Some simple properties of vector spaces Theorem Suppose that V is a vector space.

- a) The zero vector $0 \in V$ is unique. That is, if x + 0 = x and x + 0' = x, for all $x \in V$, then 0' = 0.
- b) If $r \in \mathbb{R}$ then $r \cdot 0 = 0$.
- c) If $x \in V$ then $0 \cdot x = 0$.
- d) The negative of a vector is unique. That is, if x + x' = 0 and x + x'' = 0 then x' = x''.
- e) If $x \in V$ then -x is the negative of x.

Proof

(a) Suppose that 0 and 0' are both zero vectors in V. Then x + 0 = x and x + 0' = x, for all $x \in V$.

Therefore,
$$0' = 0' + 0$$
, as 0 is a zero vector,
 $= 0 + 0'$, by commutativity,
 $= 0$, as 0' is a zero vector.

Hence, 0 = 0', showing that the zero vector is unique.

Proof that negatives are unique

Suppose that
$$x + x' = 0$$
 and $x + x'' = 0$.

Then
$$x'' = x'' + 0$$

 $= x'' + (x + x')$, as x' is a negative for x
 $= (x'' + x) + x'$, by the distributive law
 $= 0 + x'$, as x'' is a negative for x
 $= x'$, as x'' is a negative for x

Hence, x' = x''. So there is only one negative of a given vector $x \in V$.

As
$$0 = 0 \cdot x = (1 - 1) \cdot x = x + (-x)$$
, the vector $-x$ is the (unique) negative of x .

Consequently, we write -x for the negative of x.

Vector subspaces If A is an $n \times m$ matrix then the null space $\text{Null}(A) \subseteq \mathbb{R}^m$ is contained in the bigger vector space \mathbb{R}^m .

It often happens that one vector space is contained inside a larger vector space and it is useful to formalize this. **Definition** Suppose that V is a vector space. A vector subspace of V is a non-empty subset W of V which is itself a vector space, using the same operations of vector addition and scalar multiplication as V.

We frequently just say that W is a subspace of V.

Examples

- Null(A) is a vector subspace of \mathbb{R}^m
- $\mathbb{P} = \{ \text{all polynomial functions} \}$ is a vector subspace of $\mathbb{F} = \{ \text{all functions} \}$.
- $\mathbb{P}_n = \{ \text{all polynomial functions of degree at most } n \}$ is a vector subspace of \mathbb{P} .
- Diff(\mathbb{R}) = {all differentiable functions $f : \mathbb{R} \longrightarrow \mathbb{R}$ } is a vector subspace of \mathbb{F} .

Recognizing vector subspaces It turns out that there is a simple test to determine when a subset of a vector space V is a subspace of V.

Theorem

Suppose that V is a vector space and that $W \subseteq V$. Then W is a subspace of V if and only if

- $W \neq \emptyset$;
- \bullet (A1) W is closed under vector addition; and,
- (S1) W is closed under scalar multiplication.

Proof If W is a subspace of V then these three conditions are certainly true.

Conversely, suppose that $W \neq \emptyset$ and that W satisfies both (A1) and (S1). We have to show that W is a vector space.

To prove this it is enough to observe that the remaining vector space axioms automatically hold in W because they already hold in V. (exercise!!)

Vector subspace examples

Example 1

 $\mathrm{Diff}(\mathbb{R}) = \{ f \in \mathbb{F} : f \text{ is differentiable } \}$ is a vector subspace of \mathbb{F} .

In particular, $Diff(\mathbb{R})$ is a vector space.

We have to check three things:

- $Diff(\mathbb{R}) \neq 0$: this is clear as the zero function is in $Diff(\mathbb{R})$.
- Diff(\mathbb{R}) is closed under addition. If f and g are differentiable functions then (f+g)'=f'+g', so that $f+g\in \mathrm{Diff}(\mathbb{R})$.
- $\operatorname{Diff}(\mathbb{R})$ is closed under scalar multiplication. If $f \in \operatorname{Diff}(\mathbb{R})$ then (rf)' = rf'so that $rf \in \operatorname{Diff}(\mathbb{R})$.

Example 2

If V is any vector space then $\{0\}$ is a subspace of V.

Example 3 If $V = \mathbb{R}^2$ what are the subspaces of V?

Example 4 If $V = \mathbb{R}^3$ what are the subspaces of V?

