C2.1a Lie algebras Mathematical Institute, University of Oxford Michaelmas Term 2010

Problem Sheet 1

1. Let V be a vector space. Let $\mathfrak{gl}(V)$ be the vector space of all linear maps from V to itself. Define a Lie bracket on $\mathfrak{gl}(V)$ by

$$[x, y] := xy - yx$$
 for all $x, y \in \mathfrak{gl}(V)$.

Show that $\mathfrak{gl}(V)$ is a Lie algebra.

2. Let A be an algebra over a field k. Recall that a derivation of A is a linear map

$$D: A \to A$$

such that D(ab) = D(a)b + aD(b) for all $a, b \in A$. Show that the set of derivations $\text{Der } A \subset \mathfrak{gl}(A)$ form a Lie subalgebra.

3. Let S be an $n \times n$ matrix with entries in a field k. Define

$$\mathfrak{gl}_S := \{ x \in \mathfrak{gl}_n \mid x^t S + Sx = 0 \}.$$

- a) Show that \mathfrak{gl}_S is a Lie subalgebra of \mathfrak{gl}_n .
- b) Let J be the $n \times n$ -matrix:

$$J_n = \begin{pmatrix} 0 & \dots & 0 & 1 \\ 0 & \dots & 1 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 1 & \dots & 0 & 0 \end{pmatrix}$$

Now let S be the $2n \times 2n$ matrix:

$$\left(\begin{array}{cc} 0 & J_n \\ -J_n & 0 \end{array}\right).$$

Find conditions for a matrix to lie in \mathfrak{gl}_S and hence determine the dimension of \mathfrak{gl}_S .

4. Let k be a field and $\mathfrak{g} = \mathfrak{gl}_n(k)$. Let $x \in \mathfrak{gl}_n(k)$ be a diagonal matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$. By describing a basis of eigenvectors for ad $x : \mathfrak{g} \to \mathfrak{g}$ show that ad x is diagonalisable, with eigenvalues $\lambda_i - \lambda_j$ for $1 \leq i, j \leq n$.

- 5. a) Suppose that \mathfrak{g} is a 3-dimensional Lie algebra over a field k with \mathfrak{g}' of dimension 1 and $\mathfrak{g}' \subset Z(\mathfrak{g})$. Determine the structure constants of \mathfrak{g} with respect to a suitable basis, and show that there is up to isomorphism a unique such algebra. (This Lie algebra is the famous *Heisenberg algebra*.) Find an isomorphism of \mathfrak{g} with a Lie subalgebra of \mathfrak{gl}_3 .
 - b) (Optional harder question) Classify up to isomorphism all Lie algebras \mathfrak{g} such that dim $\mathfrak{g}' = 1$ and $\mathfrak{g}' = Z(\mathfrak{g})$.
- **6.** Let V be a vector space with basis e_1, \ldots, e_n . Let $E_{i,j}: V \to V$ be the endomorphisms defined by

$$E_{i,j}(e_\ell) = \delta_{j,\ell} e_i.$$

Verify the commutation relations:

$$[E_{i,j}, E_{k,\ell}] = \delta_{j,k} E_{i,\ell} - \delta_{\ell,i} E_{k,j}.$$

Recall that $\mathfrak{sl}(V) \subset \mathfrak{gl}(V)$ denotes the subalgebra of traceless endomorphisms. Use the above relations to show that $\mathfrak{sl}(V) = \mathfrak{gl}(V)'$.