


Given any Coxeter group pW , Sq we can produce a coloured
simplicial complex whose automorphisms are precisely W . This
complex is called the Coxeter complex and will be denoted
|pW , Sq|.

Let n � |S | denote the rank of W . Its construction is as follows:

� colour the n faces of the n � 1-simplex ∆ by the set S ,

� take one such simplex ∆w for each element w P W ,

� glue ∆w to ∆ws along the wall coloured by s.



For example, consider the symmetric group on three letters:

W � xs, t | s2 � t2 � pstq3y � te, s, t, st, ts, stsu.

e s t st ts sts
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The Coxeter complex of S4 �    :

(barycentric subdivision of the tetrahedron).
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Let ` : W Ñ N denote the length function on W . It is easy to
describe the length function using the Coxeter complex:

`pwq � length of a minimal expression for w in the generators s

� number of walls crossed in a minimal path id Ñ w in |pW ,Sq|.

The Bruhat order is trickier...
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By construction |pW ,Sq| has a left action of W .

W also acts on the alcoves of |pW , Sq| on the right by

∆w � s � ∆ws .

This action is not simplicial, but is “local”: cross the wall
coloured by s.



Using the Coxeter complex makes it easy to visualize elements of
the Hecke algebra H.

We view an element f �
°

fxHx as the assignment of
fx P Zrv�1s to the alcove indexed by x P W .



Recall the Kazhdan-Lusztig generator Hs :� Hs � vHid . The
formulas for the action of Hs on the standard basis can be
rewritten

HxHs �

#
Hxs � vHx if `pxsq ¡ `pxq,

Hxs � v�1Hx if `pxsq   `pxq.

We can visualise this as follows: (“quantized averaging operator”)
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Recall that the Kazhdan and Lusztig basis has the form

Hx :� Hx �
¸
y x

hy ,xHy

with hy ,x P vZrv s and satisfies Hx � Hx .

The polynomials hy ,x are the Kazhdan-Lusztig polynomials.





We want to use the Coxeter complex to understand how to
calculate the Kazhdan-Lusztig basis. The first few
Kazhdan-Lusztig basis elements are easily defined:

H id :� Hid , Hs :� Hs � vHid for s P S .

Now the work begins. Suppose that we have calculated Hy for all
y with `pyq ¤ `pxq. Choose s P S with `pxsq ¡ `pxq and write

HxHs � Hxs �
¸

`pyq `pxsq

gyHy .

The formula for the action of Hs shows that gy P Zrv s for all
y   `pxsq. If all gy P vZrv s then Hxs :� HxHs . Otherwise we set

Hxs � HxHs �
¸
y

`pyq `pxq

gy p0qHy .
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For dihedral groups (rank 2) we always have hy ,x � v `pxq�`pyq

(Kazhdan-Lusztig basis elements are smooth.)

However in higher rank the situation quickly becomes more
interesting...



















































































Kazhdan-Lusztig positivity conjecture (1979):

hx ,y P Z¥0rv s

Established for crystallographic W by Kazhdan and Lusztig in
1980, using Deligne’s proof of the Weil conjectures.

Crystallographic: mst P t2, 3, 4, 6,8u.
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Why are Kazhdan-Lusztig polynomials hard?

Polo’s Theorem (1999)

For any P P 1 � qZ¥0rqs there exists an m such that vmPpv�2q
occurs as a Kazhdan-Lusztig polynomial in some symmetric group.

Roughly: all positive polynomials are Kazhdan-Lusztig
polynomials!
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The most complicated Kazhdan-Lusztig-Vogan polynomial
computed by the Atlas of Lie groups and Representations project:

152q22�3 472q21 � 38 791q20 � 293 021q19 � 1 370 892q18�

�4 067 059q17 � 7 964 012q16 � 11 159 003q15�

�11 808 808q14 � 9 859 915q13 � 6 778 956q12�

�3 964 369q11 � 2 015 441q10 � 906 567q9�

�363 611q8 � 129 820q7 � 41 239q6�

�11 426q5 � 2 677q4 � 492q3 � 61q2 � 3q

(This polynomial is associated to the reflection group of type E8.
See www.liegroups.org.)

www.liegroups.org

