given in (1.2), where here z = 7+ 1 and r* = 3. As
we saw in the proof of Lemma 4.4, the stabilizer K of 0 in T is generated by the
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matrices u and v of (4.23), and a presentation for K is given by these generators
and the relations u® = 1 = v* and (uv)? = (vu)?. B
Using the method described in Section 4.4, we find the following element of T":

1 0 0
b=|-2C-¢+20+2 C+C-(-1 -
+¢ -1 —CHC+l
It satisfies
vb = bv, and b® = (buv)® = (buvu)?v = 1. (9.1)

Moreover, for g € T', the smallest three values of |g33|? are 1, r + 2 and 2r + 4,
and the method of Section 4.4 shows that these values are attained only by the
elements of K, KbK and Kbu 'bK, respectively. As shown in Section 11 below
(see also [8]), the elements u, v and b, together with the relations given above, form
a presentation of I

The following theorem excludes there being a fake projective plane arising from
the case (C11,0), in view of Hurewicz’s Theorem.

Theorem 9.1. There is, up to conjugacy, exactly one torsion-free subgroup II
of index 864 in ', gy. Its abelianization is isomorphic to 72, so that the Betti
number by of the surface B(C?)/11 is 2.

Proof. The proof is very similar to that of Theorem 7.1. If II is a torsion-free
subgroup of ' of index 864, then (see Lemma 7.1) there is a homomorphism ¢ :
I' = Perm(T), where T is a disjoint union Kto U Kt; U Kt,, such that

(a) (g,t) — ©(g)(t) is a transitive action of ' on T

(b) if g € T'\ {1} is of finite order, the permutation ¢(g) fixes no points of T,

(c) p(k)(k'ty) = kk'ty for k,k € K and a =0, 1, 2.
If ¢ is such a homomorphism, let B = ¢(b), U = ¢(u) and V = ¢(v). Then
by (c), U and V are known. By (9.1), we must have BV = VB and B® =
(BUV)3 = (BUVU)?V =id. A back-track search was done to find all permutations
B € Perm(T) satisfying these conditions. It incorporated the ideas described in the
proof of Theorem 8.1 above. A permutation B was quickly found, and then (using
the second part of Lemma 7.1, the corresponding subgroup II formed. See [8, Propo-
sition 3.5] for details about how we verified that II is torsion-free. Magma’s routine
AbelianQuotientInvariants verified that the abelianization of II is Z2. After a
lengthy search, all other possibilities for B were also found. Magma’s IsConjugate
command verified that the corresponding subgroups II are all conjugate to each
other. (]

Further properties of the surface B(C?)/II are studied in [4].

10. ELIMINATING THE CASE (C11, {2})

We use the form Fie,, (2}) given the matrix ¢*F'c in Subsection 3.4. As we saw
in the proof of Lemma 4.4, the stabilizer K of 0 in T is generated by

¢ 00 1 00 0 1 0
di=10 0] d2=10 ¢ O)J andw=1{(1 0 O
0 1 0 0 1 0 0 1

O =

These satisfy
di? =d¥? = w? =T and wdyw™" = dy, (10.1)
and these generators and relations form a presentation of K.
Using the method described in Section 4.4, we find the following element of I':
¢2-1 0 0
a = 0 _CS _ <2 CS
0 = -2C+1 ¢G+¢-1
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One may verify that
a® =1, ady = dya, (adz)? = dy, (wa)® = (aw)?, and (¢ rwaw)? = 1.  (10.2)

We can show that the elements d;, ds, w and a, together with these relations and
those of K, give a presentation of I'. This is however not needed to prove the
following theorem, which excludes there being a fake projective plane arising from
the case (C11,{2}).

Theorem 10.1. There is no torsion-free subgroup of index 288 in f‘(clh{Q}).

Proof. The proof is similar to the proof of Theorem 7.1, though easier because the
index 288 is the same as the order of K (and smaller than 600). Again this index
is too large for Magma’s LowIndexSubgroups routine to complete in a reasonable
time, and so we proved this theorem in the following way.

