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Abstract

The aim of this paper is to give a new explicit construction of Lusztig’s asymptotic
algebra in affine type A. To do so, we construct a balanced system of cell modules, prove an
asymptotic version of the Plancherel Theorem and develop a relative version of the Satake
Isomorphism for each two-sided Kazhdan-Lusztig cell.
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Introduction

Kazhdan-Lusztig theory plays a fundamental role in the representation theory of Coxeter groups,
Hecke algebras, groups of Lie type, and Lie algebras. One of the most fascinating objects in
the theory is the asymptotic algebra introduced by Lusztig in [I8]. This algebra is “simpler”
than the associated Hecke algebra, yet still encapsulates essential features of the representation
theory. This apparent simplicity is contrasted by the considerable difficulty one faces in explicitly
realising the asymptotic algebra for a given Coxeter group, because on face value it requires a
detailed understanding of the entire Kazhdan-Lusztig basis, and the structure constants with
respect to this basis.

The asymptotic algebra J is a Z-algebra with basis (ty)wew indexed by the associated
Coxeter group W and multiplication defined using coefficients of the structure constants of
the Kazhdan-Lusztig basis in the Hecke algebra. The structure of this algebra is intimately
related to the notion of Kazhdan-Lusztig cells: for instance, if A is a two-sided cell of W then
JA = spang{t, | w € A} is a two-sided ideal of J and in turn, J is a direct sum of Ja where A
runs through the set of two-sided cells of W.

For general affine (equal parameter) type, Lusztig gave a conjectural description of the
asymptotic algebra in terms of the Langlands dual group [20]. In the case of affine type A,
this conjecture is equivalent to show that, for all two-sided cells Ay, the subalgebra Jy = Ja,
is isomorphic to the representation ring of a certain connected reductive group F» with Weyl
group (). This was first proved by Xi in a remarkable paper [31] in 2002 where he gave the
first explicit construction of the asymptotic algebra in affine type A using the notion of chains
and antichains, following work of Shi [28]. Around the same time Bezrukavnikov and Ostrik [4]
verified Lusztig’s conjecture in a modified form for general affine type (see also [3]). A further
approach to constructing the asymptotic algebra in affine type A was given recently by Kim and
Pylyavskyy [14] using the affine matrix ball construction.



The aim of this paper is to present a new construction of the asymptotic algebra in affine
type A as a matrix algebra with coeflicients in the ring of G)-symmetric functions which we
believe is interesting for three main reasons: (1) our construction is based on the combinatorial
notion of alcove paths and the representation ring of F) appears very naturally via the G-
Schur symmetric functions, (2) an asymptotic version of the Plancherel Theorem is proved,
which endows the asymptotic algebra with an inner product, and (3) there are indications that
our methods are adaptable to other affine types, and moreover to the unequal parameter case.
For instance, similar methods have been used by the second and fourth authors to construct
the asymptotic algebra associated to the lowest two-sided cell in general affine type (for all
parameters; see [11l Section 6]) and to construct the full asymptotic algebra for all affine Hecke
algebras associated to rank 2 root systems (for all parameters; see [111, [12]).

Let W be the extended affine Weyl group of type A, and let H be the associated extended
Hecke algebra defined over R = Z[q, q~!]. We will denote by (T,) the standard basis of H (which
reflects the Coxeter structure of H) and by (Cy) the Kazhdan-Lusztig basis of H which is at
the heart of the definition of Kazhdan-Lusztig (left, right, and two-sided) cells. The description
of cells in W is known by the work of Lusztig and Shi [17, 28]. For a partition A of n + 1 we
denote by W), the standard Young subgroup of W associated to A and by w) the longest element
of W). Let Ay be the two-sided cell containing wy, (where A’ is the transposed partition of \).
Then (Ax)arn+1 describes the full set of two-sided cells and we further have Ay <pr A, in the
two-sided order if and only if A < g in the dominance order for partitions.

Since affine type A is necessarily “equal parameters”, deep geometric interpretations of
Kazhdan-Lusztig theory imply positivity properties in the Hecke algebra, such as the posi-
tivity of the coefficients of the Kazhdan-Lusztig polynomials, and positivity of the coefficients of
the structure constants h;, . with respect to Kazhdan-Lusztig basis. This positivity implies a
collection of useful properties in the theory, which have been collected by Lusztig [21] in a series
of statements now known as P1-P15. These statements capture the essential properties of cells,
Lusztig’s a-function (defined by a(z) = max{deg(hsy.) | ,y € W}), and of the asymptotic
algebra (note that P1-P15 remain conjectural in the general case of Coxeter groups with unequal
parameters). In particular, these properties imply that a is constant on two-sided cells, and it
follows that a(Ay) = a(w)) = ¢(wy/) where £ is the usual length function on W. The structure
constants 7, . with respect to the basis (t,,) of the asymptotic algebra [J are the coefficients
of the term of degree a(z) in hy, 1.

Our main tool to describe the algebra J is a family of matrix representations (m))x-n+1
of H defined over a ring R[¢)] that turn out to be deeply connected to Kazhdan-Lusztig theory
and that admit a combinatorial description in terms of A-folded alcove paths (with respect to a
distinguished basis). In the course of this paper we will show that:

« the representations 7 are bounded by a(Ay). That is, the maximal degree in q of the

entries of the matrices my(T},) for w € W is bounded by a(A,) (see Theorem .

» the representations my recognise Ay. That is, for w € W we have w € A » if and only if
the matrix 7y (7y) has an entry of degree a(Ay). Furthermore, this term is unique and its
position in the matrix determines in which left and right cell of Ay the element w lies (see
Theorems and .

« The asymptotic algebra Jy = Ja, associated to Ay is isomorphic to the matrix algebra €y
with Z-basis given by the leading matrices c¢y(w) with w € Ay. Here cy(w) is the matrix
obtained by evaluating the matrix q=2(®\) 7y (T},) at g~' = 0 (see Theorem .

These properties show that the family (7)) x-nt1 forms a balanced system of cell representations
as defined in [II] (see Corollary [7.10).



In the process of proving the above statements we prove the following results, which we

believe are interesting in their own right.

« We develop an asymptotic version of the Opdam’s Plancherel Theorem [24] in affine type A
by showing that the terms in the Plancherel Theorem are in bijection with the set of two-
sided cells, and that the coefficients that appear are linked to Lusztig’s a-function (see
Section .

+ We prove a A-relative version of the Satake Isomorphism, giving an isomorphism from
mA(1nH1y) (where 1, is a renormalisation of Cy,,) to the ring of Gy-symmetric functions
(see Theorem [3.12)).

» We describe the set I'y N F)_\l (with Ty the right cell containing wy/) in a very natural way
in terms of the geometry of the fundamental A-alcove (see Theorem [7.6]).

We now describe in more details the content of the paper. To understand the general
philosophy it is helpful to understand the situation for the lowest two-sided cell Ay (the minimal
cell with respect to the two-sided order <pp; in this case our method applies to all affine Weyl
groups and all choice of parameters). This cell corresponds to the partition (1"*1), and contains
the longest element wq of the finite Weyl group W. Let I'g be the right cell that contains wp.
Then I'p N Ty lis the set of words towo where v € Py is a dominant weight and t, € W is
the translation by . Let my be the principal series representation of H as defined in [11] for
example. Then my has a combinatorial description in terms of positively folded alcoves paths,
is bounded by ¢(wq) and recognises Ay (see [11, Section 6]). Furthermore, the leading matrix
¢o(tywo) for v € P4 has a unique non-zero coefficient, equal to s,(¢) (the Schur function of
type W). In this case, the Satake Isomorphism provides an isomorphism between 10ﬁ 1p and
the ring of W-symmetric functions (see [I5 23]). In this paper we construct analogues of the
above results for all two-sided cells.

Given a root system of type A, we can construct the set of alcoves in the usual way. Then
to any partition A\ of n + 1, we associate the fundamental M-alcove A, defined as the set of
alcoves that lie between the hyperplanes H, o and H, 1 where a runs over the positive roots <I>j\r
associated to the Young subgroup W). Our representations w) can be expressed in terms of A-
folded alcove paths in Ay (a generalisation of Ram’s positively folded alcove paths [26]; see [10]).
The symmetry group of Ay plays a very important role in our work: it is the semi-direct product
of G\ (the subgroup of W stabilising Ay ) and a set of pseudo-translations Ty. Remarkably, the
A-dominant elements of T turns out to be closely related to I'y N F;l, and the ring jrmr;1

spanned by t,, withw € T’ Aﬁf‘;l turns out to be isomorphic to the ring Z[¢]%* of G-symmetric
functions (see Theorem . In the case of the lowest two-sided cell, A) is the set of all alcoves,
Gy is W, and the set of pseudo-translations Ty is the set of all translations.

Before turning our attention to the asymptotic Plancherel Theorem, let us first recall the
situation for a finite dimensional Hecke algebra Hy of type A,. In this case the canonical trace
decomposes as a linear combination of irreducible characters (indexed by partitions) and the
coefficients that appear are normalisations of the generic degrees of Hy. It turns out that the
coefficient associated to A\ has valuation 2a(wy/) (see [8]). There is an analogue of this decom-
position for affine Hecke algebras in the form of the Plancherel Theorem [24] which expresses
the canonical trace as a sum of integrals over families of representations. In this paper we show
that, in affine type A, a similar phenomenon as in the finite case happens: the terms in the
Plancherel formula are in bijection with the two-sided cells, and the coefficients have valuation
equal to 2a(A)) (this behaviour was first observed in affine Hecke algebras of types Gs and Cy by
the second and fourth authors in [IT],[12]). This leads to an asymptotic version of the Plancherel
Theorem, which in turn gives rise to an inner product on the ring €, of leading matrices.



Our MA-relative Satake theory and asymptotic Plancherel Theorem come together to prove
that the Z-algebra €, spanned by the leading matrices ¢y (w) with w € Ay is isomorphic to the
asymptotic algebra 7). We show that, up to conjugation, €, is a full matrix algebra over the
ring Z[¢,]*, hence giving an explicit construction of Lusztig’s algebra Jy (see Theorem [7.8)).

The structure of the paper is as follows. In Section [I] we recall background material on
the symmetric group, partitions and tableaux, affine Hecke algebras, and Kazhdan-Lusztig the-
ory. In Section [2| we explicitly describe the fundamental A-alcove and its symmetries in affine
type A. Moreover we introduce a A-dominance order on weights of the fundamental A-alcove,
and recall the theory of A-folded alcove paths from [10, 1T, 12]. We construct a ring Z[(y]%* of
G-symmetric functions, and recall the definition of the induced representations 7y, and their
combinatorial description, from [10].

In Section |3| we develop our A-relative Satake theory, and in particular we prove in The-
orem ﬁ that the function fi(h) = xa(hCw,,) is Gx-symmetric. The A-relative Satake Iso-
morphism is then given in Theorem Section [] proves two important properties of our
representations: the killing property (see Theorem and the boundedness property (see
Theorem [4.7)). This boundedness property allows us to define the leading matrices ¢y (w) in
Section [4.3]

In Sectionwe recall the Plancherel Theorem for type A, following [2]. We then develop our
asymptotic Plancherel Theorem in Theorem [5.6] This allows us to prove that 7y recognises Ay
(Theorem and that J) = €, (Theorem [5.8).

In Section |§| we introduce important elements m, as certain maximal length W)/,-double
coset representatives. These elements will ultimately describe I'y N F;l, however we first need
to compute their lengths and prove a monotonicity of length with respect to the A-dominance
order. These properties are stated in Theorem [6.4 however since the proofs turn out to be
technical, we present them in an appendix (see Appendix . Finally, in Section [7| we give our
explicit construction of Lusztig’s asymptotic algebra 7).

1 Background and preliminary results

In this section we provide background on the symmetric group, tableau, the extended affine
Weyl group, the affine Hecke algebra, and Kazhdan-Lusztig theory.

1.1 The symmetric group and type A, root system

Let V ={v € R™! | v-1 =0}, where 1 = (1,1,...,1), and let ¢; = (0,0,...,0,1,0,...,0)— =1
for 1 <i<n-+1 (with the 1 in the ith place). Thus e; € V, and we have e; + -+ + ep41 = 0.
Let (-,-) be the restriction of the standard inner product on R**! to V.

