Soergel bimodules and Kazhdan-Lusztig conjectures

QGM, Aarhus March 2013

Thursday problem sheet

Warming up:

- 1. Let F_s and F_s^{-1} denote the Rouquier complexes introduced in lectures. Check that $F_sF_s^{-1} \cong R$ in $K^b(R\text{-Bim})$ as sketched in lectures.
- 2. Write down the summands appearing in the minimal complex of $F_sF_uF_tF_sF_u$.
- **3.** Consider $\overline{(B_sB_s)}$, with the Lefschetz operator

$$L_{a,b} := (a\rho \cdot -) \operatorname{id}_{B_s} + \operatorname{id}_{B_s} (b\rho \cdot -)$$

for some $a, b \in \mathbb{R}$. For which a, b does the hard Lefschetz property hold? For which a, b do the Hodge-Riemann bilinear relations hold? For which a, b does (HR) hold with the opposite signatures?

Longer exercises:

- **4.** (...continuing Q1) Compute the minimal complex of $F_s^{\otimes m}$ for $m \geq 0$. Describe its perverse filtration explicitly.
- **5.** Verify that $\overline{BS(sts)}$ satisfies the Hodge-Riemann bilinear relations with respect to left multiplication by ρ .
- **6.** In this exercise we prove an "easy" case of hard Lefschetz. Assume that B_x is a Soergel bimodule such that hard Lefschetz holds on $\overline{B_x}$. Recall the operator

$$L_{\zeta} := (\rho \cdot -) \operatorname{id}_{B_s} + \operatorname{id}_{B_x} (\zeta \rho \cdot -)$$

on B_xB_s . It induces a Lefschetz operator L_{ζ} on $\overline{B_xB_s}$. (You can equip B_x with an invariant form if you wish, but it won't be important for this exercise.)

- a) Let $s \in S$ be such that xs < s. Show that $B_xB_s = B_x(1) \oplus B_x(-1)$. (You should be able to give an abstract argument, but in part b) the following fact is useful (see "Singular Soergel bimodules"): there exists an (R, R^s) -bimodule $B_{\overline{x}}$ such that $B_{\overline{x}} \otimes_{R^s} R \cong B_x$.)
- b) Rewrite the Lefschetz operator L_z on B_xB_s using a fixed choice of isomorphism $B_xB_s = B_x(1) \oplus B_x(-1)$. Conclude that in the right quotient $\overline{B_xB_s}$, L_{ζ} has the form

$$\begin{pmatrix} \rho \cdot - & 0 \\ \zeta \gamma & \rho \cdot - \end{pmatrix}.$$

for some non-zero scalar γ . (As above, $\rho \cdot -$ denotes the degree two endomorphism of left multiplication by ρ .)

- c) Conclude that L_{ζ} satisfies hard Lefschetz on $\overline{B_x B_s}$ if and only if $\zeta \neq 0$.
- 7. In this exercise we look at the effect of translation functors on category \mathcal{O} , and see that they are easily understood on Verma modules.
 - i) Let $\lambda \in \mathfrak{h}^*$ be an arbitrary weight, and let V be a finite dimensional representation of \mathfrak{g} . Show that $\Delta(\lambda) \otimes V$ has a Verma flag; that is, that there exists a filtration

$$0 = F_0 \subset F_1 \subset \cdots \subset F_m = \Delta(\lambda) \otimes V$$

such that $F_i/F_{i-1} \cong \Delta(\mu_i)$ for some $\mu_i \in \mathfrak{h}^*$. What can you say about the multiset $\{\mu_i\}$?

ii) Now suppose that $\lambda, \mu \in \mathfrak{h}^*$ are such that $\lambda + \rho, \mu + \rho$ are dominant, and such that $\lambda - \mu \in \mathbb{Z}R$. Show that $T^{\mu}_{\lambda}(\Delta(w \cdot \lambda)) \cong \Delta(w \cdot \mu)$. Conclude that T^{μ}_{λ} gives an equivalence $\mathcal{O}_{\lambda} \xrightarrow{\sim} \mathcal{O}_{\mu}$ if $\lambda + \rho$ and $\mu + \rho$ are strictly dominant. iii) Now suppose that λ is integral and that $\lambda + \rho$ is dominant. Show we have an isomorphism

$$[\mathcal{O}_{\lambda}] \to \mathbb{Z}We_{\lambda} : [\Delta(w \cdot \lambda)] \mapsto e_{\lambda} \cdot w$$

where $e_{\lambda} = \sum_{x \in \text{Stab}_{W}(\lambda + \rho)} x$.

iv) Let λ, μ be as above. In addition, assume that λ, μ are integral, that λ is regular (i.e. $\lambda + \rho$ is strictly dominant) and the μ is sub-regular (i.e. $e_{\mu} = (1+s)$ for some $s \in S$). Show that we have a commutative diagram

$$[\mathcal{O}_{\lambda}] \xrightarrow{T_{\lambda}^{\mu}} [\mathcal{O}_{\mu}] \xrightarrow{T_{\mu}^{\lambda}} [\mathcal{O}_{\lambda}]$$

$$\downarrow^{\sim} \qquad \qquad \downarrow^{\sim} \qquad \qquad \downarrow^{\sim}$$

$$\mathbb{Z}W \xrightarrow{\cdot (1+s)} \mathbb{Z}W(1+s) \xrightarrow{\text{inclusion}} \mathbb{Z}W$$

(the vertical isomorphisms are those of the previous exercise).

- v) (Optional) Can you give similar descriptions for more general weights? (I.e. non integral, or with e_{λ} more complicated?)
- **8.** Let C denote the coinvariant ring, the (graded) quotient of R by positive degree symmetric polynomials under the usual W action. Let $R^{W^{\cdot}} \subset R$ be the (non-graded) subring of invariants under the dot-action of W on \mathfrak{h}^* , by $w \cdot \mu = w(\mu + \rho) \rho$. Show that the composition $R^{W^{\cdot}} \hookrightarrow R \twoheadrightarrow C$ is surjective. (This is a key point in the proof of the Endomorphismensatz.)

For fun?!

- **9.** Here we give a torsion example that surprised a few people last decade! Consider S_8 , a Weyl group of type A_7 . Let i = (i, i + 1) (we write i instead of s_i for reasons that should become clear).
 - a) Consider the reduced expression:

$$\underline{w} = 1357246352461357.$$

Show that e = 1111010110100000 is the unique subexpression of defect zero with endpoint

$$w_I = 13435437.$$

(Note that w_I is the maximal element in the standard parabolic subgroup generated by $I = \{1, 3, 4, 5, 7\}$.)

b) Hence calculate the local intersection form in degree zero of \underline{w} at z. What do you notice?

(We will see more about this when we discuss the p-canonical basis tomorrow.)

- 10. a) Let C be a finite dimensional graded algebra, and P a (non-graded) projective (resp. simple) module. Show that P admits a graded lift.
 - b) Show that $\overline{B_x}$ is indecomposable as a graded R-module if and only if it is indecomposable as an ungraded R-module.

Research level questions:

- 11. Formulate a good notion of hard Lefschetz and Hodge-Riemann bilinear relations in equivariant cohomology (i.e. without taking the quotient by R^+ on the right, so that one has infinite dimensional vector spaces), and use it to simplify our proofs of hard Lefschetz for Soergel bimodules.
- 12. When ρ is not dominant (i.e. try $w(\rho)$ for $w \in W$), does the hard Lefschetz property hold? Determine the signatures of the Lefschetz forms.