▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >

Given any Coxeter group (W, S) we can produce a coloured simplicial complex whose automorphisms are precisely W. This complex is called the *Coxeter complex* and will be denoted |(W, S)|.

Let n = |S| denote the rank of W. Its construction is as follows:

- colour the *n* faces of the n 1-simplex Δ by the set *S*,
- take one such simplex Δ_w for each element $w \in W$,
- glue Δ_w to Δ_{ws} along the wall coloured by *s*.

$$W = \langle \mathbf{s}, t \mid \mathbf{s}^2 = t^2 = (\mathbf{s}t)^3 \rangle = \{\mathbf{e}, \mathbf{s}, t, \mathbf{s}t, \mathbf{t}s, \mathbf{s}ts\}.$$

(ロ)、

$$W = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = (\mathbf{s}\mathbf{t})^3 \rangle = \{\mathbf{e}, \mathbf{s}, \mathbf{t}, \mathbf{s}\mathbf{t}, \mathbf{t}\mathbf{s}, \mathbf{s}\mathbf{t}\mathbf{s}\}.$$

(ロ)、

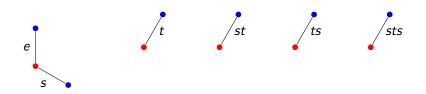
$$W = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = (\mathbf{s}\mathbf{t})^3 \rangle = \{\mathbf{e}, \mathbf{s}, \mathbf{t}, \mathbf{s}\mathbf{t}, \mathbf{t}\mathbf{s}, \mathbf{s}\mathbf{t}\mathbf{s}\}.$$

(ロ)、

$$W = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = (\mathbf{s}\mathbf{t})^3 \rangle = \{\mathbf{e}, \mathbf{s}, \mathbf{t}, \mathbf{s}\mathbf{t}, \mathbf{t}\mathbf{s}, \mathbf{s}\mathbf{t}\mathbf{s}\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$W = \langle \mathbf{s}, t \mid \mathbf{s}^2 = t^2 = (\mathbf{s}t)^3 \rangle = \{\mathbf{e}, \mathbf{s}, t, \mathbf{s}t, \mathbf{t}s, \mathbf{s}ts\}.$$



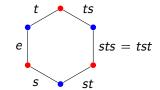
- * ロ * * 個 * * 注 * * 注 * こ き こ の < ()

$$W = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = (\mathbf{s}\mathbf{t})^3 \rangle = \{\mathbf{e}, \mathbf{s}, \mathbf{t}, \mathbf{s}\mathbf{t}, \mathbf{s}\mathbf{t}\mathbf{s}, \mathbf{s}\mathbf{t}\mathbf{s}\}.$$



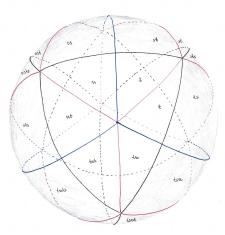
$$W = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = (\mathbf{s}\mathbf{t})^3 \rangle = \{\mathbf{e}, \mathbf{s}, \mathbf{t}, \mathbf{s}\mathbf{t}, \mathbf{s}\mathbf{t}\mathbf{s}, \mathbf{s}\mathbf{t}\mathbf{s}\}.$$

$$W = \langle \mathbf{s}, \mathbf{t} \mid \mathbf{s}^2 = \mathbf{t}^2 = (\mathbf{s}\mathbf{t})^3 \rangle = \{\mathbf{e}, \mathbf{s}, \mathbf{t}, \mathbf{s}\mathbf{t}, \mathbf{t}\mathbf{s}, \mathbf{s}\mathbf{t}\mathbf{s}\}.$$



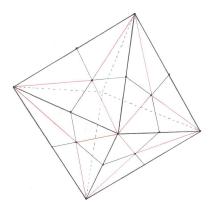
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Coxeter complex of $S_4 = \bullet - \bullet - \bullet$:

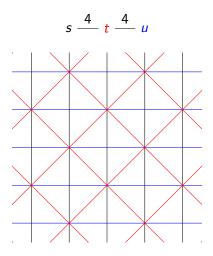


(日)

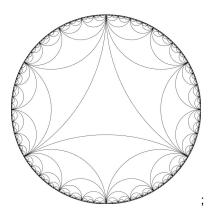
(barycentric subdivision of the tetrahedron).

