C2.1a Lie algebras Mathematical Institute, University of Oxford Michaelmas Term 2010

Problem Sheet 4: the \mathfrak{sl}_2 sheet

In this exercise sheet we will classify all the irreducible finite dimensional representations of $\mathfrak{sl}_2(\mathbb{C})$ and show that any finite dimensional representation is completely reducible. This is a hard exercise, but is worth the effort!

Recall that if we let

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ and } e = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

then e, f and h give a basis of \mathfrak{sl}_2 with relations

$$[h, e] = 2e, [h, f] = -2f$$
 and $[e, f] = h$.

Hence, a representation of $\mathfrak{sl}_2(\mathbb{C})$ consists of a vector space V over \mathbb{C} together with three endomorphisms E, F and H satisfying

$$HE - EH = 2E, HF - FH = -2F$$
 and $EF - FE = H.$

(We recover the representation $\phi : \mathfrak{sl}_2(\mathbb{C}) \to \mathfrak{gl}(V)$ by setting $\phi(e) = E$, $\phi(f) = F$ and $\phi(h) = H$.) In this exercise we always assume that V is *finite dimensional*.

1. a) Show that the endomorphisms E and H satisfy the relation

$$(H - (\lambda + 2))^k E = E(H - \lambda)^k.$$

(Here $\lambda \in \mathbb{C}$ and we write λ instead of $\lambda \cdot id_V$.) Deduce that if $v \in V$ belongs to the generalised λ -eigenspace of H, then Ev belongs to the generalised $(\lambda + 2)$ -eigenspace.

- b) Deduce a similar statement for the action of F on the generalised eigenspaces of H.
- c) Let λ be an eigenvalue for H which has maximal real part among all the eigenvalues of H. Use a) to show that $EV_{\lambda} = 0$.
- d) Use b) to deduce that if $v \in V$ is arbitrary, then $F^n v = 0$ for large enough n.
- **2.** a) Show the relation (for $n \ge 1$)

$$HF^n = F^n H - 2nF^n$$

b) Show $(n \ge 1 \text{ as before})$

$$EF^{n} = F^{n}E + nF^{n-1}H - n(n-1)F^{n-1}$$

c) Deduce that, if $v \in V$ is a vector such that Ev = 0 then

$$E^{n}F^{n}v = nE^{n-1}F^{n-1}(H - (n-1))v = n!\prod_{i=1}^{n}(H - (i-1))v$$

3. Let λ be an eigenvalue of H with maximal real part (as in 1(c)) and let V_{λ} denote the generalised λ -eigenspace. Use 1(d) and 2(c) to deduce that H acts diagonalisably on V_{λ} and that λ is a non-negative integer.

4. a) Let λ be as in Question 3 and choose a non-zero vector $v \in V_{\lambda}$. We know by Questions 1 and 3 that Ev = 0 and that λ is an non-negative integer. Show the relations:

.

$$HF^{k}v = (\lambda - 2k)F^{k}v,$$

$$EF^{k}v = k(\lambda - (k-1))F^{k-1}v.$$

Deduce that $F^{\lambda+1}v = 0$ and that the F^iv for $0 \le i \le \lambda$ are linearly independent and span a simple submodule of V.

- b) Check that the above relations define an $\mathfrak{sl}_2(\mathbb{C})$ -module for any non-negative integer λ . Deduce that there is (up to isomorphism) a unique simple module $V(\lambda)$ of dimension $\lambda + 1$ for all non-negative integers λ .
- 5. (Optional harder exercise) Let V be an arbitrary finite dimensional representation of $\mathfrak{sl}_2(\mathbb{C})$.
 - a) Let $\lambda \in \mathbb{Z}$ be maximal amongst the eigenvalues of H, and let $V_{\lambda} \subset V$ denote the λ -eigenspace. Suppose that V has the property that Ev = 0 implies that $v \in V_{\lambda}$. Show that V is completely reducible.
 - b) Consider the endomorphism $c = EF + FE + \frac{1}{2}H^2$. Show that c commutes with E, F and H. (c is called the *Casimir* element.) Deduce from Schur's lemma that c acts as a scalar on any irreducible representation of $\mathfrak{sl}_2(\mathbb{C})$. Compute the scalar with which c acts on V(m).
 - c) Show that V is completely reducible.