Let @t ={e; —¢; |1 <i<j<n+1}and ® = ®T U (—P") be a root system of type A,,.
The simple roots are o; = e; — e;41 for 1 < ¢ < n. The height of a root a@ = Z?:l a;oy
is ht(a) = >, a;, and the unique highest root is ¢ = aj + -+ + a,,. The Weyl group
W of ® is the symmetric group &1, acting by we; = e, ;). Let s1,...,s, be the simple
reflections (elementary transpositions), and write Sp = {s; | 1 < i < n}. Let £ : W — N be
the standard length function on the Coxeter system (W, Sp). The inversion set of w € W is
P(w) ={a € dF |wltaec -0t}

The one line expression of w € W is the sequence [w(1),w(2), -+ ,w(n+1)]. For 1 <i<n
we have ¢(ws;) = ¢(w) + 1 if and only if w(i + 1) > w(i), and ¢(s;w) = ¢(w) + 1 if and only if 4
and ¢ + 1 appear in ascending order in the 1-line notation of w.



If J C {1,...,n} let W; be the parabolic subgroup of W generated by {s; | j € J}. Let /W
denote the transversal of minimal length elements of cosets in W;\W. Each w € W has a unique
expression as w = uv with u € Wy and v € W, and £(w) = £(u) + £(v). Let w; denote the
longest element of W;. We write wo = wyy ) for the longest element of W.

The support of a root a € ® is supp(o) = {i | ¢; # 0}, where o = > | ¢or;. For J C
{1,...,n}let ®; = {a € ® | supp(a) C J}, and for w € W write ®;(w) = ®(w)NP;. If w = wv
with v € Wy and v € /W then ®(u) = ®(w) N ®;. In particular, we have /W = {v € W |
®;(v) = 0} (see [10, Lemma 1.2]).

1.2 Partitions and tableaux

Many objects in this paper are indexed by the set P(n + 1) of all partitions of n 4+ 1. For
A€ P(n+1) write A F n+ 1. We represent partitions as Young diagrams (using English
notation conventions). For A - n + 1 we make the following definitions.

— () denotes the number of parts of A, and so A = (A1, A2,..., Ay(n))-

~AM0)=0and \(i) = A1 +---+ X\ for 1 <i<r(N).

— t,(\) is the standard tableau of shape A filled by row.
tc(A) is the standard tableau of shape A filled by column.
Ali, j] is the element in row ¢ and column j of t,(\) (with 1 <i<r(A) and 1 <j <N\).
— L ={L2,....n+ 11\{\N1),A(2),..., A(r(N\))}.
— X denotes the transposed partition of A (obtained by reflecting X in the main diagonal).

Example 1.1. Let A = (5,3,3,2,1) - 14. Then r(A) = 5 (the number of rows of the Young
diagram), and we have

6(0) = 415] ana e =[] 6 [1013[14]
2 [7 |11
10[11 38|12
12[13 19
14 5

Then {A\(7) | 1 <i <r(\)} = {5,8,11,13,14} (note that these are the final entries in each row
of t,(\)) and so Jy ={1,2,3,4,6,7,9,10,12}. We have \' = (5,4,3,1,1).

Let < be the dominance partial order on P(n + 1) given by p < X if and only if u(i) < A(4)
for all ¢ > 1 (where, by convention, we set A; = 0 if ¢ > r(\)). Recall that p < X if and only if
N <.

Write Wy, "W, ®, and w, in place of Wy,, W, &, and wy, (we will employ similar
notational simplifications throughout the paper without further comment). In particular W) is
the standard Young subgroup associated to .

Lemma 1.2. We have w € "W if and only if for each row of t,.(\) the elements of the row
appear in ascending order in the 1-line notation of w.

Proof. Note that if ¢ and i+ 1 lie in the same row of t,(\) then ¢ € Jy, and if i + 1 occurs before
i in the 1-line notation of w then ¢(s;w) = ¢(w) — 1. The result follows. O

Let
ax=» (i—1)\= %ZA;(M = 1) =l(wy).

i>1 i>1
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Lemma 1.3. Let A\, p € P(n+1). If p < X then a, > ay with equality if and only if p = X.
Proof. This follows from the identity ay = ;5 (n +1 — A(i)). O

Let

m:% > a

+
an<I>/\

Then for j € Jy we have (aj,py) =1 (c.f. [I0, Lemma 1.4]).

1.3 The element u,

The element uy introduced below plays an important role in this work.

Definition 1.4. Let uy € W be the element given in 1-line notation by reading in the columns
of t.(A), from top to bottom, left to right.

Definition 1.5. Let A - n+ 1 and w € W. Insert dividers into the 1-line notation w =
[w(l),w(2),...,w(n + 1)] forming “blocks” according to the following rules. For 1 < i < n
insert a divider between w(i) and w(i 4 1) if either (1) w(i + 1) < w(¢) or, (2) w(i +1) > w(7)
and the numbers w(i) and w(i 4+ 1) lie in a common row of t,(\). The resulting expression,
with the 1-line notation split into blocks, is called the A-expression of w. Define a partition
p(w,\) € P(n+1) by rearranging the sequence of lengths of the blocks of the A-expression of w
into decreasing order.

Example 1.6. If A = (5,3,3,2,1) then uy = [1,6,9,12,14,2,7,10,13,3,8,11,4,5] and w =
[1,3,7,2,6,11,12,5,4,14,9, 10, 13,8] has A-expression [1]3,7]2,6,11,12|54,14]9|10,13]8].
Thus p(w,\) = (4,2,2,2,1,1,1,1).

Definition 1.7. The right A-ascent set of u € *W is
Ax(u) = {s € So | £(us) = £(u) + 1 and us € *W}.
Lemma 1.8. For u € "W we have
Ax(u) = {si | u(i) and u(i + 1) lie in a common block of the \-expression of u}.

Proof. Suppose that u(i) and u(i + 1) are in different blocks of the A-expression of u. Then
either u(i + 1) < u(7) or u(i + 1) > w(i) and the numbers u(i) and u(i + 1) are in a common
row of t,(\). In the former case we have ¢(us;) = ¢(u) — 1, hence s; ¢ Ax(u). In the latter
case the numbers us;(i + 1) = u(i) and wus;(i) = u(i + 1) lie in the common row of t,.(\) yet are
not in ascending order in the 1-line notation of us;, giving us; ¢ *W (by Lemma , and so
si & Ax(u).

Conversely, suppose that u(i) and u(i + 1) are in a common block of the A-expression of w.
Then wu(i + 1) > u(i) and hence £(us;) = £(u) + 1. Since u € "W, for each row of t,()\) the
elements of the row appear in ascending order in the 1-line notation of u (by Lemma. Since
u(7) and u(i+1) lie in a common block of the A-expression of u they lie on different rows of t,.(\),
and hence the elements of each row of t,(\) appear in ascending order in the 1-line notation
of us;, and so us; € *W. Thus s; € Ay(u). O

Corollary 1.9. We have pu(uy,\) = N and Ay(uy) = Jy. Moreover uxw € "W for allw € Wy.



Proof. By construction, the blocks of the A-expression of uy are the columns of t,(\), and the
first statement follows from Lemma [I.8] For the second statement, note that multiplying on the
right by wy, will only permute elements in blocks of the A-expression (see Lemma . O

Lemma 1.10. For all w € W we have p(w,\) < .

Proof. Let p = p(w, \). Let v1,72,...,7 be the blocks of the A-expression for w, arranged so
that they are in decreasing length. Thus u = (|71],. .., |v|). Let t be a (not necessarily column
strict) tableau of shape p given by entering the elements of ; into the ith row of t in any order.
By construction of the A-expression, the elements of row i of t lie in different columns of t.(\'),
and so by the Dominance Lemma for partitions (see [27, Lemma 2.2.4]) we have p < )\ as
required. O

The following characterisation of uy is crucial at a few occasions later.

Theorem 1.11. Let u € *W. We have
(1) l(wa, ) < €wy) with equality if and only if p(u, \) = X', and
(2) Ax(u) = Jy if and only if u = uy.

Proof. Let v € "W and write u = p(u,\). By Lemma the type of the Young subgroup
generated by Ay(u) is &, x --- x &, , and hence £(w 4, () = £(w,) = a,. Lemma gives
< X\, which is equivalent to p’ > X. Thus Lemma gives £(wa, () = ay < ay with equality
if and only if p(u, \) = X, hence (1).

To prove (2), suppose that v € "W with Ay(u) = Jy. Thus p(u,\) = X. If u # uy then
the A-expression for u is either a rearrangement of the blocks of the A-expression of uy, or there
is a block of the A-expression of u that is not a column of t,.(\). In either case, there exist two
elements of a row of t,(\) that are not in ascending order in the A-expression of u, and hence
u ¢ AW, a contradiction. O

1.4 The extended affine Weyl group

The fundamental weights of ® are the vectors w; = ej+- - -+e; for 1 <i < n (then (w;, o) = d; ;).
By convention we set wg = 0 and wy,+1 = e1+---+e,+1 = 0. Let P be the Z-span of {w1,...,w,}
and let Py be the Z>o-span of {w,...,wy}. Then P is the Z-span of {¢; | 1 <i < n+1} (recall
that e + -+ epy1 =0) and aje; + -+ apt1en+1 € Py ifand only if a1 > a2 > -+ > ap41.

Let @ be the Z-span of ® and let Q4 be the Z>g-span of {a1,...,a,}. Note that Q C P,
and aje; + -+ + apyi1ent1 € @ if and only if a3 + -+ + apt1 = 0 mod n + 1. Moreover, if
y=aie1+ -+ anp1epp1 € Q with ay + -+ + apg1 = k(n + 1) then vy = djer +--- + aj, 1eny1
where o} = a; — k, and v € Q4 ifand only if @] +---+a, >0forall 1 <i<n+1.

For v € Plet t, : V — V be the translation t,(v) = v+ ~. The affine Weyl group W,g and
the extended affine Weyl group W are

War=QxW and W=PxW,

where wt, = t,yw for w € W and v € P.
Fora € ® and k € Z let
Hoyp={z eV |(z,a) =k},

and let s, 1(v) = v — ((v,a) — k)a be the orthogonal reflection in H, . The group Wug is a
Coxeter group with generators S = {s9}USy, where sg = s, 1, with ¢ the highest root of ®. The

group W is not a Coxeter group, however we have W = Wyg x ¥ where ¥ = P/Q = Z/(n+1)Z.



We extend the length function ¢ : Wag — N to W by setting (wr) = L(w) for all w € Wyg and
7€ Thus £ = {w € W | {(w) = 0}. Each 7 € ¥ induces a permutation of the nodes of
the extended Dynkin diagram by 7s;7 1 = Sr(i) for 0 <4 < n. Let 0 € ¥ be the element with
o(i) =i+ 1 (with indices read cyclically). By a reduced expression for w € W we shall mean a
decomposition w = s;, - -+ s;,m with £ = {(w) and 7 € X.

If w € W we define the linear part O(w) € W and the translation weight wt(w) € P by

Moreover, for AFn + 1 let
O(w) = Ox(w)0* (w),
where 0 (w) € Wy and 6*(w) € *W.
The closures of the open connected components of V'\ (U ak H a,k) are alcoves. Let A denote
the set of all alcoves. The fundamental alcove is given by

Ao={z €V ]|0<(z,a)<1forallac ®"}.

The hyperplanes bounding A are called the walls of Ay. Explicitly these walls are H,, o with
1 <i<mnand H,;. We say that a panel of Ay (that is, a codimension 1 facet) has type i for
1 <4 < nifit lies on the wall H,, o, and type 0 if it lies on the wall H ;.

The (non-extended) affine Weyl group Wag acts simply transitively on A. We use the action
of W,g to transfer the notions of walls, panels, and types of panels to arbitrary alcoves. Alcoves A
and A’ are called i-adjacent (written A ~; A’) if A # A" and A and A’ share a common type i
panel (with 0 < ¢ < n). Thus the alcoves wAy and ws; Ay are i-adjacent for all w € W and
0 < ¢ < n. The extended affine Weyl group W acts transitively on A, and the stabiliser of Ag
is 2.

Each affine hyperplane H, j with o € ®* and k € Z divides V into two half-spaces, denoted

HY ={a€V|(z,a) >k} and Hy, ={zeV|(z,a) <k}

This “orientation” of the hyperplanes is called the periodic orientation. Write wAy ~ |1 ws;Ag
to indicate that ws;Ag is on the positive side of the hyperplane separating wAg and ws;Ag. In
this situation we will also say that w — ws; is a positive crossing (or simply is positive), and
similarly if wAg 1|~ ws;Ap we say that w — ws; is a negative crossing.