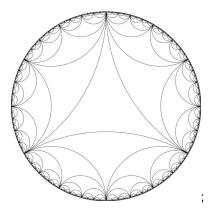


▲ロト ▲理 ト ▲ ヨ ト ▲ ヨ - シ へ ⊙



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○





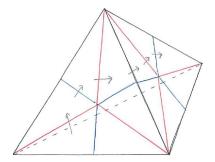
◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Let $\ell: W \to \mathbb{N}$ denote the length function on W. It is easy to describe the length function using the Coxeter complex:

 $\ell(w) = \text{length of a minimal expression for } w \text{ in the generators } s$ = number of walls crossed in a minimal path $id \rightarrow w$ in |(W, S)|.

Let $\ell: W \to \mathbb{N}$ denote the length function on W. It is easy to describe the length function using the Coxeter complex:

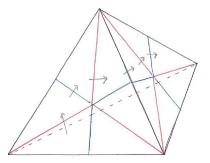
 $\ell(w) = \text{length of a minimal expression for } w \text{ in the generators } s$ = number of walls crossed in a minimal path $id \rightarrow w$ in |(W, S)|.



▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Let $\ell: W \to \mathbb{N}$ denote the length function on W. It is easy to describe the length function using the Coxeter complex:

 $\ell(w) = \text{length of a minimal expression for } w \text{ in the generators } s$ = number of walls crossed in a minimal path $id \rightarrow w$ in |(W, S)|.



The Bruhat order is trickier...

By construction |(W, S)| has a left action of W.

W also acts on the alcoves of |(W, S)| on the right by

$$\Delta_w \cdot s = \Delta_{ws}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This action is *not* simplicial, but is "local": cross the wall coloured by *s*.

Using the Coxeter complex makes it easy to visualize elements of the Hecke algebra \mathbf{H} .

We view an element $f = \sum f_x H_x$ as the assignment of $f_x \in \mathbb{Z}[v^{\pm 1}]$ to the alcove indexed by $x \in W$.

Recall the Kazhdan-Lusztig generator $\underline{H}_s := H_s + vH_{id}$. The formulas for the action of \underline{H}_s on the standard basis can be rewritten

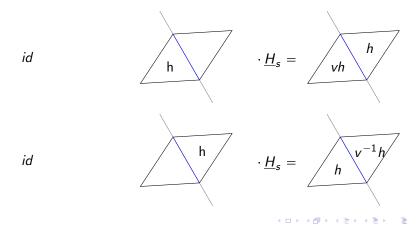
$$H_{x}\underline{H}_{s} = \begin{cases} H_{xs} + vH_{x} & \text{if } \ell(xs) > \ell(x), \\ H_{xs} + v^{-1}H_{x} & \text{if } \ell(xs) < \ell(x). \end{cases}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Recall the Kazhdan-Lusztig generator $\underline{H}_s := H_s + vH_{id}$. The formulas for the action of \underline{H}_s on the standard basis can be rewritten

$$H_{x}\underline{H}_{s} = \begin{cases} H_{xs} + vH_{x} & \text{if } \ell(xs) > \ell(x), \\ H_{xs} + v^{-1}H_{x} & \text{if } \ell(xs) < \ell(x). \end{cases}$$

We can visualise this as follows: ("quantized averaging operator")

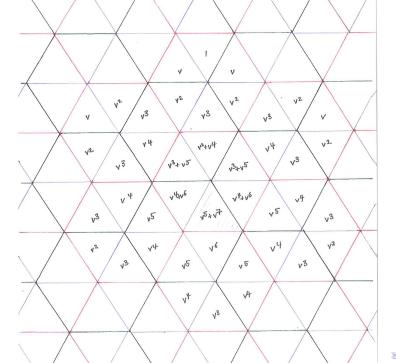


Recall that the Kazhdan and Lusztig basis has the form

$$\underline{H}_x := H_x + \sum_{y < x} h_{y,x} H_y$$

with $h_{y,x} \in v\mathbb{Z}[v]$ and satisfies $\overline{H_x} = \underline{H}_x$.

The polynomials $h_{y,x}$ are the Kazhdan-Lusztig polynomials.



