▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >

Given any Coxeter group (W, S) we can produce a coloured simplicial complex whose automorphisms are precisely W. This complex is called the *Coxeter complex* and will be denoted |(W, S)|.

Let n = |S| denote the rank of W. Its construction is as follows:

- colour the *n* faces of the n 1-simplex  $\Delta$  by the set *S*,
- take one such simplex  $\Delta_w$  for each element  $w \in W$ ,
- glue  $\Delta_w$  to  $\Delta_{ws}$  along the wall coloured by *s*.

$$W = \langle \mathbf{s}, t \mid \mathbf{s}^2 = t^2 = (\mathbf{s}t)^3 \rangle = \{\mathbf{e}, \mathbf{s}, t, \mathbf{s}t, \mathbf{t}s, \mathbf{s}ts\}.$$

(ロ)、

$$W = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = (\mathbf{s}\mathbf{t})^3 \rangle = \{\mathbf{e}, \mathbf{s}, \mathbf{t}, \mathbf{s}\mathbf{t}, \mathbf{t}\mathbf{s}, \mathbf{s}\mathbf{t}\mathbf{s}\}.$$



(ロ)、

$$W = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = (\mathbf{s}\mathbf{t})^3 \rangle = \{\mathbf{e}, \mathbf{s}, \mathbf{t}, \mathbf{s}\mathbf{t}, \mathbf{t}\mathbf{s}, \mathbf{s}\mathbf{t}\mathbf{s}\}.$$



(ロ)、

$$W = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = (\mathbf{s}\mathbf{t})^3 \rangle = \{\mathbf{e}, \mathbf{s}, \mathbf{t}, \mathbf{s}\mathbf{t}, \mathbf{t}\mathbf{s}, \mathbf{s}\mathbf{t}\mathbf{s}\}.$$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$W = \langle \mathbf{s}, t \mid \mathbf{s}^2 = t^2 = (\mathbf{s}t)^3 \rangle = \{\mathbf{e}, \mathbf{s}, t, \mathbf{s}t, \mathbf{t}s, \mathbf{s}ts\}.$$



- \* ロ \* \* 個 \* \* 注 \* \* 注 \* こ き こ の < ()

$$W = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = (\mathbf{s}\mathbf{t})^3 \rangle = \{\mathbf{e}, \mathbf{s}, \mathbf{t}, \mathbf{s}\mathbf{t}, \mathbf{s}\mathbf{t}\mathbf{s}, \mathbf{s}\mathbf{t}\mathbf{s}\}.$$



$$W = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = (\mathbf{s}\mathbf{t})^3 \rangle = \{\mathbf{e}, \mathbf{s}, \mathbf{t}, \mathbf{s}\mathbf{t}, \mathbf{s}\mathbf{t}\mathbf{s}, \mathbf{s}\mathbf{t}\mathbf{s}\}.$$





$$W = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = (\mathbf{s}\mathbf{t})^3 \rangle = \{\mathbf{e}, \mathbf{s}, \mathbf{t}, \mathbf{s}\mathbf{t}, \mathbf{t}\mathbf{s}, \mathbf{s}\mathbf{t}\mathbf{s}\}.$$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Coxeter complex of  $S_4 = \bullet - \bullet - \bullet$  :



(日)

(barycentric subdivision of the tetrahedron).





▲ロト ▲理 ト ▲ ヨ ト ▲ ヨ - シ へ ⊙



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○







◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Let  $\ell: W \to \mathbb{N}$  denote the length function on W. It is easy to describe the length function using the Coxeter complex:

 $\ell(w) = \text{length of a minimal expression for } w \text{ in the generators } s$ = number of walls crossed in a minimal path  $id \rightarrow w$  in |(W, S)|.

Let  $\ell: W \to \mathbb{N}$  denote the length function on W. It is easy to describe the length function using the Coxeter complex:

 $\ell(w) = \text{length of a minimal expression for } w \text{ in the generators } s$ = number of walls crossed in a minimal path  $id \rightarrow w$  in |(W, S)|.



▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Let  $\ell: W \to \mathbb{N}$  denote the length function on W. It is easy to describe the length function using the Coxeter complex:

 $\ell(w) = \text{length of a minimal expression for } w \text{ in the generators } s$ = number of walls crossed in a minimal path  $id \rightarrow w$  in |(W, S)|.



The Bruhat order is trickier...

By construction |(W, S)| has a left action of W.

W also acts on the alcoves of |(W, S)| on the right by

$$\Delta_w \cdot s = \Delta_{ws}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This action is *not* simplicial, but is "local": cross the wall coloured by *s*.

Using the Coxeter complex makes it easy to visualize elements of the Hecke algebra  $\mathbf{H}$ .

We view an element  $f = \sum f_x H_x$  as the assignment of  $f_x \in \mathbb{Z}[v^{\pm 1}]$  to the alcove indexed by  $x \in W$ .

