C2.1a Lie algebras

Mathematical Institute, University of Oxford

Michaelmas Term 2010

Problem Sheet 4: the $\mathfrak{s l}_{2}$ sheet

In this exercise sheet we will classify all the irreducible finite dimensional representations of $\mathfrak{s l}_{2}(\mathbb{C})$ and show that any finite dimensional representation is completely reducible. This is a hard exercise, but is worth the effort!

Recall that if we let

$$
e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \text { and } \quad e=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

then e, f and h give a basis of $\mathfrak{s l}_{2}$ with relations

$$
[h, e]=2 e,[h, f]=-2 f \quad \text { and } \quad[e, f]=h
$$

Hence, a representation of $\mathfrak{s l}_{2}(\mathbb{C})$ consists of a vector space V over \mathbb{C} together with three endomorphisms E, F and H satisfying

$$
H E-E H=2 E, H F-F H=-2 F \quad \text { and } \quad E F-F E=H .
$$

(We recover the representation $\phi: \mathfrak{s l}_{2}(\mathbb{C}) \rightarrow \mathfrak{g l}(V)$ by setting $\phi(e)=E, \phi(f)=F$ and $\phi(h)=H$.)
In this exercise we always assume that V is finite dimensional.

1. a) Show that the endomorphisms E and H satisfy the relation

$$
(H-(\lambda+2))^{k} E=E(H-\lambda)^{k}
$$

(Here $\lambda \in \mathbb{C}$ and we write λ instead of $\lambda \cdot \mathrm{id}_{V}$.) Deduce that if $v \in V$ belongs to the generalised λ-eigenspace of H, then $E v$ belongs to the generalised $(\lambda+2)$-eigenspace.
b) Deduce a similar statement for the action of F on the generalised eigenspaces of H.
c) Let λ be an eigenvalue for H which has maximal real part among all the eigenvalues of H. Use a) to show that $E V_{\lambda}=0$.
d) Use b) to deduce that if $v \in V$ is arbitrary, then $F^{n} v=0$ for large enough n.
2. a) Show the relation (for $n \geq 1$)

$$
H F^{n}=F^{n} H-2 n F^{n}
$$

b) Show ($n \geq 1$ as before)

$$
E F^{n}=F^{n} E+n F^{n-1} H-n(n-1) F^{n-1} .
$$

c) Deduce that, if $v \in V$ is a vector such that $E v=0$ then

$$
E^{n} F^{n} v=n E^{n-1} F^{n-1}(H-(n-1)) v=n!\prod_{i=1}^{n}(H-(i-1)) v
$$

3. Let λ be an eigenvalue of H with maximal real part (as in $1(\mathrm{c})$) and let V_{λ} denote the generalised λ-eigenspace. Use $1(\mathrm{~d})$ and $2(\mathrm{c})$ to deduce that H acts diagonalisably on V_{λ} and that λ is a non-negative integer.
4. a) Let λ be as in Question 3 and choose a non-zero vector $v \in V_{\lambda}$. We know by Questions 1 and 3 that $E v=0$ and that λ is an non-negative integer. Show the relations:

$$
\begin{gathered}
H F^{k} v=(\lambda-2 k) F^{k} v \\
E F^{k} v=k(\lambda-(k-1)) F^{k-1} v
\end{gathered}
$$

Deduce that $F^{\lambda+1} v=0$ and that the $F^{i} v$ for $0 \leq i \leq \lambda$ are linearly independent and span a simple submodule of V.
b) Check that the above relations define an $\mathfrak{s l}_{2}(\mathbb{C})$-module for any non-negative integer λ. Deduce that there is (up to isomorphism) a unique simple module $V(\lambda)$ of dimension $\lambda+1$ for all non-negative integers λ.
5. (Optional harder exercise) Let V be an arbitrary finite dimensional representation of $\mathfrak{s l}_{2}(\mathbb{C})$.
a) Let $\lambda \in \mathbb{Z}$ be maximal amongst the eigenvalues of H, and let $V_{\lambda} \subset V$ denote the λ-eigenspace. Suppose that V has the property that $E v=0$ implies that $v \in V_{\lambda}$. Show that V is completely reducible.
b) Consider the endomorphism $c=E F+F E+\frac{1}{2} H^{2}$. Show that c commutes with E, F and H. (c is called the Casimir element.) Deduce from Schur's lemma that c acts as a scalar on any irreducible representation of $\mathfrak{s l}_{2}(\mathbb{C})$. Compute the scalar with which c acts on $V(m)$.
c) Show that V is completely reducible.