E 990

We want to use the Coxeter complex to understand how to calculate the Kazhdan-Lusztig basis. The first few Kazhdan-Lusztig basis elements are easily defined:

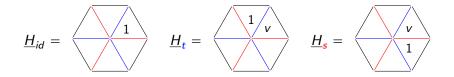
$$\underline{H}_{id} := H_{id}, \quad \underline{H}_s := H_s + vH_{id} \quad \text{for } s \in S.$$

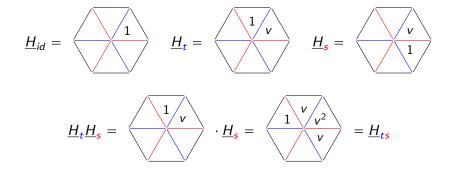
Now the work begins. Suppose that we have calculated \underline{H}_y for all y with $\ell(y) \leq \ell(x)$. Choose $s \in S$ with $\ell(xs) > \ell(x)$ and write

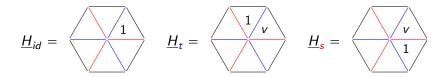
$$\underline{H}_{x}\underline{H}_{s} = H_{xs} + \sum_{\ell(y) < \ell(xs)} g_{y}H_{y}.$$

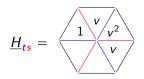
The formula for the action of \underline{H}_s shows that $g_y \in \mathbb{Z}[v]$ for all $y < \ell(xs)$. If all $g_y \in v\mathbb{Z}[v]$ then $\underline{H}_{xs} := \underline{H}_x\underline{H}_s$. Otherwise we set

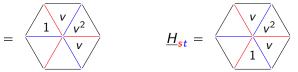
$$\underline{H}_{xs} = \underline{H}_{x}\underline{H}_{s} - \sum_{\substack{y \\ \ell(y) < \ell(x)}} g_{y}(0)\underline{H}_{y}.$$



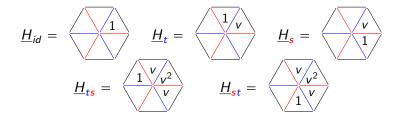




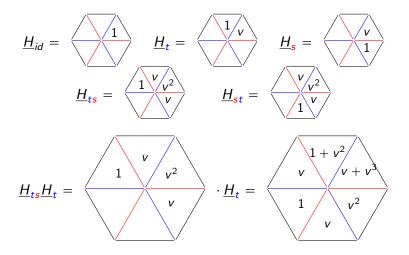


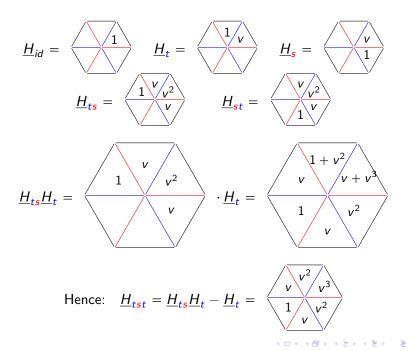


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで



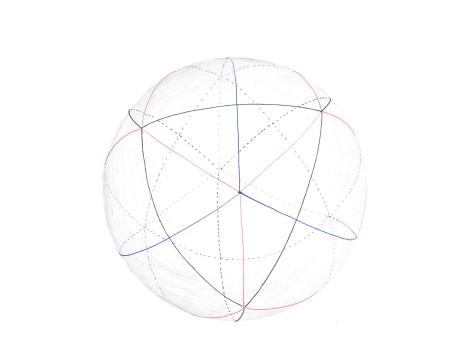


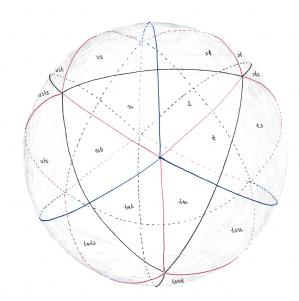
 $\mathcal{O} \land \mathcal{O}$

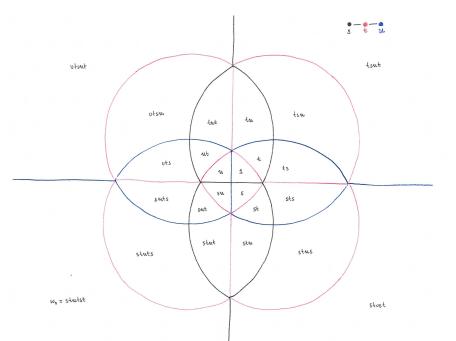
For dihedral groups (rank 2) we always have $h_{y,x} = v^{\ell(x)-\ell(y)}$ (Kazhdan-Lusztig basis elements are *smooth*.)