1.5 The extended affine Hecke algebra of type A,

Let q be an indeterminate, and let R = Z[q,q~!]. The Hecke algebra of type W is the algebra H
over R with basis {7\, | w € W} and multiplication given by (for v,w € W and s € 5)

TwTy = Tuw if {(wv) = L(w) + £(v)

. : (1.1)
TwTs =Tys +(a—q )Ty if l(ws) = L(w) — 1.

We often write 7T} in place of T}, for 0 <i < n.

Let w € W and choose any expression w = s;, - - - $;, ™ (not necessarily reduced). Let vy = e
and vy = s, -+ -85, for 1 < k </, Let Ay = v, Ag, and let €1,...,e, € {—1,1} be the sequence
defined by

+1 if Ak—l_’+ Ay
€k = . —
-1 if Ak,1+’ Ak



Then the element B
Xw — 72511 .. .’_Z’;:TW cH
does not depend on the particular expression w = s;, - - - 85, ™ chosen (see [9]). From the defining
relations it follows that X,, — T, is a linear combination of terms 7, with v < w (in
extended Bruhat order), and hence {X,, | w € W} is a basis of H.
If v € P we write

X7 =Xy,
Then XM X72 = X772 = X2 X" for all 71,72 € P, and for w € W we have
X =Xpu=X"X,=X"T7} (1.2)

where v = wt(w) and v = f(w). Thus the set {X'YTu__l1 | v € P,uc W} is a basis of H (called
the Bernstein-Lusztig basis). Since sg = t,vs,, Equation gives Ty = X“DVTS;l.

The Bernstein relation (see [19, Proposition 3.6]) is
XV — XS
Let X; = X% for 1 < i < n+1 (recall that e; € P, and since e; + --- + ep41 = 0 we have
X1+ Xy41 =1). The Bernstein relation gives T;X; = X;T} if |i — j| > 1 and

ﬂ_lXiﬂ_l =X for1<i<n.

T,X7 = X*"T;+(qa—q )

Let
R[X] = spang{X" | v € P}.
The Weyl group W acts on R[X] by linearly extending w - X7 = X"7. Let
RIXTY = {f(X) € RIX] | w- f(X) = f(X) for all w € W}

(the ring of symmetric polynomials).

1.6 Kazhdan-Lusztig theory

1

The bar involution on R with @ = g~ extends to an involution on H by setting

Z ATy = Z @T;,ll.

wGW wEW

In [I3] Kazhdan and Lusztig proved that there is a unique basis {Cy, | w € W} of H such that,
for all w e W,

Co=Cy and Cy=Ty+ Y P, with Py €q 'Zg™'].

v<w

This basis is called the Kazhdan-Lusztig basis of H , and the polynomials P, ,, are the Kazhdan-
Lusztig polynomials (to complete the definition, set Py, = 1 and P,,, = 0 for v £ w). For
T,y € W we write
CoCy = hay:C.
zeW

where hy, . € R (and necessarily hy . = hyy ).

Let deg : R — ZU{—o00} denote degree in q. For example deg(q~3) = —3 and deg(0) = —oo0.
Since hyy . is bar-invariant we have deg(hy,y,.) > 0 (provided hy . # 0), and by [16], §7.2] that
deg(hy,y,-) < (wp) for all z,y,z € w.
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Definition 1.12 ([16]). Lusztig’s a-function is the function a : W — {0,1,...,(wg)} defined
by
a(z) = max{deg(hg,y,-) | z,y € W}.

Let <p, <g, and <pp be the standard left, right, and two-sided Kazhdan-Lusztig preorders
on W defined in [I3] (for example, <;, is the transitive closure of the relation x <j, y if there
exists z € W such that hzyas #0). Let ~ (for x € {L, R, LR}) denote the associated equivalence
relations, with = ~, y if and only if x <, y and y <, z. The equivalence classes of ~, ~p, and
~rr are called left cells, right cells, and two-sided cells, respectively. We shall typically use the
letter A to denote a two sided cell, and I' to denote a right cell. Note that if I" is a right cell
then I'"! is a left cell.

If ¢ ~p y then zo ~p yo, and if z ~g y then ox ~r oy. Thus left cells are invariant under
multiplying by ¥ on the right, and right cells are invariant under multiplying by ¥ on the left.

The structure of cells in affine type A has been determined by Lusztig and Shi [17, 2§8]. In
particular, the two sided cells of A are indexed by partitions A - n + 1. We do not require the
full details of this indexation. We make the following definitions.

— Let Ty ={w e W | w~gwy} (the right cell containing wy),

— Let Ay ={w € W | w~pg wy} (the two-sided cell containing wy/).

The two-sided order <; on W induces a partial order on two-sided cells and we have Ay <pr A,
if and only of A < p.
We shall make use of the following result of Tanisaki and Xi.

Theorem 1.13 ([30, Theorem 4.3]). Let A\ n+ 1. The two-sided ideal
spang{Cy | w <pr wy }/spang{Cy | w <pr Wy}
is generaled by the image of Cy,, in the quotient.

Let J C{1,...,n}. It is well known that the Kazhdan-Lusztig basis element C,, is

Cuy =q 1) 3" g!T, = gfv7) ™ g7 X, (1.3)
weW; weW

In particular, note that for w € W; we have
_ — gtw)
TwCWJ_CWJTw_q CWJ7

and hence
C, = a“IW;(a7%)Cw, = a " ™Wy(a*)Cu, -

Lemma 1.14. If {(wyw) = £(w) — £(wy) then
CWJC'LU - q_g(WJ)WJ(qQ)Cw-

Proof. Since {(sw) < ¢(w) for all s € J we have CsCy, = (q +q~1)Cy (see [2I, Theorem 6.6]),
and hence T,C,, = qCy. Thus T,C,, = qf(”)Cw for all v € W;. The result follows by expanding
Cw, in the T}, basis using (|1.3]). O

Definition 1.15. Following Lusztig [21] we define v, , .1 € Z by

hay,> = %’yyz_lqa(z) + (terms of degree < a(z)).
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Let D = {w € W | a(w) = —deg(P.)}. The elements of D are called distinguished
involutions. In [21], Lusztig gave a series of statements (now known as P1-P15) that capture
the essential properties of cells, Lusztig’s a-function, the ~y-coefficents and the distinguished
involutions. In the case of type A properties P1-P15 can be proved using the positivity properties
of the Kazhdan-Lusztig basis (see [21, §15]). We record some of these properties for later use:

P2. If de D and x,y € 1% satisfy vz, 7 0, then y = z L

P4. If 2/ <y z then a(z’) > a(z). In particular the a-function is constant on two-sided cells.

P7. For any z,y,z € W, we have Vey,2 = Yy,z,2-

P8. Let x,y,2 € W be such that Vay,> 7 0. Then y ~p 7l 2 ~py”
P11. If 2/ <;p z and a(z’)/v: a(z) then 2/ ~pp 2.

P13. Each right cell I' of W contains a unique element d € D, and v, ;-1 4 # 0 for all z € T".

1 1

,and x ~p 27 .

In [I8] Lusztig defined an asymptotic ring (a Z-algebra) J as follows. The ring J has basis
ty with w € W, and

tot, = Z Veyz-1ts,
zeW

and, thanks to P1-P15, J turns out to be an associative Z-algebra (called Lusztig’s asymptotic
algebra). For each left or right cell I' the submodule Jr spanned by {t,, | w € I'} is a subring
of J. Let Jy be the subring spanned by {t, | w € A)}.

2 The fundamental \-alcove and the group G)

In this section we explicitly describe structures introduced in [I0] in the affine type A case.
In particular, we describe the fundamental A-alcove Ay and its symmetry group Ty X G, the
set PV of A\-weights, and the quotient P/Q,. We also introduce a delicate A-dominance order
on PW. Next we study the rings R[¢y]“* and Z[(y]%* of Gy-invariant polynomials, and recall the
construction of generic induced representations m of H from [10]. We discuss the combinatorial
model of A-folded alcove paths, and recall a combinatorial formula for the matrix entries of 7.

2.1 The M-weights and the fundamental \-alcove

In this section we describe the abelian group P/Q, of A-weights, and the fundamental A-alcove.
Definition 2.1. Let Q) = spang{«; | j € Jy}. The elements of P/Q) are called X\-weights.

We now explicitly describe the A-weights. If j, j* are on the same row of t,.()\) then e; + Q) =
ejr + @y (because ej — ejr € ®y). Thus for 1 <4 < r()\) define é; € P/Q) by

€ =ej+Qy forany A\(i—1)+1<j < A(9) (that is, any j in the ith row of t,.())).

Thus P/Qx = spang{éi, ..., €.}, and the natural map P — P/Q) is given by

A(k)
diey + -+ dpr1€nt1 — a1+ - + ar(A)éT()\), where aj = Z d;. (2.1)
i=A(k—1)+1
The equation e + - - - 4 e,41 = 0 implies that
A1+ XNoég + -+ -+ )‘r()\)ér()\) =0. (2.2)
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Example 2.2. Let A = (n+1). Then Q) = Q. By (2.2]) we have (n+1)é; = 0, however note that
é1 # 0 (in particular, note that P/Q) is not torsion free). Thus P/Qy = Zé; = {0, ¢é1,...,né1 },
where ¢ = ¢; + Q for any 1 <i <n+ 1.

Example 2.3. If A = (2,2) then

tr(A) =

3

We have P/Q) = spany{€1,éa} where €1 = e1 + Q) = ea + Q) and é = e3 + Q) = eg + Q.
By (2.2]) we have 2¢; + 2é; = 0. However, note that é; + €3 # 0 (because e1 + es ¢ @»). Thus
the element €; + €2 has order 2.

For A € P(n+ 1) the fundamental \-alcove is
Ay ={veV|0< (v,a) <1forall o€ ®)}. (2.3)

Note that if A = (n+ 1) then Jy = {1,...,n}, and Ay = A (the fundamental alcove).
By [10, Lemma 2.3], for each 4 € P there exists a unique element vV € Ay N P with
v =N e Qy (we call v the projection of v onto the fundamental A-alcove). The set

PN = A,nP={yV|ye P}

is closely related to the set P/Q) of A\-weights (see Proposition [2.6| below). By [10, Lemma 2.5]
an element v = 31", a;w; € P lies in POV if and only if whenever j € Jy we have a; € {0, 1}, and
for each connected component K of Jy there is at most one k € K with ax = 1 (the connected
components of Jy are the sets {A(i — 1)+ 1,...,A(i) — 1} for 1 <7 < r(A)).

Example 2.4. If ® is of type Ay and A\ = (2,1) then Ay (shaded green) and P (represented
as bullets) are as follows.

Figure 1: The set PO for type Ay with X = (2,1)

For v € PN let Jy(v) = {j € Jx | {7,;) = 1}, and following [10] let

Yy = Wi\ ()W, and Ty = 1yy,. (2.4)
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The elements 7., are called pseudo-translations, and by [10, Lemma 2.12] we have
Ty Ty = Ty ) ) for all v, € PO,

By [10, Lemma 2.8] we have ®(y,) = {a € ®] | (y,a) = 1}. Note that 7, and y., depend on the
partition A, however this dependence is suppressed without risk of confusion.

Proposition 2.5 ([I0, Corollary 2.13]). The set Ty = {7, | v € PV} of pseudo-translations is
an abelian group, and Ty = P/Qx with T — v + Q.

Thus PO inherits the structure of an abelian group with operation v @~/ = (v++ )()‘), and
PO =~ P/Qy via the map v — v+ Q). The following description of the inverse isomorphism
P/Qy — P is very useful (for example, combined with (2.1)) it gives an explicit expression for
the projection map P — PW). Recall that A[i,j] denotes the element in row i and column j
of t,()\).

Proposition 2.6. The isomorphism P/Qy — PW) s given by

r(A)

arér+ - aonéroy = Y (e + D(expy + -+ expen) + bk(expreert) + - + €xipag))
k=1

where by, and ¢ are defined by ar = A\pbg + ¢ with 0 < ¢ < Ag.