Suppose that II is a torsion-free subgroup of I' of index 288. The hypothesis
that IT is torsion-free implies that K NII = {1}, and so we can choose K as a set of
coset representatives for IT in G. So the natural action of T' on the coset space I'/TI
induces a homomorphism ¢ : I' — Perm(K) such that

(i) ¢(k)(K') = kE' for all k, k' € K,
(ii) if g € T has finite order, then ¢(g) fixes no point of K.
Our aim is to show that there is no such homomorphism.
We start by dividing K into 24 (d;)-orbits:

K= | {t.dit,....d}"t},
t€T2q

where Toy = {djw® : j € {0,...,11} and € € {0,1}}. Since both a and dy commute
with dy, ¢(a) and ¢(d2) induce permutations A and Ds of Toy of order 3 and 12,
respectively. Since (adz)? = d; (modulo scalars), AD, is a permutation of order 2.
The hypothesis that IT is torsion-free implies that A, Dy and ADy have no fixed
points, and so their cycle types are 3%, 122 and 2'2, respectively.

Lemma 10.1. There are exactly 3204 permutations A € Perm(Tay) such that A
has cycle type 3% and ADs has cycle type 2'2. Let A denote the set of these A’s,
and let C denote the commutator in Perm(Ts4) of Da. Then C acts by conjugation
on A, and A is the union of exactly 25 orbits under this action.

Proof. The value of |A| was found by Lemma 6.1, applied to G = Perm(T5,),
d = D5 , and C and F the conjugacy classes consisting of permutations of cycle
type 3% and 2'2, respectively. The irreducible representations of Perm(Tb4) are
indexed by the 1575 partitions P of 24 (this count found by Magma’s command
NumberOfPartitions(24)). Using the command SymmetricCharacterValue(P, )
for calculating the value xp(7) of the character corresponding to P at the element
7w € Perm(T%4), Magma was able to quickly calculate the sum in (6.6).

The 3204 elements of A was then found using a back-track computer search.
Now C consists of the permutations d3w® — d%‘”swﬂ(e)7 where 7 is a permutation
of {0,1}, and where 79,71 € {0,...,11}. So |C| = 2! x 122 = 288. We calculated
the orbits in A under the action of C, and found there were 25 of them, and
chose orbit representatives Aq,..., Ass. These representatives are listed in the file
“../gpcll_2_ alist.txt”. As a check that this is a complete list of representatives, for
each i, the centralizer C; in C of A; was found. It turned out that the centralizer
sizes |C;| were as in the following table:

Centralizersize 1 2 4 6 8
Number of i’s 2 15 4 3 1

Thus the the union of the orbits of these 25 A;’s has cardinality
20 x 122 x (2+15/2+4/4+ 3/6 + 1/8) = 3204,
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and so is all of A. O

The permutations of K which commute with all the left multiplications k' — k&’
(k € K) are just the right multiplications p(ko) : k' — k'ko (ko € K). So if
¢ : T — Perm(K) satisfies (i) and (ii) above, then for each kg € K, ¢' : v
p(ko)od(y)op(ky ') is a group homomorphism I' — Perm(K) which also satisfies (i)
and (ii). Since p(ko) commutes with both ¢(d;) and ¢(dz), it induces a permutation
C of Tpy which commutes with Ds. So if ¢(a) induces the permutation A of Tay,
then ¢'(a) induces the permutation CAC~!

Lemma 10.2. Any C belonging to the centralizer C of Ds in Perm(Tsy) can be
induced from some p(ko), ko € K. So if there is a group homomorphism ¢ : T —
Perm(K) satisfying (i) and (i) and so that ¢(a) induces the permutation A of Tay,
then for any C € C there is a group homomorphism ¢' : T — Perm(K) satisfying
(i) and (ii) and so that ¢'(a) induces the permutation CAC~! of Tyy.