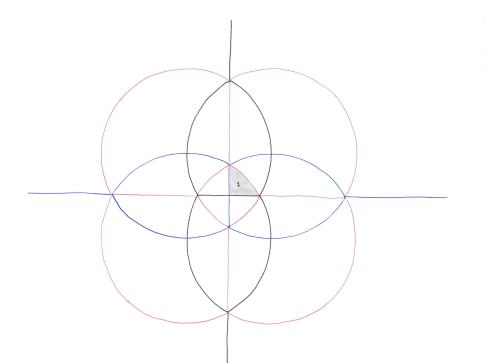
However in higher rank the situation quickly becomes more interesting...

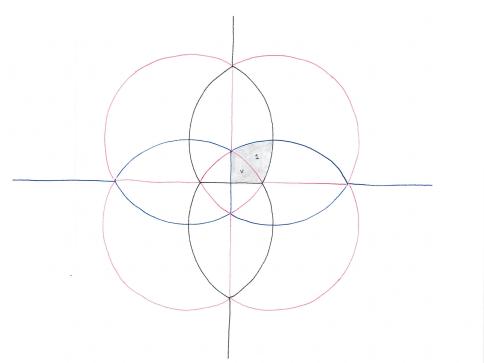
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

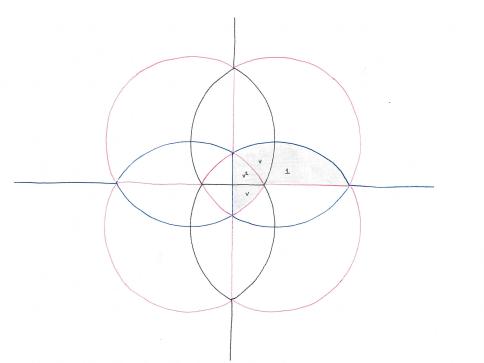


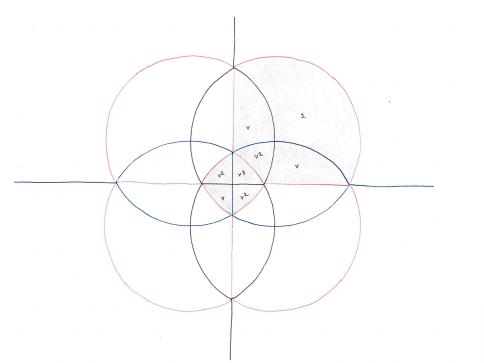


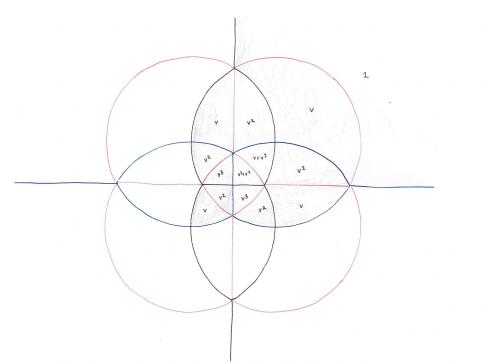


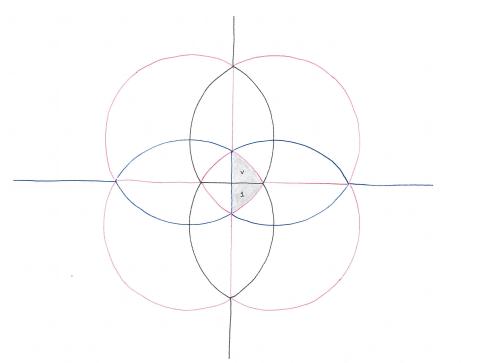


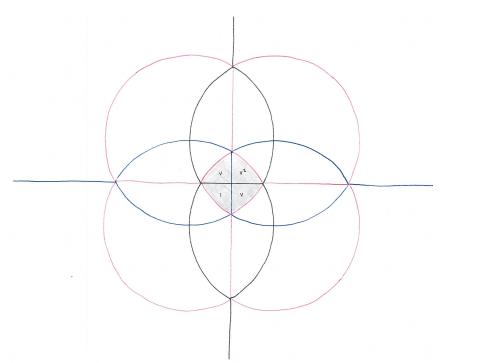


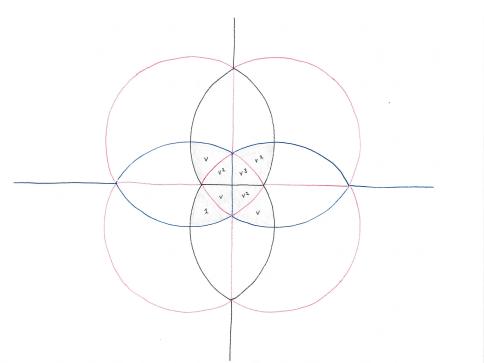


