Given any Coxeter group (W, S) we can produce a coloured simplicial complex whose automorphisms are precisely W. This complex is called the Coxeter complex and will be denoted $|(W, S)|$.

Let $n=|S|$ denote the rank of W. Its construction is as follows:

- colour the n faces of the $n-1$-simplex Δ by the set S,
- take one such simplex Δ_{w} for each element $w \in W$,
- glue Δ_{w} to $\Delta_{w s}$ along the wall coloured by s.

For example, consider the symmetric group on three letters:

$$
W=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{3}\right\rangle=\{e, s, t, s t, t s, s t s\}
$$

For example, consider the symmetric group on three letters:

$$
W=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{3}\right\rangle=\{e, s, t, s t, t s, s t s\} .
$$

For example, consider the symmetric group on three letters:

$$
W=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{3}\right\rangle=\{e, s, t, s t, t s, s t s\} .
$$

For example, consider the symmetric group on three letters:

$$
W=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{3}\right\rangle=\{e, s, t, s t, t s, s t s\}
$$

sts

$$
W=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{3}\right\rangle=\{e, s, t, s t, t s, s t s\} .
$$

$$
W=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{3}\right\rangle=\{e, s, t, s t, t s, s t s\}
$$

$$
W=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{3}\right\rangle=\{e, s, t, s t, t s, s t s\} .
$$

$$
W=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{3}\right\rangle=\{e, s, t, s t, t s, s t s\} .
$$

The Coxeter complex of $S_{4}=$

(barycentric subdivision of the tetrahedron).

- - 4

$$
s+4
$$

0

$$
s{\underset{\infty}{\infty}}_{\left.\right|_{\infty} ^{\infty}}^{\substack{t \\ u}}
$$

Let $\ell: W \rightarrow \mathbb{N}$ denote the length function on W. It is easy to describe the length function using the Coxeter complex:
$\ell(w)=$ length of a minimal expression for w in the generators s
$=$ number of walls crossed in a minimal path id $\rightarrow w$ in $|(W, S)|$.

Let $\ell: W \rightarrow \mathbb{N}$ denote the length function on W. It is easy to describe the length function using the Coxeter complex:
$\ell(w)=$ length of a minimal expression for w in the generators s
$=$ number of walls crossed in a minimal path id $\rightarrow w$ in $|(W, S)|$.

Let $\ell: W \rightarrow \mathbb{N}$ denote the length function on W. It is easy to describe the length function using the Coxeter complex:
$\ell(w)=$ length of a minimal expression for w in the generators s
$=$ number of walls crossed in a minimal path id $\rightarrow w$ in $|(W, S)|$.

The Bruhat order is trickier...

By construction $|(W, S)|$ has a left action of W.
W also acts on the alcoves of $|(W, S)|$ on the right by

$$
\Delta_{w} \cdot s=\Delta_{w s} .
$$

This action is not simplicial, but is "local" : cross the wall coloured by s.

Using the Coxeter complex makes it easy to visualize elements of the Hecke algebra \mathbf{H}.

We view an element $f=\sum f_{x} H_{x}$ as the assignment of $f_{x} \in \mathbb{Z}\left[v^{ \pm 1}\right]$ to the alcove indexed by $x \in W$.

Recall the Kazhdan-Lusztig generator $\underline{H}_{s}:=H_{s}+v H_{i d}$. The formulas for the action of \underline{H}_{s} on the standard basis can be rewritten

$$
H_{x} \underline{H}_{s}= \begin{cases}H_{x s}+v H_{x} & \text { if } \ell(x s)>\ell(x) \\ H_{x s}+v^{-1} H_{x} & \text { if } \ell(x s)<\ell(x)\end{cases}
$$

Recall the Kazhdan-Lusztig generator $\underline{H}_{s}:=H_{s}+v H_{i d}$. The formulas for the action of \underline{H}_{s} on the standard basis can be rewritten

$$
H_{x} \underline{H}_{s}= \begin{cases}H_{x s}+v H_{x} & \text { if } \ell(x s)>\ell(x), \\ H_{x s}+v^{-1} H_{x} & \text { if } \ell(x s)<\ell(x) .\end{cases}
$$

We can visualise this as follows: ("quantized averaging operator")

Recall that the Kazhdan and Lusztig basis has the form

$$
\underline{H}_{x}:=H_{x}+\sum_{y<x} h_{y, x} H_{y}
$$

with $h_{y, x} \in v \mathbb{Z}[v]$ and satisfies $\underline{H}_{x}=\underline{H}_{x}$.
The polynomials $h_{y, x}$ are the Kazhdan-Lusztig polynomials.