Vector subspace examples—null space example

Example 5 Let
$$A = \begin{bmatrix} 3 & 1 & 3 & 3 \\ 2 & 4 & 1 & 2 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$
.

Describe Null(A) as a subspace of \mathbb{R}^4 .

As $Null(A) = \{ x \in \mathbb{R}^4 : Ax = 0 \}$ we have to find all solutions of Ax = 0.

We need to find the general solution to Ax = 0, so

we use Gaussian elimination:
$$\begin{bmatrix}
3 & 1 & 3 & 3 \\ 2 & 4 & 1 & 2 \\ 1 & 0 & 1 & 1
\end{bmatrix}
\xrightarrow{R_1 \longleftrightarrow R_3}
\begin{bmatrix}
1 & 0 & 1 & 1 \\ 2 & 4 & 1 & 2 \\ 3 & 1 & 3 & 3
\end{bmatrix}
\xrightarrow{R_2 := R_2 - 2R_1}
\begin{bmatrix}
1 & 0 & 1 & 1 \\ 0 & 4 & -1 & 0 \\ 0 & 1 & 0 & 0
\end{bmatrix}$$

$$\xrightarrow{R_2 \longleftrightarrow R_3}
\begin{bmatrix}
1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 4 & -1 & 0
\end{bmatrix}
\xrightarrow{R_3 := R_3 - 4R_2}
\begin{bmatrix}
1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0
\end{bmatrix}$$

$$\xrightarrow{R_3 := -R_3}
\begin{bmatrix}
1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 4 & -1 & 0
\end{bmatrix}
\xrightarrow{R_1 := R_1 - R_3}
\begin{bmatrix}
1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0
\end{bmatrix}$$

Hence,
$$\operatorname{Null}(A) = \left\{ \begin{bmatrix} -t \\ 0 \\ 0 \\ t \end{bmatrix} : t \in \mathbb{R} \right\}$$

$$=\left\{egin{array}{c} tegin{bmatrix} -1\ 0\ 0\ 1 \end{bmatrix}\,:\,t\in\mathbb{R}\,
ight\}.$$

Example 6 Let
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ -2 & 0 & -6 & -1 & -2 \\ 1 & 8 & 3 & 11 & 13 \\ -1 & 4 & -3 & 3 & 3 \end{bmatrix}$$
.

Describe Null(A).

Again, we just apply row operations:
$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ -2 & 0 & -6 & -1 & -2 \\ 1 & 8 & 3 & 11 & 13 \\ -1 & 4 & -3 & 3 & 3 \end{bmatrix} \xrightarrow{R_2 := R_2 + 2R_1 \atop R_3 := R_3 - R_1} \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 4 & 0 & 7 & 8 \\ 0 & 6 & 0 & 7 & 8 \\ 0 & 6 & 0 & 7 & 8 \\ 0 & 0 & 0 & 7 & 8 \end{bmatrix} \xrightarrow{R_2 := R_2 - R_3 \atop R_4 := R_4 - R_3} \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 4 & 0 & 7 & 8 \\ 0 & 6 & 0 & 7 & 8 \\ 0 & 6 & 0 & 7 & 8 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{array}{c|c}
R_2 := -\frac{1}{2}R_2 \\
 & 1 & 0 & 0 & 0 \\
0 & 6 & 0 & 7 & 8 \\
0 & 0 & 0 & 0 & 0
\end{array}
\qquad
\begin{array}{c|c}
R_3 := R_3 - 6R_2 \\
R_1 := R_1 - 2R_2
\end{array}$$

$$\left[\begin{array}{cccc} 1 & 0 & 3 & 4 & 5 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 7 & 8 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right]$$

$$\left[\begin{array}{ccccc}
1 & 0 & 3 & 0 & \frac{3}{7} \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \frac{8}{7} \\
0 & 0 & 0 & 0 & 0
\end{array}\right]$$

Thus,
$$\operatorname{Null}(A) = \left\{ \begin{bmatrix} -3s - \frac{3}{7}t \\ 0 \\ \frac{s}{-\frac{8}{7}t} \end{bmatrix} : s, t \in \mathbb{R} \right\}$$

$$=igg\{egin{array}{c} sigg[egin{array}{c} -3\ 1\ 0\ 0\ 0\ -8\ 7 \end{array}igg]\,:\,s,t\in\mathbb{R}\ igg\}.$$