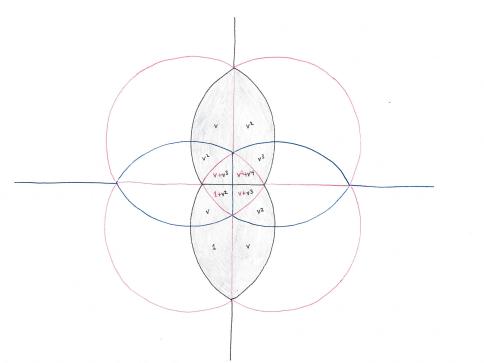


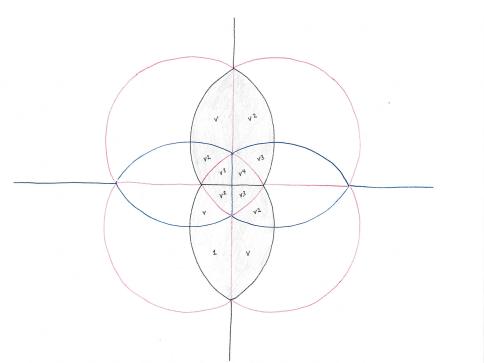


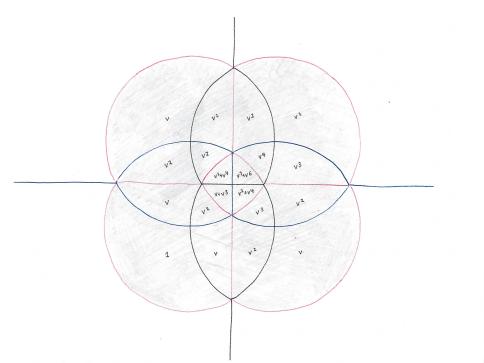


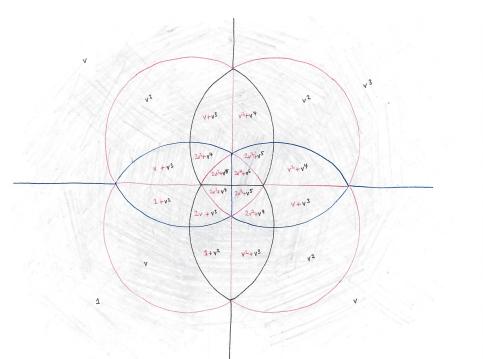






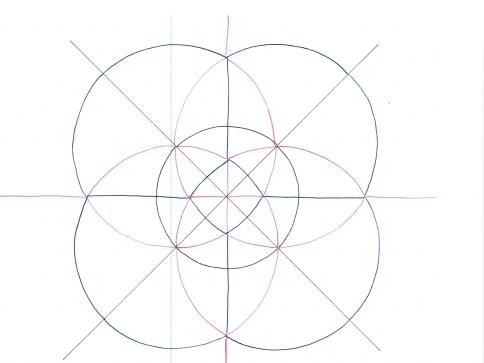


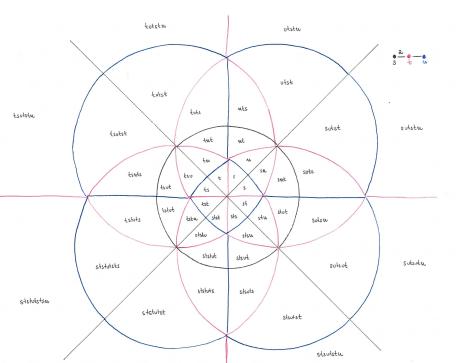


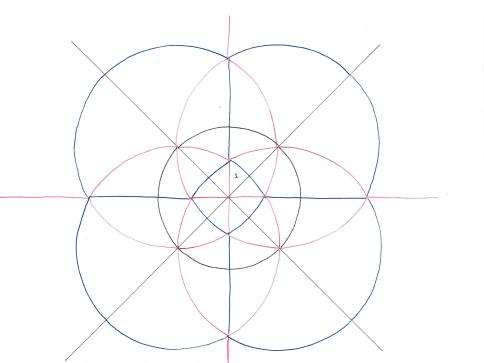


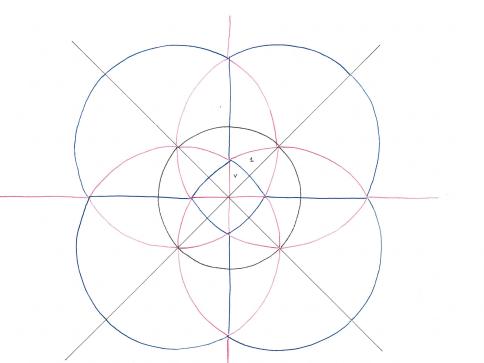


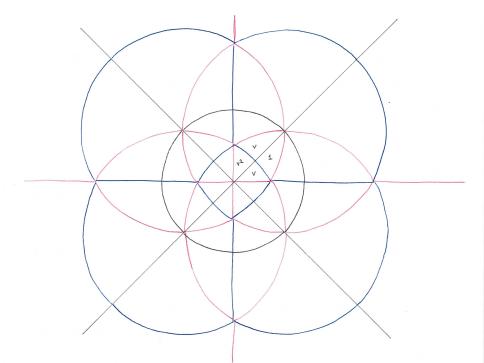
▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >

