C2.1a Lie algebras

Mathematical Institute, University of Oxford

Michaelmas Term 2010

Problem Sheet 6

1. Let $V=\oplus_{i=1}^{n} \mathbb{R} e_{i}$ and $\widetilde{V}=\left\{v=\sum \lambda_{i} e_{i} \mid \sum \lambda_{i}=0\right\}$. Consider $R=\left\{e_{i}-e_{j} \mid i \neq j\right\} \subset \widetilde{V}$.
a) Show that $R \subset \widetilde{V}$ is a root system and that the Weyl group W of $R \subset \widetilde{V}$ is isomorphic to the symmetric group S_{n}.
c) Show that $S=\left\{e_{i}-e_{i+1}\right\}$ for $1 \leq i \leq n-1$ is a basis for R. Hence compute the Coxeter graph of R and conclude that $R \subset \widetilde{V}$ is a root system of type A_{n-1}.
2. In this question we complete the classification of all "simply-laced" Dynkin diagrams.
a) Consider the Coxeter graph

$$
\stackrel{\bullet}{1}-\stackrel{\bullet}{2}-\cdots-\stackrel{\bullet}{p}
$$

and let V be the corresponding vector space with bilinear form B. That is, V is a real vector space with basis $\left\{e_{i}\right\}_{i=1}^{p}$ and bilinear form B given by

$$
B\left(e_{i}, e_{j}\right)=\left\{\begin{array}{cc}
1 & \text { if } i=j \\
-\frac{1}{2} & \text { if } j=i \pm 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Consider the element $v=\sum_{i=1}^{p} i e_{i}$. Show that

$$
B(v, v)=\frac{p(p+1)}{2}
$$

b) Now let Γ be the Coxeter graph

And let (V, B) be the corresponding vector space with symmetric bilinear form B. Define

$$
\begin{aligned}
& x=e_{i_{p}}+2 e_{i_{p-1}}+\cdots+p e_{i_{1}} \\
& y=e_{j_{q}}+2 e_{j_{q-1}}+\cdots+q e_{j_{1}} \\
& z=e_{j_{q}}+2 e_{j_{q-1}}+\cdots+q e_{j_{1}}
\end{aligned}
$$

By considering the distance from e_{i} to the subspace spanned by x, y and z show that, if B is positive definite, then

$$
(p+1)^{-1}+(q+1)^{-1}+(r+1)^{-1}>1
$$

(Hint: Combine the first part of this question with Question 1 of Sheet 5.)
c) Conclude that (p, q, r) is equal (up to permutation) to ($m, 1,1$) with $m \geq 0$ or $(1,2,2),(1,2,3)$ or $(1,2,4)$.
d) Conclude that the only possible Coxeter graphs of the form Γ are of type D_{m} for $m \geq 4$ or E_{6}, E_{7} or E_{8}.
3. Consider the set $R \subset \bigoplus_{i=1}^{n} \mathbb{R} e_{i}$ consisting of vectors $\pm e_{i}$ and $\pm e_{i} \pm e_{j}$ for $i \neq j$.
a) Show that R is a root system. Can you describe the Weyl group of R ?
b) Find a basis for R and conclude that R is a root system of type B_{n}.
c) Compute the dual root system of R. How does it compare to R ? (For the definition of dual root system see Question 5 on Sheet 5.)
4. Consider the set $R \subset \bigoplus_{i=1}^{4} \mathbb{R} e_{i}$ consisting of the vectors $\pm e_{i}, \pm e_{i} \pm e_{j}($ for $i \neq j)$ and $\frac{1}{2}\left(\pm e_{1} \pm e_{2} \pm\right.$ $\left.e_{3} \pm e_{4}\right)$.
a) Show that R is a root system. (Hint: The formula $s_{\alpha} s_{b} s_{\alpha}=s_{s_{\alpha} \beta}$ can be used to reduce the number of necessary calculations.)
b) Find a basis for R. Conclude that R is a root system of type F_{4}.