Proof. Let v denote the right hand side of the map. Since e; + Q) = €, for all j in the kth row
of t,(\) we have v+ Qx = a1€1 + - - - + a,(x)€,(n)- Moreover, if « = ¢; —¢; € CID)J\r then 4, j lie in a
common row of t,(\), say ¢ = Ak, '] and j = A[k, j'] with 1 <4’ < j* < Ag. Then (vy,a) € {0,1},
and so v € P, Hence the result. O

Remark 2.7. Identify elements v = dije; + - - - + dpt16n+1 with tableau of shape A filled with
di,ds,...,dnt1 along rows. Since ey + --- 4+ epy1 = 0, two filled tableaux are considered equal
if they differ by a multiple of the constant tableau with every entry 1. Proposition [2.6] shows
that P consists precisely of the elements whose associated tableau has kth row (for 1 <k <
r(A)) of the form

b+ 1fop+1] - et b [ e | | b |

where by + 1 occurs ¢, times, with 0 < ¢, < ;. Moreover, the isomorphism P/Qy = pW)
is given by mapping ai€1 + - -+ + a,(x)€,(n) to the above tableau (where ay = Apby + ci). For
example, if A = (7,3) then

308, + 116, 06 [6]6[5[5[5]

2.2 The group G,

Let
G)\:{QEW’gA)\:A)\}

be the subgroup of W stabilising the fundamental A-alcove. By [10, Theorem 2.18] we have

Gy={geW |g®] =}, andso gp)=p, forall g € G,. (2.5)
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Moreover g € G\ maps the simple roots of ® to the simple roots of ®,, and hence induces a per-
mutation of Jy. This permutation maps connected components of Jy to connected components
of Jy. Furthermore, by [10, Lemma 2.19] for v € P™ and g € G, we have

W9 =Ygy, 9T =Ty, and U(1gy) = U(ry).
The subgroup of w stabilising Ay is (see [10, Corollary 2.20])
{weW | wAy = Ay} =Ty x Gy (2.6)
The group G has the following explicit description in terms of tableaux. Let
L) = {A 1< i <r(A)
be the set of lengths of the rows of A, and for [ € L(\) let
ma(l) = #{1 <0 <7V | A = 1}

be the number of rows of length [. For example, if A = (5,5,3,3,3,2) then L(\) = {2,3,5}, and
kA(2) =1, ka(3) =3, and k) (5) = 2.

Proposition 2.8. The group Gy is the subgroup of &, stabilising each column of t,(\) and
permuting the set of rows of t.(\). Thus Gy is a Cozeter group of type HleL(/\) A -1

Proof. Since g € G maps connected components of Jy to connected components of Jy it maps
rows of t,.(A) to rows of t,(\). Since g also maps positive ®) roots to positive @) roots it
follows that g preserves columns of t,.(A). Conversely, any ¢ € W = &,,41 that stabilises

columns and acts on the set of rows of t,(\) satisfies g@j\r = <I>;\*', and hence g € G. Thus

Gy = HleL(,\) CPNOE =
Example 2.9. Let A = (6,6,4,4,4,2,1,1), and so

112134516
718(19(10|11|12
13(14|15|16
171181920
21122|23|24
25|26
27
28]
Then Gy = Sy x 63 x G4 is generated by the involutions (1,7)(2,8)(3,9)(4,10)(5,11)(6,12),
(13,17)(14, 18)(15, 19)(16, 20), (17, 21)(18, 22)(19,23)(20, 24), and (27, 28).

tr(A) =

Proposition 2.10. We have
Gr={g e uWyuy' | g®) = @5}

In particular, u;lG)\u,\ < Wy
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Proof. 1t follows from the one-line description of uy that u;lGAu » is the subgroup of &,
stabilising each row of t,(\") and acting on the set of columns of t,.(\'), and so in particular
u;lGAU)\ < Wy. Thus if g € Gy then g € U)\W,\/UXI and g®y\ = @, (as g&T = (ID;\r) On the
other hand, suppose that g = u,\wu;1 with w € Wy and that g®, = ®,. If there is a € CIJj\r
such that g = —3 € —®* then we have wu;loz = —u;lﬂ. But wu;la >0 (as uyw™! € ‘W)
and so u)_\lﬂ < 0. However since § € q)j\r we have u;lﬁ >0 (as uy € *W), a contradiction. [

Remark 2.11. It follows from the definition of uy that the group u ,\W)\/u;1 is the subgroup of
the symmetric group stabilising each column of t,(\).

Definition 2.12. The G)-root system is the subset &g, = Qa U (—@gk) of P/@Q with

of ={a—¢&|1<i<j<r()) with A = Aj}.
Note that ®¢, is not a true root system because the group P/Q can have torsion (see Exam-
ple , however it plays an analogous role to a root system in the theory below.

2.3 Dominant A-weights and the A-dominance order

Since G preserves @ (by (2.5))) the equation g(y + Q) = g7 + @, defines an action of G
on the set P/Q) of A\-weights. More explicitly, this action is given by permuting the vectors
€1,...,€(y) subject to the constraint that if ge; = €; then A; = A;.

A fundamental domain for the action of G on P/Q) is given by

(P/Qx)+ ={aié1 + -+ —|—ar(/\)ér(,\) € P/Qxr|a; > a; if i < j with \; = )\j}'

We call the elements of (P/Q))+ the dominant A\-weights.
By definition the group G, also acts on PV, Let PJ(F/\) be the fundamental domain for this

action corresponding to the fundamental domain (P/Q)), under the isomorphism P/Qy = PW)
(see Proposition . That is,

A
PP = {y € PPV [y +Qx € (P/Q))+}. (2.7)
Example 2.13. Let A = (2,2) as in Example Then Gy is of type A, generated by
5 = 59815389, and <I>JC§A ={é1 — é2}. We have (P/Q))+ = {a1€1 + a2é2 | a1 > as} and
PJ(:\) = (Zzowg) U (w1 + ZZOCUQ) U ((/J3 + Zzo(dz) U (wl + w3 + szlwﬂ.
Example 2.14. Let A = (6,6,4,4,4,2,1,1), as in Example Then
®f = {1 —@&,83 — 4,83 — &5,¢4 — €5, 67 — s}
(P/Q))+ ={a1€é1+ -+ agés | a1 > ag, az > a4 > a5, and ay > ag}.
Let

Q" = spany(®g,) and Q) = spanzzo(éa).

Define the A-dominance order <) on P/Q) by
T+ Qa7 +@Qx ifandonlyif 7 —y+Qx €@

The A-dominance order can also be considered as a partial order on PV via Proposition
The following lemmas give conditions for membership of @), and Qi, and hence give a more
concrete understanding of the partial order <. The straightforward proofs are omitted.

16



Lemma 2.15. Let v = Z?:Jrll aze; € Q, with the expression chosen so that ai + -+ + any1 = 0.
Then v € Q) if and only if

A(k)
Z a; =0 foreach 1 <k <r(X).
i=A(k—1)+1

Lemma 2.16. We have v+ Qx € Q" if and only if there is an expression v + Qy = Z:Ql) a;€;
with
Z a; =0 foralll € L)),

1<i<r(\), A=l
and moreover v + Q* € Qf‘i_ if and only if ay +---+a; >0 for all 1 <i <r()\).

In particular, note that if vy 4+ Q) € @* then necessarily v € Q. If A = (1"*1) then Q) = {0}
and so P/Q, = P. In this case < is the usual dominance order < on P given by v < v/ if and
only if v/ — v € Q4, where Q4 = Z>opa1 + -+ + Z>pa, (this notion is related to, but distinct
from, the dominance order < on partitions).

Example 2.17. Let A = (6,6,4,4,4,2,1,1) asin Example Then Qi consists of the elements
a1€1 + -+ - + agég with a; € Z satisfying

a1+as=a3+ag4+as=a¢g=ay+ag=0, a; >0, a3>0, az+aq4 >0, a7>0.

Example 2.18. Let A = (n+1) (see Example . Then @\ = Q and P/Q) = {0,¢é1,...,né1}.
We have Q* = {0}, and so for v,7" € P/Q, we have v < 7/ if and only if v = 7.

2.4 )\-folded alcove paths

In [1I0} II] we introduced the combinatorial model of A-folded alcove paths. This theory will
play an important role in the present paper via the formula given in Theorem m (providing
a combinatorial formula for the matrix entries of certain generic representations of H induced
from Levi subalgebras).

Definition 2.19. Let @ = s;, s, - - - 5;,m be an expression for w € W (not necessarily reduced)
with m € ¥. A A-folded alcove path of type W starting at v is a sequence p = (vg, v1, ..., Vg, VgT)
with vg, ..., vy € W such that, for 0 < k < ¢,
(1) ve Ao C Ay,
(2) v € {vk—1,vk-15i,}, and if vy_; = v; then either:
(a) vg—18i, Ao Ay, or
(b) vg—1si, € Ay and the alcove vy_1.Ag is on the positive side of the hyperplane sepa-
rating the alcoves vi_1Ag and vg_15;, Ag.
If p= (vo,...,ve,vem) is a A-folded alcove path we define:
— the start of p is start(p) = vg and the end of p is end(p) = v,
the length of p is £ (note that the final step (vy, vem) does not count towards length).
— the weight of p is wt(end(p)) (necessarily wt(p) € PY) as vymrAg C Ay).
— the final direction of p is 6*(p), where 0(p) = 6(end(p)) and O(p) = Ox(p)6*(p) with
0x(p) € Wy and 6*(p) € *W.
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Note that a A-folded alcove path is, by definition, a sequence p = (vg,v1, ..., v, vew) of
elements of W. There is an associated sequence vgAg, v1.Ag, ..., v Ay, vgmAg of alcoves, with
each alcove either adjacent to or equal to the preceding one. See [I0} 1] for examples.

Note that if A = (1"*1) then Ay = V and so part (1) of the definition is trivially satisfied,
and part (2)(a) is vacuous. Thus (1"*!)-folded alcove paths are the same as classical “positively
folded alcove paths” (in the sense of Ram [26]).

Let @ = s;, 84, - - - 83, and let p = (vo, ..., vp, vem) € Py(wW,v). The index k € {1,2,...,¢} is:

(1) a positive (respectively, negative) iy-crossing if vy, = vi_1s;, and vk A is on the positive
(respectively, negative) side of the hyperplane separating the alcoves vi_1.4¢ and vg.Ay;
(2) a (positive) ig-fold if vy = vg—1 and vg_15;, Ao C Ay (in which case vi_1.Ap is necessarily
on the positive side of the hyperplane separating v,_1.4p and vi_1s;, . Ap);
(3) a bounce if vy = vp_; with vy_1. 49 C Ay and vg_15;, Ao  Ax.
Less formally, these steps are denoted as follows (where x = v_1 and s = s;,):

Ha,O Ha,l
- + - + -+ — -+
on+ xsAo xsAo - z Ao a:sAo+ z Ao xsAo (;:v.Ao 23./40:) xsAo
positive s-crossing s-fold negative s-crossing bounce bounce
(a) The case xsA4y C Ay (b) The case zsAg € Ay

Bounces play a different role in the theory to folds, and so we emphasise the distinction
between these two concepts. Put briefly, all of the interactions a path makes with the walls of
Ay are bounces, and the folds can only occur in the “interior” of Aj.

Let p be a A-folded alcove path. Let

f(p) = #(folds in p) and b(p) = #(bounces in p).
For u € W with wAy C Ay, and v € AW, let

Py (w,u) = {all A\-folded alcove paths of type  starting at u}
Pa(i,u)y = {p € Px(@,u) | 0)(p) = v}.

2.5 The ring Z[(,]* and G,-Schur functions

Let (1,...,(ht1 be commuting invertible indeterminates with (1 ---(,41 = 1, and for v € P
let ¢V = ¢t Gtify = Z?Ill aje;. For A\ n + 1 let Z) denote the ideal of the Laurent
polynomial ring R] 1i1, . ,Qﬁl] generated by the elements (% — 1 for j € Jy. Let

R[C)\] = R[ itla .. '7(1:1‘:-‘11]/I>\7

and similarly define Z[()]. Write ¢} = (7 4+ Zy. Thus (] =1 for all v € Q», and so (] depends
only on the coset v + Q. Indeed, R[(\] = R[P/Q)] is the group ring of P/Q) over R. In
particular, we have (] = C:\Ym for all v € P, and we define §1+Q* = () for v+ Qx € P/Q>.

