Equivariant cohomology, localisation and moment graphs

University of Melbourne

Wednesday June $10^{\text {th }} 2011$

Friday Problem Sheet

1. Let $\operatorname{Gr}(k, n)$ denote the Grassmannian of k-planes in \mathbb{C}^{n}. This has a $T=\left(\mathbb{C}^{\times}\right)^{n}$-action induced from the obvious T-action on \mathbb{C}^{n}. Show that the moment graph of $\operatorname{Gr}(k, n)$ has the following description:
a) vertices are given by k-subsets $I \subset\{1, \ldots, n\}$,
b) two vertices $I_{1} \neq I_{2}$ are joined by an edge if and only if $\left|I_{1} \cap I_{2}\right|=(k-1)$ in which case this edge is labelled by $\pm\left(e_{i}-e_{j}\right)$, where i and j are the two elements in the symmetric difference of I_{1} and I_{2}.
2. Let J denote the $n \times n$ anti-diagonal matrix $J=\left(\begin{array}{ccc}0 & \ldots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \ldots & 0\end{array}\right)$. Let ω be the symplectic form on $\mathbb{C}^{2 n}$ given in the standard basis by $\left(\begin{array}{cc}0 & J \\ -J & 0\end{array}\right)$. Let $G=S p(2 n) \subset G L_{2 n}(\mathbb{C})$ denote the group of symplectic automorphisms of $\mathbb{C}^{2 n}$ and let T denote the subgroup of diagonal matrices in $G=S p(2 n)$. So that $T \cong\left(\mathbb{C}^{\times}\right)^{n}$ via $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \mapsto \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}, \lambda_{n}^{-1}, \ldots, \lambda_{1}^{-1}\right)$. Let X denote the Grassmannian of n-dimensional isotropic subspaces of $\mathbb{C}^{2 n}$. (Recall that a subspace $V \subset \mathbb{C}^{2 n}$ is isotropic if the restriction of ω to V is identically zero.)
a) Show that T has 2^{n} fixed points on X.
b) Describe the moment graph of X.
3. (Requires some knowledge of the structure theory of reductive algebraic groups.) Let G denote a connected complex reductive group and let $T \subset G$ denote a maximal torus and Borel subgroup of G. Let W be the Weyl group of (G, T). Recall that one has a bijection between the roots R modulo ± 1 of (G, T) and reflections in W which we denote by $X(T) \ni \alpha \mapsto s_{\alpha} \in W$.
a) Show that $(G / B)^{T}=W$ and hence the vertices may be canonically identified with the Weyl group W of (G, T),
b) Show that there is a one-dimensional orbit joining $w_{1}, w_{2} \in W$ if and only if there exists a reflection $s_{\alpha} \in W$ with $s_{\alpha} w_{1}=w_{2}$, in which case the corresponding edge in the moment graph is labelled by α.
(Hint: We discussed the case of $G=G L_{n}$ in lectures.)
4. Keep the notation of the previous section and let Γ denote the moment graph of G / B. In addition let $\Delta \subset R^{+} \subset R$ denote the simple and positive roots, and let \leq denote the Bruhat order on W. Let w_{0} denote the longest element in W. Recall that a section of Γ is a tuple $\left(f_{x}\right) \in \bigoplus_{x \in W} S_{T}$ such that $f_{x}-f_{s_{\alpha} x}$ is divisible by α for all pairs $x \in W$ and $\alpha \in R$. Given an element $f=\left(f_{x}\right) \in \bigoplus_{x \in W} S_{T}$ define its support to be the set $\operatorname{supp} f=\left\{x \in W \mid f_{x} \neq 0\right\}$.
a) Define $f^{w_{0}}=\left(f_{x}^{w_{0}}\right)$ by $f_{w_{0}}^{w_{0}}=\prod_{\alpha \in R^{+}} \alpha$ and $f_{x}^{w_{0}}=0$ if $x \neq w_{0}$. Show that $f^{w_{0}}$ is a section of Γ.
b) Recall that S_{T} is graded with $X(T)$ in degree 2. Given $x \in W$ show that the space of sections $f \in \bigoplus_{x \in W} S_{T}$ such that $\operatorname{deg} f=2 \ell(x)$ and $\operatorname{supp} f \subset\{y \mid y \geq x\}$ is at most one-dimensional.
c) Given a section $f=\left(f_{x}\right)$ and a root α show $\partial_{\alpha} f$, defined by $\left(\partial_{\alpha} f\right)_{x}:=\frac{1}{x \alpha}\left(f_{x}-f_{x s}\right)$ is also a section. (The operators ∂_{α} are called BGG operators.)
d) Let f denote a section of degree d with $\operatorname{supp} f \subset\{\geq x\}$ and $f_{x} \neq 0$. Show that if α is a simple root with $s_{\alpha} x<x$ then the support of $\partial_{\alpha} f$ is contained in $\left\{\geq s_{\alpha} x\right\}, f_{s x} \neq 0$ and $\operatorname{deg} \partial_{\alpha} f=d-2$.
e) Use a), b) and d) to conclude that the space of global sections of the moment graph is a free S_{T}-module of rank $|W|$.
(We already knew that e) is true by equivariant formality. However it is interesting to see how subtle an algebraic proof of this fact is!)