Proof. Right multiplication by w induces the involution cl%'we — djzlwl_E of Ty,

right multiplication by d; fixes each déwo and induces the cycle of length 12 in Ty,

+1 (mod 12)

mapping each cl%w1 to dg w!. These two maps generate C. O

We now complete the proof of Theorem 10.1. In view of Lemma 10.2, we can
assume that the permutation A = ¢(a) of Toy is one of the 25 orbit representatives
A; of Lemma 10.1. Thus, for one of these A’s, the action of ¢ on K has the form

a.(dit) = dy T A),
where f : Ty — Z/12Z. The conditions that a® = 1 and (ad2)? = d; can be
expressed in terms of f. This gives 20 linear conditions on the 24 values f(¢),

which in all 25 cases can be solved with 5 free variables. Then the condition that
(wa)® = (aw)? can be tested. In all cases this test eliminated each choice of f. [

11. FINDING PRESENTATIONS OF THE GROUPS T

Lemma 4.2 is useful for seeing explicitly the discreteness of the set of distances
d(0,9.0), g € T. For example, when o; = Z[r], then by (4.3), cosh?(d(0, g0)) =
lg33|? = pa3 + 7qs3 for integers ps3,qs3, and the proof of Lemma 4.2 shows that
rqss < p33 < 7q33 + 1, so that 2p33 — 1 < |gs3]? < 2p33. If also ¢’ € T, with
|943]% = Phs +7dhs < |gs3|?, then either phs < ps3 or ¢hs < gss or both. If phs < pss,
then

cosh?(d(0, ¢".0)) = |ghs)?® < 2phs < 2ps3 — 2 < |g3s]? — 1 = cosh?(d(0, g.0)) — 1.

Note that ps3 < phs cannot happen, as otherwise g3 < 1ps3 < (phs — 1) < ghs,
and so |g33|? < |ghs|?. Finally, if pis = pss (and |gis| < |gs3|? still), then ¢4; < gas,
and so again |ghal® = phy + s < pos +(ass — 1) = lgal® — 7 < lgsaf? — 1.
Let
do=0<dy <dop <---

be the distinct values taken by d(0,g.0), g € T. When o, = Z[r], respectively
Z[(r + 1)/2], we have cosh?(dy,) = pp + qnr, respectively (p, + rqn)/2, for certain
integers p, and g,. For example, in the case (Ci1,0), the first few p,, + g,7 are:

1, 2+7r, 44+2r, 64+3r, 7+4r, 11 +6r, ...

We find all possible g11, 912, 913, 923, 933 € 0¢ satisfying the column 3 and row 1
conditions and |gs3|? = cosh?(d,), and then for each 6 € o, such that || = 1, we
use the method of proof of Lemma 4.1 to form the unique g € M3x3(¢) with the
five specified entries such that ¢*Fg = F and det(g) = 0, then test whether the
gij’s are in 0,. In this way, we can form

S, =1{g€Tl:d0,g.0) <d,}.
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Now _
K=ScScScSc--, and (S, =T,

For any S C T, we can form
Fs ={z € B(C?) :d(0,2) <d(g.0,z) for all g € S},

and
rs =sup{d(0,2) : z € Fs}.
Write F,, = Fg and r,, = rg for S = S,,. Then

B(C)=Fy>FDFi D and ()Fn=7Fr,

and Fp is the Dirichlet fundamental domain for I'. Also,
0 =Tg 2T 2Ty >
Lemma 11.1. Ifd, > r,, then S, generates I.
Proof. Suppose that (S,) & I'. Choose h € '\ (S,) with d(0,/.0) minimal. If
g € Sy, then g71h & (S,,), and so
d(0,h.0) < d(0, (g 'h).0) = d(g.0,h.0) for all g € S,,.
Hence h.0 € F,. But then d(0,h.0) < r,, and by hypothesis r,, < d,. Hence

h € S, a contradiction. O

Lemma 11.2. If d, > 2r,, then

(a) Fn = Fp and vy, = 7p.