A more explicit description of the ring R[(y] is as follows. Since ({ = 1 for all &« € ® we have
(j +In = ¢y + I\ whenever j and j' lie in the same row of t,(\). Define z1,...,2,n) € R[()]
by z; = (; + I, for any j in the ith row of t,(\) (that is, z; = Cij). Then the relation

e1+ -+ epr1 =0 gives
e A0y
21779 2y = 1,
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and R[()] may be regarded as the Laurent polynomial ring in the indeterminates zfcl, ceey zf&)

subject to the above equation.
The group G acts on R[()] via the equation g - (¢]) = ¢(J” for g € G and v € P (to check

that the definition is well defined, note that if ¢} = C;\/ then v—~'" € Q,, and hence gy—gv' € Qx

by 1' and so (]’ = Cﬁﬂ/). Explicitly, the action of G\ on R[()] is given by permuting the
variables 21, ..., z,()) subject to the constraint that if gz; = z; then A; = A;.

Example 2.20. If A = (6,6,4,4,4,2,1,1) (see Example then G permutes the variables
21,...,28 preserving the partition {z1, 29} U {23, 24,25} U {26} U {27, 28}

Definition 2.21. Let
RIGI = {p(¢\) € RG] | g-p(¢)) = p(C) for all g € Gy}

and similarly Z[(\]9* = {p(()) € Z[G\] | g+ p(¢x) = p(¢y) for all g € Gy}

Since PJ(F)‘) is a fundamental domain for the action of G on P™, it follows that R[¢y]*
(respectively Z[¢y]%*) has basis as a free R-module (respectively Z-module) given by the mono-
mials

o) = Y. ¢, withye PP, (2.8)
Y €GN

Definition 2.22. For v € PW (or v € P/Qy) let 5,(()) be the Gy-Schur function

5,(Q\) = Z Q! H ;_ga.

1—
9€Gx aecbg C’\
A

Proposition 2.23. The elements 5,((\) are in Z[()\]9, and {s,(¢)) | v € PJ(F)‘)} is a basis of
R[CAC> (respectively Z[C\]C* ) as a free R-module (respectively free Z-module).

Proof. This is classical, see for example, [23] (2.14)]. O

Example 2.24. In the case A = (n + 1) we have P = {0,w1,...,wy}, and Gy = {1} and
Og, = 0. Hence s,,((1) = ¢} = 2] where 21 = (.

Example 2.25. If A = (2,2) as in Examples and we have that G = (3) is of type A;
(explicitly, § = s2515352), and @gA = {é1 — é2}. We have (P/Qy)+ = {a1€1 + a2és | a1 > as},
and 5€; = €. Thus, for v = aé; + béy € P/Q\ we have

a b b.a
YO T T T -1~
— 2z 22 1—12z12

a+1_b b_a+1
172

21 — 22

Recall that 2722 = 1 (however note that 222 # 1). Thus, in particular, sz, 45,((\) = z122. Note
that s¢,1¢,((\)? = 2723 = 1.
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2.6 Representations of H induced from Levi subalgebras

The A-Levi subalgebra of H is the subalgebra L) generated by T}, j € Jy, and X7, v € P. It is
convenient to define v = —q~!. The assignment

PYA(T5) = v for j € Jy
YA (X7) = vl ) foryeP

uniquely extends to a multiplicative character ¢y : £y — R[()] (see [10} §4.2]).
If1<i<n+1withi=\r/ (that is, i = A(r — 1) + ¢ with 1 < ¢ < \,.), then

w,\(Xei) — (_q)QCf)\Tflzr'
Indeed we have 9 (X¢) = v{€:20) (7 = (—q) {202z, and

i—1

A(r)
<e¢,2p>\>:<ei, Z ek—ee>: Z 1-— Z 1=X\ —2c+1.

A(r—1)+1<k<l<A(r) (=it1l  k=A(r—1)+1
Thus, in particular, we have
Dr(XO) = q? if 1 € Jy
(—q)M =2l i i = A(k) with 1 <k < r()).

Let R[()]€\ be a 1-dimensional R[()]-module generated by &\. Then &y - h = ¥y(h)§) for
h € L) defines a 1-dimensional representation of £y over R[()].

Definition 2.26. Let (7, M)) be the induced representation Indg (1) with character y.
Thus

My = (R[C\]6x) @, H.
By [10, Proposition 4.20] M) is a free R[()]-module with basis
By = {6 @ Xy, | u € W,
and it follows that dim(M)) = N, where

(n+1)!

Ny=
AT !

For h € H and u,v € *W we will write 7 (h; By) for the matrix of (k) in the above basis
(with any chosen order on *W), and [y (h; By)]u., for the matrix entries (with u,v € AW).
The bar involution extends from R to R[()] with g =g~ and ] = (].

Lemma 2.27. We have xx(h) = xa(h) for all h € H.
Proof. By linearity, it is sufficient to prove the result with h = T},,. Let v € *W. We have

®Tw) Tw =60 X Ty =Y (6@ T)[ma(T; BA)uo-
DI
Thus, writing my(h; B}) for the matrix with respect to the basis B = {&, ® Ty, | u € "W}, we
have [mx(Tow; BY)]u,o = [TA(Tw; Ba)]u,0- Since trace is basis independent, the result follows. [
By [10, Theorem 4.13] we have the following combinatorial formula.
Theorem 2.28 ([10, Theorem 4.13]). We have, for u,v € "W,

MTiBlo = S QOGP where Q)(p) = (—a) (g — ).
pG’PA(zU,u)U
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2.7 Intertwiners

For each 1 < i < n define an intertwiner U; by

q—q!

Ui=T, — ——.
1— X

Remark 2.29. Note that U; is not an element of the Hecke algebra, however it can be considered
as an operator acting on each module M) (the key observation is that 1 — X% does not act
by 0 on any of our modules My). More generally, we define my(U), xA(U), and 7y (U;B)) in the
obvious way for any operator U acting on M) on the right.

The following proposition is well known.

Proposition 2.30. We have the following.
(1) The elements U; satisfy the braid relations, and hence the element Uy, = U;, ---U;, is
independent of the particular reduced expression w = s;, ---s;, for w € W chosen.
(2) UpXY = X"U,y for ally € P and w e W.
(3) We have
U2 — o2 (1-g2X"*)(1—q2X%)
! (1 - X—@)(1—X™)

(4) If u,v € W then U,U, = b(X)Uyy for a rational function b(X).

Proof. (1), (2) and (3) are direct calculations using the Bernstein relation, and (4) follows by
induction on ¢(v). O

Triangularity between T,, and U, implies that the module M) has “basis” {{x @ Uy, | w €
AW}, where one must extend scalars to rational functions in (.

For j € J) we have { - T; = —q7 &, and & - XY = q72¢y, and hence &), - U; = 0. It follows,
using Proposition that with respect to the basis {&\ @ U, | u € "W},

(1) the matrix for m)(X7) is diagonal, for v € P.

(2) the matrix for m)(Uy), for w € W, has at most one non-zero entry in each row and column.
Indeed, if u € *W and w € W then the uth row of 7 (U,,) is zero if uw ¢ W, and has an
entry in only the uw-position if uw € *W.

In particular it follows that x)(Uy) = 0 if w # e.
The following well known formula for C,,, in terms of the intertwiners, will be useful.

Theorem 2.31. For J C {1,...,n} we have

1—q2XF

Coy =q 1) Y q W (X)Uy where cy(X)= [ %=

weWy; BedT\@(w)

Proof. The triangularity between U, and T, implies that C,,, = ZwewJ ayw(X)U, for some
rational functions a,,(X) with ay,(X) = 1, and that this expression is unique. Let j € J. Since
Cw,Tj = qC,,, we compute

-1

q-q 1— quXwaj
Ol = G <q‘ 1—X> = 2 900w U
weW s
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On the other hand, using the formula for U 32 from Proposition we compute

(1—q2X7") (1 — q X v)
(1 — X~w)(1 — Xway)

CWJUj = Z q2aw5j(X)

weWy, ws; >w

Us+ Y. us, (X)Us.

weW s, ws;<w
Comparing coefficients of U,, it follows that if ¢(ws;) = ¢(w) — 1 then

1— q—2Xwaj

Aws; (X) = qa,(X) T wa;

Now let w € W; be arbitrary, and write wy = wsj, ---sj, with £(w;) = ¢(w) + k. Thus
w = Wysj, -5, and repeated use of the above recursion gives

P ¢ 1— q—2X—wa
aw(X)=q (wg)— (w)an (X) H B
«
where the product is over o € {aj,,8,0,,...,8j -+ 8j,_, .}, which is the inversion set of
$j, =+ 85 = w'wy. The result follows, since w®(w'wy) = @1\ ®(w) and ay, (X) = 1. O

3 A-relative Satake theory

In this section we develop a A-relative version of the Satake isomorphism, providing an analogue
of the classical Satake isomorphism for each two-sided cell. We first recall the classical Satake
isomorphism (which will correspond to the lowest two-sided cell). Let

qg(WO)

1o = 5 Cup,
T W)™

where we have extended scalars to allow the inverse of W (q?) = Y, i/ q%‘™) in the base ring R

(let R" denote this extended ring). This normalisation of the Kazhdan-Lusztig basis element C,,,
is chosen so that 1% = 1p, and hence 19 H1j is a unital algebra, with identity 1. The classical
Satake isomorphism is then

10H1, = R[X|V.

The basic theme for the A-relative Satake isomorphism is to consider the matrix algebras m )\(I:T )
and in particular the subalgebras mx(Cy,, HCy,, ).

3.1 The matrix 7,(Cy,,;B.)

The following proposition shows that the matrix entries of m)(Cy,,; B A) are supported on the
interval [uy, uywy] € AW (note that [uy, uywy] € *W by Corollary .

Proposition 3.1. We have [m\(Cw,,; Bx)]uy = 0 unless u,v € [uy,uxwy]. If x,y € Wy then

NE
[WA(CW)\/; B)\)]U)\J},u/\y = qakfé(:p)fé(y)‘
Proof. For x € Wy we have

(5)\ ® XUAI) : CWA/ - (5)\ ® XU)\) : Til C’W>\/ - q_g(z)(é-)\ ® Xu/\) : CW)\/?

x—1
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and using the second formula in ([1.3)) it follows that

(€A ® Xuyz) - Cuy = 3 q U)W (6 0 X, ),
yGWA/

which proves that the uyz-row (with x € Wy/) of m\(Cy,,;By) is as claimed.

It remains to show that all other rows of m\(Cw,,; Bx) are zero. That is, if w € AW with
w ¢ [uy,upwy] then () ® Xy) - Cw,, = 0. Write w = wiws with wy being Jy-reduced on
the right, and we € Wy,. Thus Jy is a subset of the right ascent set of wi, however since
w ¢ [uy, uywy] we have wy # uy and hence Ay(wi) # Jy (by Theorem [L.11). It follows that
there is s’ € Jy such that wys’ ¢ AW, and hence wys’ = sw; for some s € Jy (see [I, p.79]).
Now, it is elementary that

CW)\’ = (qilTST]' —|— 1) Z qe(w)\/)fe(y)Xy
yeEW,r,ys' >y

Since (g)\ @ Xw) : Cw)\/ = q_g(w2)(§>\ ® Xw1) : CW)\/ and Xw1 (q_1T571 + 1) = (q_lTs_l + 1)Xw1 it
follows that ({x ® X) - Cw,, = 0 as required (recall that {y - Ts = —q L&), for all s € J)). O
3.2 The subalgebra 7r,\(CWA, ITICWA,)

In this section we show that the algebra WA(CWA/I::, Cuw,,) is commutative.

Definition 3.2. Let fy : H — R[()\] be the function fy(h) = XA (hCuw,, ). We extend the definition
of fa(+) to linear operators U acting on M), as in Remark

Theorem 3.3. We have m\(Cw,,hCuy,,) = fa(h)mA(Cw,,) for all h € H.
Proof. We have

[WA(CWA/ hCW/\/; B)\)]u,v = Z [ﬂ-)\(CWA/; B)\)]u,ul [7T>\(h§ B)\)]ul,uz [WA(CW/\/S BA)]ug,v'

uy,ug €AW

By Proposition this is zero unless u = uyz and v = uy,y for some x,y € W)y, and moreover
in the sum u; = uy2’ and us = uyy’ with 2,3’ € Wy, and hence

[7’(‘)\(0\,\,)\, hcw)\/; BA)]qu,uAy = qu —le Z qu —(= Z(y,)[ﬂ')\(h; B)\)]ukm/,uky’v
z'\y EW/\/

and 5o mx(Cw,,hCuw,,) = f1(h)mA(Cw,,) where

Z qa/\—g(w)—g(y) [77)\(h7 B)\)]U)\CE,U)\:’J'
x,yEWA/

Using the formula 7)(Cyw,,hCw,,) = f1(h)7A(Cw,,) and Proposition 3.1| we have
X (Cuy hCly,) = FA()XA(Cuy ) = 4~ O W (0%) S (R).