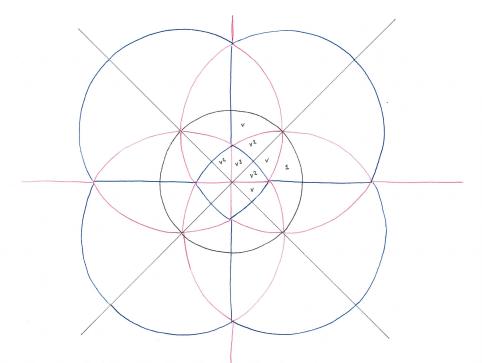


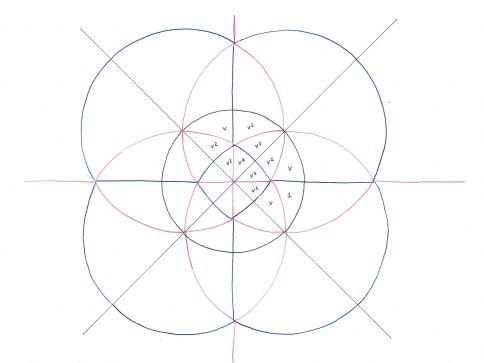


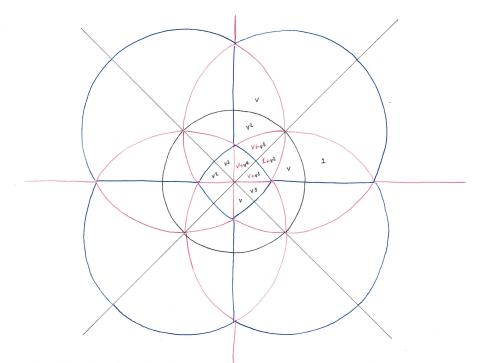


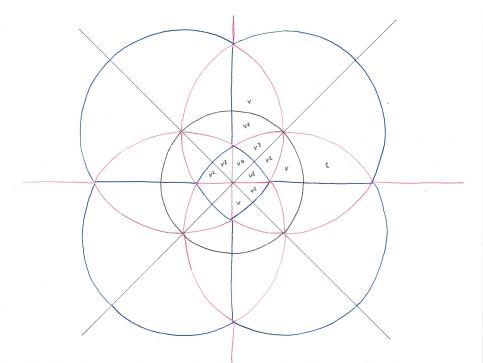


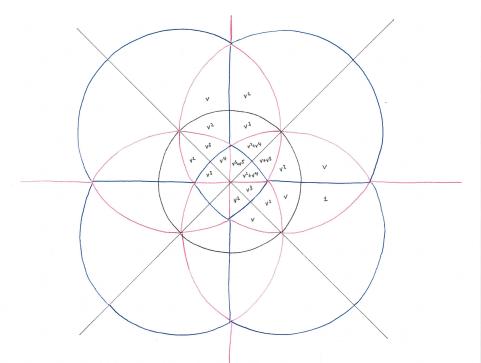


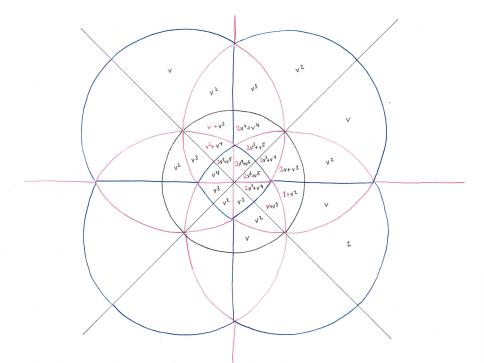


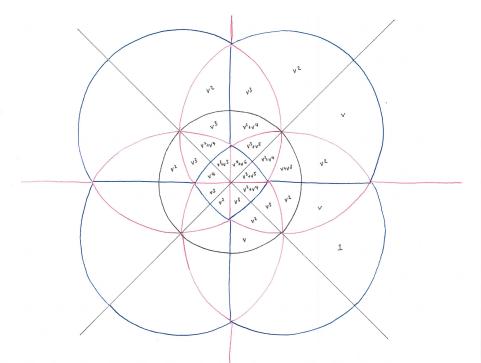