Recall the Kazhdan-Lusztig generator  $\underline{H}_s := H_s + vH_{id}$ . The formulas for the action of  $\underline{H}_s$  on the standard basis can be rewritten

$$H_{x}\underline{H}_{s} = \begin{cases} H_{xs} + vH_{x} & \text{if } \ell(xs) > \ell(x), \\ H_{xs} + v^{-1}H_{x} & \text{if } \ell(xs) < \ell(x). \end{cases}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Recall the Kazhdan-Lusztig generator  $\underline{H}_s := H_s + vH_{id}$ . The formulas for the action of  $\underline{H}_s$  on the standard basis can be rewritten

$$H_{x}\underline{H}_{s} = \begin{cases} H_{xs} + vH_{x} & \text{if } \ell(xs) > \ell(x), \\ H_{xs} + v^{-1}H_{x} & \text{if } \ell(xs) < \ell(x). \end{cases}$$

We can visualise this as follows: ("quantized averaging operator")



Recall that the Kazhdan and Lusztig basis has the form

$$\underline{H}_x := H_x + \sum_{y < x} h_{y,x} H_y$$

with  $h_{y,x} \in v\mathbb{Z}[v]$  and satisfies  $\overline{H_x} = \underline{H}_x$ .

The polynomials  $h_{y,x}$  are the Kazhdan-Lusztig polynomials.



E 990

We want to use the Coxeter complex to understand how to calculate the Kazhdan-Lusztig basis. The first few Kazhdan-Lusztig basis elements are easily defined:

$$\underline{H}_{id} := H_{id}, \quad \underline{H}_s := H_s + vH_{id} \quad \text{for } s \in S.$$

Now the work begins. Suppose that we have calculated  $\underline{H}_y$  for all y with  $\ell(y) \leq \ell(x)$ . Choose  $s \in S$  with  $\ell(xs) > \ell(x)$  and write

$$\underline{H}_{x}\underline{H}_{s} = H_{xs} + \sum_{\ell(y) < \ell(xs)} g_{y}H_{y}.$$

The formula for the action of  $\underline{H}_s$  shows that  $g_y \in \mathbb{Z}[v]$  for all  $y < \ell(xs)$ . If all  $g_y \in v\mathbb{Z}[v]$  then  $\underline{H}_{xs} := \underline{H}_x\underline{H}_s$ . Otherwise we set

$$\underline{H}_{xs} = \underline{H}_{x}\underline{H}_{s} - \sum_{\substack{y \\ \ell(y) < \ell(x)}} g_{y}(0)\underline{H}_{y}.$$













▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで





 $\mathcal{O} \land \mathcal{O}$ 

For dihedral groups (rank 2) we always have  $h_{y,x} = v^{\ell(x)-\ell(y)}$  (Kazhdan-Lusztig basis elements are *smooth*.)

However in higher rank the situation quickly becomes more interesting...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

































▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >





























▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >



- nac



- nac



છે ગે



E 990



E 990



き のへで



 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >

## Kazhdan-Lusztig positivity conjecture (1979): $h_{x,y} \in \mathbb{Z}_{\geq 0}[v]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Kazhdan-Lusztig positivity conjecture (1979): $h_{x,y} \in \mathbb{Z}_{\geq 0}[v]$ 

Established for crystallographic W by Kazhdan and Lusztig in 1980, using Deligne's proof of the Weil conjectures.

Crystallographic:  $m_{st} \in \{2, 3, 4, 6, \infty\}$ .

Why are Kazhdan-Lusztig polynomials hard?

## Why are Kazhdan-Lusztig polynomials hard?

Polo's Theorem (1999)

For any  $P \in 1 + q\mathbb{Z}_{\geq 0}[q]$  there exists an *m* such that  $v^m P(v^{-2})$  occurs as a Kazhdan-Lusztig polynomial in some symmetric group.

## Why are Kazhdan-Lusztig polynomials hard?

## Polo's Theorem (1999)

For any  $P \in 1 + q\mathbb{Z}_{\geq 0}[q]$  there exists an *m* such that  $v^m P(v^{-2})$  occurs as a Kazhdan-Lusztig polynomial in some symmetric group.

*Roughly*: all positive polynomials are Kazhdan-Lusztig polynomials!

The most complicated Kazhdan-Lusztig-Vogan polynomial computed by the *Atlas of Lie groups and Representations* project:

$$\begin{split} 152q^{22} + 3\ 472q^{21} + 38\ 791q^{20} + 293\ 021q^{19} + 1\ 370\ 892q^{18} + \\ & + 4\ 067\ 059q^{17} + 7\ 964\ 012q^{16} + 11\ 159\ 003q^{15} + \\ & + 11\ 808\ 808q^{14} + 9\ 859\ 915q^{13} + 6\ 778\ 956q^{12} + \\ & + 3\ 964\ 369q^{11} + 2\ 015\ 441q^{10} + 906\ 567q^9 + \\ & + 363\ 611q^8 + 129\ 820q^7 + 41\ 239q^6 + \\ & + 11\ 426q^5 + 2\ 677q^4 + 492q^3 + 61q^2 + 3q \end{split}$$

(This polynomial is associated to the reflection group of type  $E_8$ . See www.liegroups.org.)