On the other hand, we have
X)\(CW)\I hCW)J) - (h‘cv2v>\/) = q_Z(WA/)W)\/ (qz)X/\(hCWA/%

and thus fy(h) = xx(hCw,,) as required. O
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Corollary 3.4. The algebra WA(CWA,]?CWA,) of WA(I:T) 15 commutative.
Proof. For hy,hs € H we have
TA(Cw,, P1Cw,, )TA(Cw,, h2Cy,,) = f,\(hl)f,\(hg)w,\(C’VQVA,) = mA(Cw, h2Cuw,,)TA(Cw,, h1Cuw,,)
hence the result. O
The following property will be useful later.
Corollary 3.5. We have fy(h) = fr(h) for allh € H.
Proof. This follows from Lemma and the definition of f). O

3.3 G, symmetry of f\(h)

Recall the definition of 1) from Section In particular, 1) (X7) = v<%2pk>g}. We extend
to rational functions in X whose denominators do not vanish on applying ).

Let )
1-q2x—@
evX) = I ==

ae@?
Lemma 3.6. If u € "W then ¢y (u - cy (X)) = 0 unless u € uyWy.

Proof. Since
72 - 72 -
1 — q 2y {ue PA)(/\“O‘

a(u-en(X) =[]

1 — V*<UO‘72P>\> uc
ae@? CA

one just needs to show that if u € AW with u ¢ uyWy then ua = a, for some o € <I>j\r, and s € Jy
(because then ¢,“* =1 and v uen2on) — (_q=1) (=200 = g2 killing the term in the product).
The argument is similar to Proposition . Let v € *W with u ¢ u\Wy. Write u = ujug
with u; being Jy-reduced on the right, and us € W)y,. Since u ¢ uyWy we have u; # uy.
Since Jy is contained in the right ascent set of u;, and Ax(u1) # Jy (by Theorem there
is s’ € Jy with £(u1s’) = £(u1) + 1 and w1’ = suy (see [I p.79]). But then ujay = as. Let
a = u;las/. Then « € <I>;\r, (because ug € Wy, and if u;lasl < 0 then u is not Jy-reduced on
the left as u;lul_lozs = uz_lozsl = « giving that «y is in the left descent set of u). Then ua = a,
as required. ]

Lemma 3.7. We have 9 (uy - p(X)) € R[(\]%* for all p(X) € R[X]Wx.

Proof. 1t is sufficient to prove the result for the monomials p(X) = > X7 with v € P.

If g € G then

Y EW -y
g-¥Ualuy - p(X)) = E vy 72p)\><'§u>\'y '
Y EWy sy

Writing guyy’ = ux(uy 'guy)y’ and noting that (uy'guy)y’ € Wy -7 (see Proposition [2.10)), we
change variable in the sum to v’ = u;l guyy', giving

g-Ux(uy-p(X)) = Z V(Q_IUAW”,QPQQKW"‘

Y'eEWy vy
By (2.5) we have (g7 uxv”,2px) = (uxy”,2px), and hence g - ¥y (uy - p(X)) = ¥a(ux - p(X)) as
required. O
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The following theorem connects the algebra 7T)\<CWA,]:'VI Cw,,) of 7T)\(ﬁ ) to the ring of G-
symmetric functions.

Theorem 3.8. We have f\(h) € R[(\] for all h € H.

Proof. Each element of the Hecke algebra can be written as a linear combination of the elements
Uy, w € W, with “coefficients” being rational functions (in the variables X7) whose denomina-
tors do not vanish on applying ¥y. Therefore, by linearity of fy, it is sufficient to prove that
f(p(X)U,) is Gy-symmetric, where v € W and where p(X) is a rational function of the form
described above. By definition we have

f)\(p(X)Uv) = X)\(p(X)UvCWk/)v

and we shall compute this character below.
By Theorem we have

1—q2XF

Cw)\/ = Z qf(wA/)—Z(w)CXVw (X)Uw where C>\'7UJ(X) = H 1—X-58

weWy, ﬁe{)}\@(w)
(note that cy (X) = ¢y (X)). Thus
X)\(p<X)UvCW>\/) = Z qZ(WA/)_Z(w)X)\ (p(X)(v . C/\’,w(X))Uva)-
weWy,

Recall that U,U,, is a rational function multiple of Uy, and that 7y(r(X)) is diagonal (in the
basis of intertwiners) for all rational functions r(X) with non-vanishing denominator on the
module, see Proposition m Thus, since x»(Uy,) = 0 unless y = e, we have

0 if v g Wy
APV Cuy) =9 o) —t(0) .
qra XA@(X) (v - ey -1 (X)) UUy-1)  if v e Wy
We compute
1— q—ZX—a
e N | e =
acd’\®(v)

and repeatedly applying the formula for U JQ from Proposition we have

1-q°X")(1 - q7*X¥)
U’UUU*1 — q2€(’v) (
B};I(v) (1= X7)(1 - X)
Thus, if v € Wy, we have

1—q2x58

(v exo 1t (XNOUy-1 = Pex(X) [T =55

ped(v)
and it follows (by computing the trace using the basis of intertwiners) that

1—q2x78

PpX)U) = g 0TS Ty e | p(Xen () [T =3

ue W BED(v)
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By Lemma we have ¥y (u - cx (X)) = 0 unless u € uyWy, and so the sum over *W becomes
a sum over Wy, giving

Wy s v 1- q_2XyB
AlX)U,) = q T @y, uy- [ Y pyX)en(@X) ] _xw || (3.1)
yeWy BED(v)
The sum is Wy/-invariant, and the result follows from Lemma O

Remark 3.9. The proof of Theorem shows that f\(p(X)U,) = 0 if v ¢ W), and (3.1)
computes f)(h) explicitly when h is written in the form h =3 po(X)U,.

We note the following corollary.

Corollary 3.10. For v € P we have
IAX7) = Xa(X7Cuy,) = a5 (0 - P (X))
where P,;\/ (X) is the N -relative Macdonald spherical function

_ g2 yo
P = Y xv [ AT = Yy (Ke(X)

yeWy, ae‘i'i' yeWy,

Proof. This is a corollary of (3.1]), Theorem and Theorem O

3.4 JA-relative Satake isomorphism

Let R’ be the ring R where we adjoined the inverse of Wy (g?). In this section we work with the
Hecke algebra Hgs with scalars extended to R’. Thus our representation 7y is over the ring R'[()].
Then we can consider the element

qE(WA/)

=3 c..
AT Wa(g2) ™

With this normalisation we have 1%\, = 1)/, and the algebra
T (1yv Hre1y)

is unital (with identity 1/) and commutative (by Corollary [3.4]).

We normalise fy by
~ £wyr)
q
h) = ——=fa(h),

and then by Theorem We have m\(1yxhly) = fA(h)w,\(lA/).
We postpone the proof of the following lemma until Section [7.2] without introducing any
circularity in the arguments.

Lemma 3.11. The map [ : H — R[C\]E> is surjective.

Proof. See Section [7.2] for the proof. O

Theorem 3.12. We have 7r,\(1>\/I:IJ'R/1)\/) >~ R'[¢\], with the isomorphism given by
mA(Lvhly) < fa(h).
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P?”OOf Let © : 7T)\<1)\/ﬁR/1,\/) — R/[C)\]GA be glven by @( ) f,\( ) whenever A = 7T)\(1)\/h1)\/)
It is clear that if 7T>\(1)\/h11)\/) = 71')\(1)\/}121)\/) then f)\(hl) = f)\(hg) and by Theorem (3.8] we
have fy(h) € R[¢y]%*, and so © is well defined. Surjectivity is Lemma For 1nJect1V1ty, if
Ai =mx(Iyhily), i =1,2, and ©(A4;) = ©(A3) then

= fa(h)ma(1y) = O(A1)mA(1y) = O(A2)mA(Ly) = fa(ho)ma(1y) = As.
Finally, to check that © is a homomorphism, if A; = m\(1yh;1y) (for ¢ = 1,2) then
O(A1Az) = O(my (Il 1y)ma(Iyhaly)) = fa(h) fa(h2)O(mA(1y)).
Since O(mx(1y)) = fr(1) = 1 the result follows. O

Remark 3.13. To recover the classical Satake isomorphism, take A = (1"1!) (that is, the lowest
two-sided cell). Then ) is the principal series representation, and it is known that this is a
faithful representation of H (this can be easily proved using the intertwiners). Thus 7y (H) = H,
and the classical Satake isomorphism follows from Theorem

4 The killing property and boundedness

In this section we prove two important properties:
(1) The killing property: The representation 7y kills all Kazhdan-Lusztig elements C,, from
lower or incomparable cells than Ay (see Theorem 4.3)).
(2) Boundedness: The degree in q of the entries of the matrices 7y (Ty;By) for w € W is
bounded by ¢(wy/), and if the bound is attained then w € Ay (see Theorem 4.7)).
The boundedness property allows us to define A-leading matrices ¢y(w) in Section The
ring € of A-leading matrices will ultimately be seen to be isomorphic to 7y (see Theorem [5.8)).

4.1 The killing property
Lemma 4.1. Let A\, pbn+1. If p 2 X then u®, N{a; | j € Jx} #0 for allu € *W.

Proof. We will show that if u € *W with u®, N {a; | j € Jx} =0 then u > A\. Write u = ujuy
with u; being J,-reduced on the right and uy € WJH,. Then u; € W (being a prefix of

u € W), and u®,, = u1®,,. We have J,, C A(u) (with A(uq) the right ascent set of u;), and
it follows that J, C Ax(u1) (for if s' € J,, with w5’ ¢ AW then u1s’ = sup for some s € Jy,
giving ujoy = o contradicting u1®,y N {ay | j € Jr} = 0). In particular p/ < p(ug, A), and by
Lemma we have p(uy, A) < XN. Thus p > X as required. O

Lemma 4.2. If u ? X\ then 7T/\(CWH,) =0.

Proof. Applying 7y to the equation in Theorem gives

C W /) X h Ul X) = 1— q*QX*B
T2 (Cw,) = 4 Y. aIm(e (X U) where (X)) =[] 5
weW s /BGCD:,\CI)(U))

In the basis of intertwiners, the matrices m)(U,,) (for w € W) have distinct support (the places
of the nonzero entries; because the uth row of 7y (U,,) is either 0, or has an entry only in the uw
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position in the case uw € *W, see Proposition [2.30). Since WA(CZ/ (X)) is diagonal (in the
intertwiner basis) it follows that m)(Cw ,) = 0 if and only if

A (X)U,) =0 for all w € W,
This, in turn, is equivalent to the statement
(Ex@Uy) - (X)Uyp =0 for all u € *W and w € W

We have

H 1 —q 2 (X 49)

(g)\ & Uu) : C% (X)Uw = 1— w)\(X—uoz)

)@@%%» (4.1)

Q€ \0(w)

Since p #? A\ Lemma gives u®, N{a; | j € Jy} # 0 for all u € *W. Since U,U, is a
rational multiple of U, we have that if uw ¢ *W then (£, ®U,)- o (X)Uy = 0. So assume that
uw € *W. By assumption there is j € Jy such that u‘laj =€ ®,. Since u € AW we have
8 >0, and so 8 € <I>:Lr,. Moreover, w13 = (uw) la; > 0 because uw € AW by assumption.
Thus g € @:,\q)(w). Thus S appears in the above product, and the corresponding factor is

1—q (X)) 1 q %P (X %)
1 _w)\(X—UB) 1 —'(ﬂ)\(X_O‘J')

(as j € Jy, and s0 ) (X%) = q~2). Thus m(Cw,, ) = 0. O

=0

Recall that Ay denotes the two sided cell of W containing wy.
Theorem 4.3. Let \,utn+1. If we A, with i 2 X then m\(Cy) = 0.

Proof. Let w € A,. By Theorem there exist h, h’ € H such that

hCu b = Cuy + Y a.C. witha, €R.