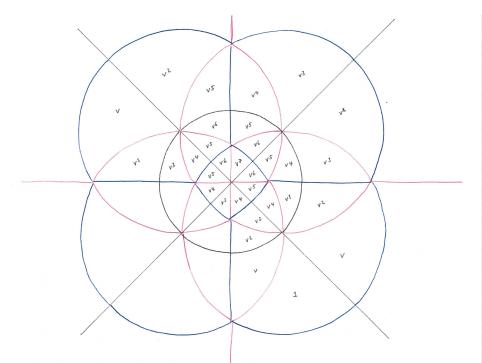


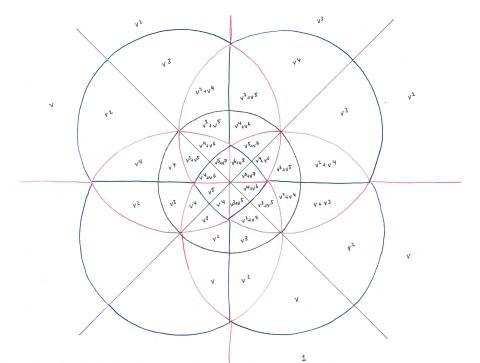




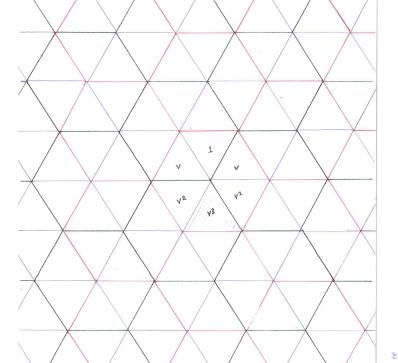




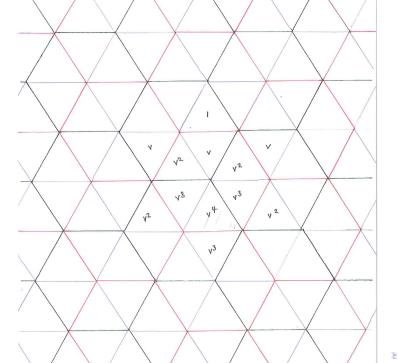




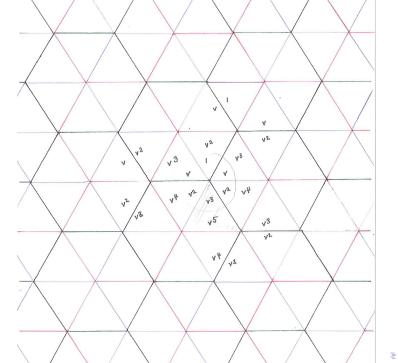
▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >



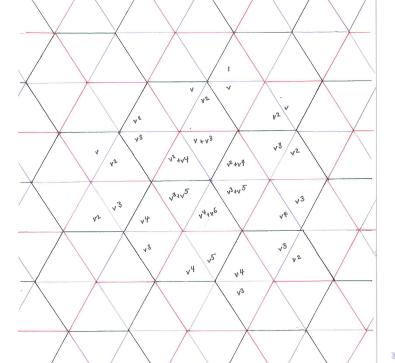
- nac



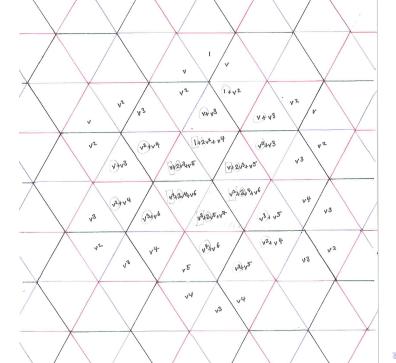
- nac



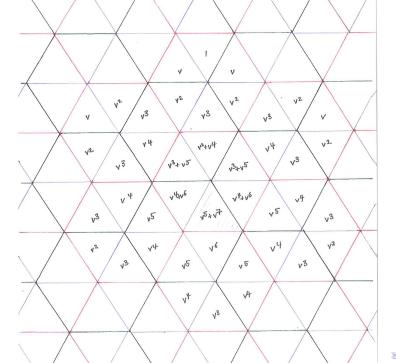
છે ગે



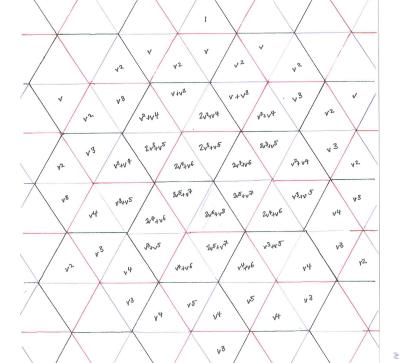
E 990



E 990



き のへで



 $\mathcal{O} \mathcal{Q} \mathcal{O}$

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >

Kazhdan-Lusztig positivity conjecture (1979): $h_{x,y} \in \mathbb{Z}_{\geq 0}[v]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Kazhdan-Lusztig positivity conjecture (1979): $h_{x,y} \in \mathbb{Z}_{\geq 0}[v]$

Established for crystallographic W by Kazhdan and Lusztig in 1980, using Deligne's proof of the Weil conjectures.

Crystallographic: $m_{st} \in \{2, 3, 4, 6, \infty\}$.

Why are Kazhdan-Lusztig polynomials hard?

Why are Kazhdan-Lusztig polynomials hard?

Polo's Theorem (1999)

For any $P \in 1 + q\mathbb{Z}_{\geq 0}[q]$ there exists an *m* such that $v^m P(v^{-2})$ occurs as a Kazhdan-Lusztig polynomial in some symmetric group.

Why are Kazhdan-Lusztig polynomials hard?

Polo's Theorem (1999)

For any $P \in 1 + q\mathbb{Z}_{\geq 0}[q]$ there exists an *m* such that $v^m P(v^{-2})$ occurs as a Kazhdan-Lusztig polynomial in some symmetric group.

Roughly: all positive polynomials are Kazhdan-Lusztig polynomials!

The most complicated Kazhdan-Lusztig-Vogan polynomial computed by the *Atlas of Lie groups and Representations* project:

$$\begin{split} 152q^{22} + 3\ 472q^{21} + 38\ 791q^{20} + 293\ 021q^{19} + 1\ 370\ 892q^{18} + \\ & + 4\ 067\ 059q^{17} + 7\ 964\ 012q^{16} + 11\ 159\ 003q^{15} + \\ & + 11\ 808\ 808q^{14} + 9\ 859\ 915q^{13} + 6\ 778\ 956q^{12} + \\ & + 3\ 964\ 369q^{11} + 2\ 015\ 441q^{10} + 906\ 567q^9 + \\ & + 363\ 611q^8 + 129\ 820q^7 + 41\ 239q^6 + \\ & + 11\ 426q^5 + 2\ 677q^4 + 492q^3 + 61q^2 + 3q \end{split}$$

(This polynomial is associated to the reflection group of type E_8 . See www.liegroups.org.)