We want to use the Coxeter complex to understand how to calculate the Kazhdan-Lusztig basis. The first few Kazhdan-Lusztig basis elements are easily defined:

$$
\underline{H}_{i d}:=H_{i d}, \quad \underline{H}_{s}:=H_{s}+v H_{i d} \quad \text { for } s \in S .
$$

Now the work begins. Suppose that we have calculated \underline{H}_{y} for all y with $\ell(y) \leqslant \ell(x)$. Choose $s \in S$ with $\ell(x s)>\ell(x)$ and write

$$
\underline{H}_{x} \underline{H}_{s}=H_{x s}+\sum_{\ell(y)<\ell(x s)} g_{y} H_{y} .
$$

The formula for the action of $\underline{H_{s}}$ shows that $g_{y} \in \mathbb{Z}[v]$ for all $y<\ell(x s)$. If all $g_{y} \in v \mathbb{Z}[v]$ then $\underline{H}_{x s}:=\underline{H}_{x} \underline{H}_{s}$. Otherwise we set

$$
\underline{H}_{x s}=\underline{H}_{x} \underline{H}_{s}-\sum_{\substack{y \\ \ell(y)<\ell(x)}} g_{y}(0) \underline{H}_{y} .
$$

$$
3
$$

$$
\underline{H}_{t s}=\frac{1 v / v^{2}}{v}
$$

For dihedral groups (rank 2) we always have $h_{y, x}=v^{\ell(x)-\ell(y)}$ (Kazhdan-Lusztig basis elements are smooth.)

However in higher rank the situation quickly becomes more interesting...

三 \equiv のल

Kazhdan-Lusztig positivity conjecture (1979):

$$
h_{x, y} \in \mathbb{Z}_{\geqslant 0}[v]
$$

Kazhdan-Lusztig positivity conjecture (1979):

$$
h_{x, y} \in \mathbb{Z}_{\geqslant 0}[v]
$$

Established for crystallographic W by Kazhdan and Lusztig in 1980, using Deligne's proof of the Weil conjectures.

Crystallographic: $m_{s t} \in\{2,3,4,6, \infty\}$.

Why are Kazhdan-Lusztig polynomials hard?

Why are Kazhdan-Lusztig polynomials hard?

Polo's Theorem (1999)

For any $P \in 1+q \mathbb{Z}_{\geqslant 0}[q]$ there exists an m such that $v^{m} P\left(v^{-2}\right)$ occurs as a Kazhdan-Lusztig polynomial in some symmetric group.

Why are Kazhdan-Lusztig polynomials hard?

Polo's Theorem (1999)

For any $P \in 1+q \mathbb{Z}_{\geqslant 0}[q]$ there exists an m such that $v^{m} P\left(v^{-2}\right)$ occurs as a Kazhdan-Lusztig polynomial in some symmetric group.

Roughly: all positive polynomials are Kazhdan-Lusztig polynomials!

The most complicated Kazhdan-Lusztig-Vogan polynomial computed by the Atlas of Lie groups and Representations project:

$$
\begin{aligned}
152 q^{22} & +3472 q^{21}+38791 q^{20}+293021 q^{19}+1370892 q^{18}+ \\
& +4067059 q^{17}+7964012 q^{16}+11159003 q^{15}+ \\
& +11808808 q^{14}+9859915 q^{13}+6778956 q^{12}+ \\
& +3964369 q^{11}+2015441 q^{10}+906567 q^{9}+ \\
& +363611 q^{8}+129820 q^{7}+41239 q^{6}+ \\
& +11426 q^{5}+2677 q^{4}+492 q^{3}+61 q^{2}+3 q
\end{aligned}
$$

(This polynomial is associated to the reflection group of type E_{8}. See www.liegroups.org.)