ZEW,Z<LRWH/

Assume that a, # 0. Then z € A, where v < p. It follows that v # A and by a straightforward
induction and Lemma we get that 7)(C,) = 0. By Lemma we have my\(Cy , ) = 0 which

implies that m)(Cy) = 0 as required. O

4.2 Boundedness

Given an expression W = s;, - - - 5;,m, we define the reversed expression by

rev (W) = Sz-1(;,) - s,r71(i1)7771.

If  is a reduced expression for w, then rev (i) is a reduced expression for w=!.

We now define an involution p — p~! on the set of all A-folded alcove paths. Roughly
speaking, this involution is given by “reading the path backwards”.

Definition 4.4. Let p = (vg,v1,...,vp,vem) be a A-folded alcove path with wt(p) = . The
inverse alcove path is

~1 -1 -1 ~1 -1 ~1
P = (T VT, T VAT, Ty VLT, T V0T, T, V0).
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Lemma 4.5. Let p be a \-folded alcove path of type W starting at w € *W with 0*(p) = v
and wt(p) = ~v. Then p~' is a A-folded alcove path of type rev (i) starting at v € *W with

A (p~') = u and wt(p~) = (—y)N. Moreover Qx(p~') = Qa(p), and the map p — p~' is a
bijection from {p € Pr(w,u) | 0 (p) = v} — {p € Px(rev(w),v) | 2 (p) = u}.

Proof. Let @ = s;, -+ s;,mand p = (v, v1,. .., ve7), and write p~! = (v), v], ..., v)_1,vp, vjm L),
Thus v;, = T;lvg_kw for 1 < k < {. We have

vf;_llqu = (T;lvg_k+17r)_1(77_lvg_k7r) = w_lvz_lkﬂvg_kﬂ e {1, s,r_1(i£7k)}

(because v, ' vy, € {1, s;, } by definition of alcove paths). Thus p~ is a path of type rev(w). We
must show that this path is A-folded.

Since vi Ay € Ay (by definition of A-folded alcove paths) we have vj. Ay € Ay forall1 < k </
(as ! preserves Ay by ), and so the path p~! stays in Ay. Since T ! preserves the boundary
of Ay it follows that if (vy_1,vx) is a bounce (in p), then (vy_,, vy ;. ;) is a bounce (in ph).
Thus to show that p~! is a A-folded alcove path we must show that if (vg, 1, vy) is a (necessarily
positive) fold in p, then (vy_,,vy_, ;) is a positive fold in p~ L. Thus suppose that v,_; = v}, with
Vg—15i, Ao € Ay such that vi_1s;,Ag is on the positive side of the hyperplane separating vi_1.Ag
and v_18;, Ag. Since vg_1s;, Ao € Ay this hyperplane is in a direction o € &1 with « ¢ ®,.
Since vj_,, = T,Y_l”l)kﬂ' = T,y_l'l)k,ﬂ'd' we have v)_, Ay = T;lfuk,le, and since 7'7_1 =Ly Y(—y))
with Y- € W, it follows that vj_,.Ag is on the positive side of the hyperplane separating
vy_p Ao from vy_ 5.1 yAo, and that this hyperplane isl in a direction o/ € ®* with o/ ¢ ).

—k+1
Thus (v)_, vy +1) is a positively oriented fold, and so p~" is a A-folded alcove path.

Since folds and bounces are preserved under the map p + p~! we have Q,(p~!) = Q.\(p).

Moreover, we have vym = 7,v and hence v, = v, and since 11277_1 = T;lu = T(_yu We have
wt(p~) = (=)™ and 6*(p~!) = w. It is clear that (p~')~! = p and so the map p — p~! is an
involution, and hence is bijective. ]

We define a conjugation operation on R[(y] by linearly extending conj(¢}) = ¢, 7. We then
define an anti-involution % on 7y (H) by transposing the matrix 7 (h;B)) and performing con-

jugation entry-wise. The following lemma explains the relation with the usual * anti-involution
on H defined by

(Z awTw)* =3 Ty, (4.2)

Lemma 4.6. For all h € H we have my(h*) = 75 (h)*.

Proof. 1t is equivalent to prove my(h) = m)(h*)*, and it is sufficient to prove this for h = Ty,
with w € W. By Theorem and Lemma we have

[ (s BA)uo = 3 NI > P,
{PEPA(,u)|0* (p)=v} {pEPA (rev(),v)[0* (p)=u}
and the latter equals [mx(Ts; Bx)*]v.u- O

Theorem 4.7. The degree in q of the entries of the matrices wx(Ty; By) for w € W is bounded
by £(wy). Moreover, if deg mx(Tw; By) = £(wy) then w € Ay (the two sided cell containing wy ).
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Proof. Let N = max{deg[mx(Tw;B\)]uy | w € W, u,v € *W} which is well defined by [10]
Theorem 5.13]. Let w be such that m)(T3,;By) attains degree N, and suppose that this de-
gree is attained on the uth row of my(Ty;By). Let vi,...,ux € *W be the columns with
deg[mA(Tw; BA)]uw, = N for 1 < j < k. Write

[TA(Tw; BA)luw; = a;(¢2)qY + (terms of strictly lower degree), with a;(¢y) € R[¢y].

By Lemmawe have [mx (1,15 B))]vju = a; (¢ g + (terms of strictly lower degree). Using
triangularity, we have also [m\(Cuw; Bx)]uw, = aj(¢)a” + (terms of strictly lower degree) and
[TA(Cop=15 BA) vy u = a; (¢ H)aY + (terms of strictly lower degree). Thus

[T (Cu; BA)TA(Cyp=15 B Jusu = [a1 () an (G1) + -+ + ar(Cn)an (D@ + -+,

where the omitted terms in the sum are of strictly lower degree. We claim that the coefficient
of g>V cannot vanish. To see this, note that if a(¢y) € R[¢\] with a(¢y) = Z%P(A) a,Cy with
a~ € Z then

a(C)a(( ) = Z Uy Ay Gy 7 = Zai + terms involving ().
1,72 v

In particular, the constant term is strictly positive. Since [a1(¢y)a1(¢y ') + -+ + ar(¢n)ar (¢ )]
is a sum of terms of this form, it cannot vanish. In summary, 7)(Cy;By)mA(C\y-1;B,) attains
degree 2N in the (u,u)-entry.

On the other hand,

TA(Cui BATA(Cly13Br) = D hyy1,.mA(C2; By). (4.3)

By Theorem |4.3| the sum is over z in two-sided cells A, with ¢ > X, and hence a(z) < ¢(w)/) for
all such z. Since N was the maximal degree of all ) (C; By), we have deg m)(C,;B)) < N. Since
deg hy, -1, < a(z) it follows that the maximum degree on the right hand side is £(wy/) + N.
Thus 2N < £(wy/) + N, hence the representation is bounded by £(w)/).

Suppose now that 7y (7y; By) attains the optimal degree ¢(wy/), in position (u,v), say. As ex-
plained above, m)(Cy; Ba)mA(Cy-1; By) obtains degree 2¢(w)/) in position (u,u), and then
implies that there exists z >rp wy such that degh,, -1, = £(wy) and deg[m)(C.; B))]uu =
l(wy). Thus a(z) = ¢(wy) (because a(z) < ¢(wy)) and hence z ~rr wy by P11 (see Sec-
tion . But then P8 gives w ~g z, and so w € Ay as required. ]

The following corollary verifies [10, Conjecture 5.16] for type A,,.

Corollary 4.8. The set of elements w € W such that the matriz m(Tw; By) attains the bound
l(wy) is a subset of the two-sided cell Ay.

Proof. This is immediate from Theorem O

Later we will be be able to improve on Corollary to show that the set of elements
recognised by (my, My, B)) is precisely Ay (that is, my recognises Ay, see Theorem |5.7). This
improvement will require the asymptotic Plancherel Theorem.
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Remark 4.9. The connection between the bound on matrix entries, and the bound on Q) (p)
for A\-folded alcove paths, is rather subtle (c.f. Theorem . For example, consider A4 with
A=1(2,1,1,1) (so Jy = {1}), and let @ = 434234123. We have w € Ay (one way to see this
is to compute mx(Ti)e,sos550 = 9° — 3q* +4g% — 4+ 4972 — 3q97* + q7°, and hence the bound
¢(wy) = 6 is attained, and apply Theorem |4.7). However we note that individual paths can
attain a higher degree. For example, the path p; = 434234123 (where 7 indicates a fold) is a
A-folded alcove path of type w starting at e and ending at e, and we have Qx(p1) = (9 —q~

AAAAAAAAA

(where 7 indicates a bounce) starting and ending at e. Indeed we have Q) (p2) = —q~!(q—q~!)®

and so Qx(p1) + Qa(p2) = q~'(q — q~1)7, which has degree 6. In fact, further cancellations
occur — there are 14 A\-folded alcove paths of type w starting and ending at e, and summing the
associated Q) (p) terms gives (by Theorem [2.28) [A(Tw)]ee = —q+297 1 —3q7> +3977 —q~*.

4.3 Leading matrices

The following definition is modelled by the work of Geck [6l [7] in the finite dimensional case,
and extends the concepts introduced by the second and fourth authors in [I1} 12]. For p((y) €
(Z[q71])[¢)] et spo(p(€y)) € Z[¢y] denote the specialisation of p((y) at g1 = 0. We extend this
definition entrywise to matrices over (Z[q™!])[C)]-

Definition 4.10. The A-leading matriz of w € W is

ex(w) = spo(q~ ")y (Cyi By)) € Maty, (Z[C)])-
This specialisation exists by Theorem and if ¢)(w) # 0 then w € Ay by Corollary

In particular, by Proposition [3.1] we have

ex(Wa) = Euy uy s (4.4)

where E, , denotes the matrix with 1 in the (u,v)-place, and 0 elsewhere.
Let

€\ =spang{cy(w) |w € Ay} and €= @ Cy.
AFn+1

The following lemma shows that we may replace C,, by T, in the definition of c)(w). We
will use this result frequently.

Lemma 4.11. We have ¢)(w) = sp, (q_E(WA’)w,\(Tw; By)).
Proof. This follows from Theorem [£.7] and triangularity between the C,, and T,, bases. O

Recall the definition of v, , .-1 € Z from Definition In the following proposition we
show that €, is an associative Z-algebra.

Proposition 4.12. The Z-module €y is an associative Z-algebra under matrix multiplication.
Moreover, for x,y € Ay we have

CA(‘T)CA(y) = Z ’Yx,y7z—1c)\(z)'

ZEA

Thus the linear map Jx — €y, tyw — cx(w), is a surjective homomorphism of unital rings.
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Proof. For xz,y € Ay we have

[~ )7y (Co; BA)[a ™ )y (Cys BA) = D[4  h 2 [a ) A (C; B
zeW
By Definition the left hand side specialises to cy(z)cx(y). By Theorem the sum on
the right is over z € A, with ¢ > A (for all other terms vanish). Thus the sum is over
elements z in two-sided cells higher than, or equal to, Ay, and hence deg(q*“‘”k’)th,y’z) < 0 for
these terms. Thus each term [q~ "), , ][ ™)1y (C,; By)] can be specialised at q~! = 0.

If this specialisation is nonzero, then necessarily degmy(C,;By) = ¢(wy/), and so z € Ay by
Corollary and the result follows. O

5 The asymptotic Plancherel Theorem

In this section we prove an asymptotic Plancherel Theorem for type A,,. This notion was intro-
duced in [11, [12], and Proposition confirms [I1, Conjecture 9.8] and [10, Conjecture 5.15]
for affine type A. The asymptotic Plancherel Theorem will play a crucial role, often leading to
efficient proofs of certain statements (for example, see Theorems and Claim 3 in the
proof of Theorem |7.6)). We note that other interesting applications of the Plancherel Theorem
in Kazhdan-Lusztig theory have recently been made by Dawydiak [5].