(b) Sy, together with the relations gi1gags = 1 which hold for g1, g2, 93 € Sp,

form a presentation for I.
Proof. (a) Suppose that z € F,, \ Fp. As z ¢ Fp, there must exist a g € T' such
that d(g.0, z) < d(0, z). But using d(0, z) < r,, we have
d(0,¢9.0) <d(0,z2) + d(z,¢9.0) < 2d(0,2) < 2r, <d,

so that g € S,,. But then d(g.0,2) < d(0, z) implies that z ¢ F,,, a contradiction.

(b) follows from a general result (Theorem 1.8.10 in Bridson & Héfliger’s book)
about group actions on topological spaces. O

Using Proposition 2.1 in [8], we can replace S, by S,,—1 in Lemmas 11.1 and 11.2(b).
The following is useful for giving lower bounds on 7.

Lemma 11.3. Suppose that n € B(C?) is nonzero. Let m be the midpoint of the
hyperbolic segment [0,n]. Then m € Fg if and only if

0 <1g.0]* — 2Re(g.0,n)t + [{g.0,n)|*t* for all g € S, (11.1)

where t = (1 — /1 —[n[2)/|n|?.
Proof. From (4.2) we have
[1—(g.0,m)[”

cosh?(d(g.0,m)) = (1—1g.0P2)(1 — |m[2)’

Hence d(0,m) < d(g.0,m) if and only if
1—9.01* < 1 = (g.0,m)?,
or equivalently,
0 < |g.0]* — 2Re(g.0,m) + |(g.0,m)|>.
Now m = tn for t = (1 — W)/MP, and so the result is proved. O

In particular, if the condition in Lemma 11.3 is satisfied by n = h.0, then rg >
Ld(0, h.0).
2 b
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Lemma 11.4. For the (C11,0) ezample,

1 1
Pi=T9 == §d2 = 5cosh’l(l—i—\/g),

so that we take n = 2 in Lemmas 11.1 and 11.2.

Proof. As mentioned before Theorem 9.1, we have cosh?(d;) = 7+2 and cosh?(dy) =
2r +4 (= (r+1)?), with S; = K UKbK and Sy = K U KbK U Kbu™'bK. We
saw in [8, Lemma 4.3] that the midpoint of [0,%.0] is in Sy for h = bu~1bh, and
SO 19 > %dg. In [8, Proposition 4.1], we saw that for z = (z1,22) € F1, we have
21| 4 [22]® < 2r — 3, and as d(0,z) = log((1 + |2])/(1 — |2)), this means that
cosh(2d(0, z)) < r+ 1. Thus 2ry < 2r; < ds.

For the other groups I' under consideration, we calculated 7, only numerically,
though with some effort, other exact calculations may be possible. For example,
for the (Cy1,{2}) case, the first nine values of cosh?(d(0,¢.0)) = |gss|? were found
to be

1, 247, 643r, 74+4r, 11467, 16 +9r, 20 4+ 11r, 21 4+ 12r and 25 + 14r.

Denoting these cosh?(dy), ... ,cosh?(dg), the method of Section 4.4 found that S,
is the union of 18 distinct double cosets KgK. Using Lemma 11.3, we find that for
an h € T satisfying d(0, h.0) = dr, the midpoint of [0, h.0] is in F7. Hence r; > %d7.
Numerical calculations indicate that equality holds here. Assuming only that r;
has been calculated with sufficient accuracy to be sure that r; < %dg, we have
rg < rp < %ds, and can apply Lemma 11.2 with n = 8 to get presentation of T.
One may verify that all 20 double cosets of elements ¢ satisfying d(0, g.0) < dg
lie in (dy,d>,w,a), so that Lemma 11.1 shows that d;, d, w and a generate I
Lemma 11.2 with n = 8 may give relations which turn out to be unnecessary, but
these may be eliminated with special arguments, if a presentation of I' is needed
which is as simple as possible.
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