
Some simple properties of vector spaces
Theorem Suppose that V is a vector space.

a) The zero vector 0 ∈ V is unique.
That is, if x + 0 = x and x + 0′ = x, for all
x ∈ V , then 0′ = 0.

b) If r ∈ R then r · 0 = 0.

c) If x ∈ V then 0 · x = 0.

d) The negative of a vector is unique.
That is, if x + x′ = 0 and x + x′′ = 0 then
x′ = x′′.

e) If x ∈ V then −x is the negative of x.

Proof
(a) Suppose that 0 and 0′ are both zero vectors in V .

Then x + 0 = x and x + 0′ = x, for all x ∈ V .

Therefore, 0′ = 0′ + 0, as 0 is a zero vector,

= 0 + 0′, by commutativity,

= 0, as 0′ is a zero vector.

Hence, 0 = 0′, showing that the zero vector is unique.
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Proof that negatives are unique
Suppose that x + x′ = 0 and x + x′′ = 0.

Then x′′ = x′′ + 0

= x′′ + (x + x′), as x′ is a negative for x

= (x′′ + x) + x′, by the distributive law

= 0 + x′, as x′′ is a negative for x

= x′, as x′′ is a negative for x

Hence, x′ = x′′. So there is only one negative of a
given vector x ∈ V .

As 0 = 0 · x = (1− 1) · x = x + (−x),
the vector −x is the (unique) negative of x.

Consequently, we write −x for the negative of x.

Vector subspaces If A is an n × m matrix then the null
space Null(A) ⊆ Rm is contained in the bigger vector
space Rm.

It often happens that one vector space is contained inside
a larger vector space and it is useful to formalize this.
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Definition Suppose that V is a vector space.
A vector subspace of V is a non-empty subset W of V
which is itself a vector space, using the same operations
of vector addition and scalar multiplication as V .

We frequently just say that W is a subspace of V .

Examples

• Null(A) is a vector subspace of Rm

• P = {all polynomial functions} is
a vector subspace of F = {all functions
f :R−→R}.

• Pn = {all polynomial functions of degree at most
n} is a vector subspace of P.

• Diff(R) = {all differentiable functions f :R −→
R} is a vector subspace of F.

Recognizing vector subspaces It turns out that there is a
simple test to determine when a subset of a vector space
V is a subspace of V .
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Theorem

Suppose that V is a vector space and that W ⊆ V .
Then W is a subspace of V if and only if

• W 6= ∅;

• (A1) W is closed under vector addition; and,

• (S1) W is closed under scalar multiplication.

Proof If W is a subspace of V then these three
conditions are certainly true.

Conversely, suppose that W 6= ∅ and that W satisfies
both (A1) and (S1). We have to show that W is a vector
space.

To prove this it is enough to observe that the remaining
vector space axioms automatically hold in W because
they already hold in V . (exercise!!)
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Vector subspace examples
Example 1
Diff(R) = { f ∈ F : f is differentiable } is a vector sub-
space of F.
In particular, Diff(R) is a vector space.

We have to check three things:

• Diff(R) 6= 0: this is clear as the zero function is in
Diff(R).

• Diff(R) is closed under addition.
If f and g are differentiable functions then
(f + g)′ = f ′ + g′,so that f + g ∈ Diff(R).

• Diff(R) is closed under scalar multiplication.
If f ∈ Diff(R) then (rf)′ = rf ′

so that rf ∈ Diff(R).

Example 2
If V is any vector space then {0} is a subspace of V .

Example 3 If V = R2 what are the subspaces of V ?

Example 4 If V = R3 what are the subspaces of V ?
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Vector subspace examples–null space example

Example 5 Let A =
[

3 1 3 3
2 4 1 2
1 0 1 1

]
.

Describe Null(A) as a subspace of R4.

As Null(A) = {x ∈ R4 : Ax = 0 } we have to find
all solutions of Ax = 0.

We need to find the general solution to Ax = 0, so
we use Gaussian elimination:[

3 1 3 3
2 4 1 2
1 0 1 1

]
R1←→R3−−−−−−→

[
1 0 1 1
2 4 1 2
3 1 3 3

]
R2:=R2−2R1−−−−−−−−−→
R3:=R3−3R1

[
1 0 1 1
0 4 −1 0
0 1 0 0

]

R2←→R3−−−−−−→
[

1 0 1 1
0 1 0 0
0 4 −1 0

]
R3:=R3−4R2−−−−−−−−−→

[
1 0 1 1
0 1 0 0
0 0 −1 0

]

R3:=−R3−−−−−−→
[

1 0 1 1
0 1 0 0
0 0 1 0

]
R1:=R1−R3−−−−−−−−→

[
1 0 0 1
0 1 0 0
0 0 1 0

]

Hence, Null(A) =

{[
−t
0
0
t

]
: t ∈ R

}

=

{
t

[
−1
0
0
1

]
: t ∈ R

}
.

0-5



Example 6 Let A =

[
1 2 3 4 5
−2 0 −6 −1 −2
1 8 3 11 13
−1 4 −3 3 3

]
.

Describe Null(A).

Again, we just apply row operations:[
1 2 3 4 5
−2 0 −6 −1 −2
1 8 3 11 13
−1 4 −3 3 3

]
R2:=R2+2R1
R3:=R3−R1−−−−−−−−−→
R4:=R4+R1

[
1 2 3 4 5
0 4 0 7 8
0 6 0 7 8
0 6 0 7 8

]
R2:=R2−R3−−−−−−−−→
R4:=R4−R3[

1 2 3 4 5
0 −2 0 0 0
0 6 0 7 8
0 0 0 0 0

]

R2:=− 1
2 R2−−−−−−−→

[
1 2 3 4 5
0 1 0 0 0
0 6 0 7 8
0 0 0 0 0

]
R3:=R3−6R2−−−−−−−−−→
R1:=R1−2R2[

1 0 3 4 5
0 1 0 0 0
0 0 0 7 8
0 0 0 0 0

]

R3:=
1
7 R3−−−−−−→

[
1 0 3 4 5
0 1 0 0 0
0 0 0 1 8

7
0 0 0 0 0

]
R1:=R1−4R4−−−−−−−−−→

[
1 0 3 0 3

7
0 1 0 0 0
0 0 0 1 8

7
0 0 0 0 0

]

Thus, Null(A) =

{[−3s− 3
7 t

0
s
− 8

7 t
t

]
: s, t ∈ R

}
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=

{
s

[−3
0
1
0
0

]
+ t

[−3
0
0
−8
7

]
: s, t ∈ R

}
.
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