5.1 The Plancherel Theorem for /:\n

We first recall the Plancherel Theorem (from [2, 24]). The canonical trace on H is the linear
function Tr : H — R with Tr(T3,) = 0y,e. Induction on ¢(v) shows that Tr(T,,T,-1) = dy,, for all
u,v € W. This implies that Tr(hihs) = Tr(hahy) for hi, he € H, and that

<h1, h2> = Tl’(hlh;)

defines an inner product on H, with (T, T,) = 8, (recall here that  is defined in (4.2)).
The Plancherel Theorem is a spectral decomposition of the canonical trace functional (see
[24]). We now explicitly describe this decomposition in type A,. Recall that v = —q~!. Let

r(A)

A2\, —2\ )\
—n(n (1 — !
Calq) = q o) [T =9
i=1

i 1— V)\i—)\j+2kzi—1
1 _ q—2>\1

Zj
_ Vf/\if)\j+2kzi—1

and A= ]

1<i<j<r(A)
1<k<),

“j

Note that each factor in the numerator of ¢*(¢y) has strictly negative degree, and each factor in
the denominator has degree at least 0.
If p(¢x) € R[()\] we write

[ P(Sx) ]

AN et

for the coefficient of ¢{ in the series expansion of p(¢y)/(c*(¢\)eM(¢!)), where the rational
function is expanded using

1 (
_ Ai—=Nj+2k)r —r r
= VA A 1
1 — A2k T ;) Fi % (5.1)
/r._

(note that with this choice of expansion, the degree in q remains bounded from above).
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For hq,hy € H define

~Cx(@) [ xa(hih3)
(s oy = G| [CA(CA)CA(Cx_l)]Ct.

The Plancherel Theorem is the following “spectral decomposition” of the inner product (-,-)
(hence the trace functional Tr), proved in [24] and [2].

Theorem 5.1 ([24],[2, Remark 5.6]). For all hi,ho € H we have

(h1,ho) = Z (h1, ha)x.

AFn+1

Remark 5.2. The Plancherel Theorem is usually expressed as an analytic statement, and some
comments are required for the translation between Theorem and this analytic statement
from [2], 24]. Specialise q — ¢ with ¢ a real number with ¢ > 1, and extend scalars of the Hecke
algebra to C. Let T be the group of complex numbers of modulus 1. For A - n + 1 let dz) be
normalised Haar measure on the group

A) A Ar
Ty = {(z1, 22, .. 7zr()\)) e T | 271257 - "ZT()(\;) =1}
On specialising the “variables” z1,...,z,(\) in our representations to complex numbers of mod-
) A ) .
ulus 1 with zi\leAQ 2 )(3) = 1, properties of the Haar measure give

(h1, h2)x

_C)\(Q)/ xXa(h1h3) iz
T, ’

IEN OVAC

where (h1, ha)) is defined as above. To see this, expand the integrand into a series in the variables
21y .y Zp()) USIDG , noting that this choice of expansion gives an absolutely convergent series
since ¢ > 1. Then integrate term by term using fTA z\dzy = 05, and hence the integral on the
right hand side of the above equation gives the constant term (in z)) of the expansion, which by
definition is (hi, ho). Thus, since c*(zy ') = c*(zy) for z) € Ty (here the bar indicates complex
conjugation) we obtain the analytic expression for the Plancherel Theorem:

C)\(Q)/ * dZ)\
hi,ho) = hi1hs)dpy(z here duy(zy) = ———5.
(h1, ha) A;ﬂ Gl Jn. xa(hihy)dpa(zy)  w fa(22) EXPNE

The measure du) is the Plancherel measure.

Moreover, we note that the formula given in Theorem also differs from that in [2 Re-
mark 5.6] in the following ways. Firstly, in [2] it is not assumed that \; > Ay > -+, and
combining the contributions to the formula from all orderings changes the numerical constant
of 1/|Wy| in [2] to 1/|G)| in our definition of (hy, ha)x. Secondly, the product formula for the
analogue of ¢*(¢y) in [2] has factors common to both numerator and denominator, and cancelling
these factors we arrive at our formulation.

Example 5.3. Consider n = 2 (type Ap). Then P(3) = {(1,1,1),(2,1), (3)}. We have

1— -2,-1 1— -2, -1 1— -2, -1
c(l’l’l)(C(l 1 1)) = ( 14 _212)( a _zl2 23)( _ql a %) where 212923 = 1
" (1 — 2] 22)(1 — 25 23)(1 — 27 " 23)
_1tatalzm

14 q27 2

where 232y = 1,

0(2’1)(€(2,1))
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and 0(3)(C(3)) = 1. We have |G(1,1,1)| = 6 and |G(3 1)| = |G (3)| = 1. For the analytic formulation
of the Plancherel Theorem, note that if A = (3) then Ty = {z € C | 2% = 1} = {1, w,w?} where
w = e>™/3 and so the normalised Haar measure on Ty is the discrete measure assigning mass
1/3 to each atom, and we recover the analytic formulation of the Plancherel Theorem for A,
computed explicitly in [25, Theorem 4.3].

5.2 Asymptotic Plancherel Theorem

In this section we prove an asymptotic version of the Plancherel Theorem for type An, confirm-
ing [11l Conjecture 9.8] and [10, Conjecture 5.15] for affine type A. The existence of such a
formula relies on a certain compatibility between the degree (in q) of the Plancherel measure
and the bound of the representations my, proved in Proposition and Corollary Recall
the definition of the specialisation spy from Section [4.3]

Proposition 5.4. For AFn+ 1 we have

€ C)\—(q)_— W)/ an S M _ _ a
Gy T ) p°<cx<cx>a<<;1>)‘ Il =

(XE@GA

Proof. We have degC\(q) = —n(n+1) + Z:i/\l) AN —1)=—(n+1)2+ Z:(:’\l) A?, and

deg—— STt -2k = Y 2y - 1),

1
C)\(C)\)CA(C)\ ) 1§i<j§7”()\) 1§’i<j§T()\)
1<k<);
Note that 371 ;<. A = 21 (k — DAL = £(wy), and so
Cx(q) =
deg VIRV T —(n + 1)2 + Z)\? + Z 2)\1)\] - QE(W)\/) = —QK(W)\/)
cMCa)e (C)\ ) i=1 1<i<j<r())

and hence the first statement.
The specialisation of q2("»)Cy (q)/(c*({\)eM (¢ 1)) at g1 = 0 exists and is a nonzero rational
function in ¢y (by the first statement). Consider a typical term from 1/c*(¢y):

“Xi—Aj+2k —1 “Xi—Aj+2% -1
iR (—q) MY —

i~

l—v j AitA;—2k
b= ()t 1— (—q) N+h—2k T,
2

oy Ni—Ai+2k -1, .
1—v J Z; %

The factor in front will be absorbed in the overall degree. Thus, on specialising, this term
will contribute either —z; 'z; (in the case \; + A\; — 2k > 0), or 1 — z; '2; in the case that
A\i +A; — 2k = 0. The —z; '2; term will cancel with the corresponding term from 1/c(¢; 1),
and so only the terms of the second type will ultimately appear. These terms occur if and only
if \i + A =2k (with 1 <k < \j), and this forces A\; = A\; and k = A;. Thus

2¢(wyr)
w(Somet) = I st = I a-6o

A A1
M)A ) 1<i<i<r(A), A=A, acdl

as required. O

Corollary 5.5. For A\Fn+1 and u,v € W we have deg(Ty,Ty)x < 0, and if equality holds
then deg mx(Ty; By) = deg ma(Ty; By) = £(wy/), and hence u,v € Ay.
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Proof. By definition, we have

<T1u T’U>>\

_ Gia) { (LT, ) ]
G LA )AGD

By Theorem degm(Tw; Ba) < ¢(wy ) and degmy(Ty; By) < £(wy). Thus deg xa (T T,-1) <
20(wy), and if equality holds then necessarily degmy(Ty;By) = degmx(Ty; Bx) = ¢(wy/), and so
u,v € Ay (again by Theorem . The result now follows from Proposition O

Recall the definition of the leading matrices, the ring € from Section[4.3]and the *-operation
on €, in Section By Lemmas and we have

c,\(w_l) = C)\(w)*. (5.2)
We call the following theorem the Asymptotic Plancherel Theorem.
Theorem 5.6. For A, B € € let

(A B)F = |G1A|[tr<AB*> 11 (1—<§‘>]

Oée(bG)\ ct

Then (-,-)$° is an inner product on the Z-module €y, and the elements cx(w), w € Ay, form an
orthonormal basis. Moreover, (AB,C)$° = (B, A*C)$°.

Proof. 1t is clear that (-,-)$° is bilinear. Let A denote matrix transpose. Since
tr(BA*) = tr((BA*)") = tr((A*)'B") = conj(tr(AB*))
and conj(Haeq)Gk(l —¢) = Ha@)gA (1 —¢Y) the form (-,-)S° is symmetric.

Let u,v € Ay. Since (T3, Ty) = 6y, the Plancherel Theorem (Theorem gives

6u,v = Z <Tu7Tv>,u7

pFn+1

and by Corollary |5.5| each specialisation spo((Tu, T) u) exists, and is zero unless = A. Thus
Sup = sp0(<Tu, Ty)A). Now, by Theorem we have

AT T, —1) = 2 tr(ey (u)ex(v)*) + (terms of strictly lower degree),

and thus by Proposition we have

(T Ty-1)

CA(C/\)CA(Cﬂ) = tr(cx(u)ea(v)*) H (1 —=¢Y) + (terms of degree < 0).
A

aG‘I)G)\

Cx(a)

Thus

5u,v = SPg (<Tu7 Tv))\)

= |G1A| [tr(cx(u)cx(v)*) H (1- (g)} t = (ea(w), ea(v))5°.

aECI)G)\

IfA=3,ca, awer(w) with A # 0 it follows that (A, A)S° = > ca, aZ, > 0, and so (-,-)%° is
positive definite, and the elements c)(w), w € Ay, are orthonormal. Finally, since tr((AB)C*) =
tr(BC*A) = tr(B(A*C)*) we have (AB,C)® = (B, A*C)S°. O
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The asymptotic Plancherel Theorem has the following important consequences. Note that
the first theorem shows that the set of elements w € W such that the matrix 7y (73,; By) attains
the bound ¢(wy/) is precisely the two-sided cell Ay (improving Corollary [4.8]).

Theorem 5.7. We have cy(w) # 0 if and only if w € Aj.

Proof. By Corollary it only remains to show that if w € Ay then degm)(Ty; By) = €(wy). If
w € A) then by the Asymptotic Plancherel Theorem (Theorem|5.6) we have 1 = (c)(w), cx(w))$°
and thus deg(Ty,, Ty)x = 0, and the result follows from Corollary [5.5 d

Theorem 5.8. We have J\ = € as Z-algebras, with t,, — ¢\(w). Thus J = €.

Proof. By Proposition the map ¢ : Iy — €y, ty — cx(w) is a surjective ring homomorphism.
To prove that 1) is injective, if a = ZwGAA awty € Jx with ¥(a) = 0 then for each v € Ay we

have
> awea(w)er(v)* = 0.
wWEA
Taking traces, multiplying by [[,ce, (1 — (), and applying Theorem gives a, = 0. O
A

Remark 5.9. Following Remark [5.2] the analytic expression for the asymptotic Plancherel
Theorem is
2

dzy

(A, B)Y tr(AB*)duS°(zx) where duio(zx):‘ H (1—2%)

+
aE@GA

~GAl Jr,

for A, B € €. We call du$®(2y) the asymptotic Plancherel measure.

6 Maximal length double coset representatives

By [I3, Proposition 2.4] it follows that if w € T (respectively w € T'y') then {(wyw) =
(w) — l(wy) (respectively ¢(wwy ) = €(w) — €(wy/)). In particular, if w € 'y N F;l then w is of
maximal length in its double coset Wy wWy:.

Definition 6.1. For v € PO let m,, be the longest element of the double coset W)\/uglryuAW,\/.

Ultimately we will see in Theorem [7.6/that T\ NT;! = {m, |y € PJ(F)‘)}. We first record the
following result on G-invariance.

Proposition 6.2. For v € PY and g € Gy we have Mg, = m,, and hence
A
{my |7 PV} ={m, |ye P}
Proof. By [10, Lemma 2.19] we have 7., = g7,g~! for all g € G, and hence
U;\ngvU/\ = (leguA)(Ung'yUA)(Uilg_luA),

and by Proposition we have uxlguA € Wy. Thus u;leu,\ € W)\/UXIT,YUAW)\/, and hence
the result. 0

Remark 6.3. In fact m,, = m, if and only if 72 € Gy1. The “if” direction is Proposition [6.2]
and the “only if” direction follows from later results of this paper. Specifically, by the “if”
direction we may assume that v, v € P()‘), and then by Theorem 7.6/if 71 # 2 then m\(C,, ) =

Sy (()\)ﬂ)\(cw)\,) # S, (C)\)']T/\(CW,\/) = 7T)\(Cmv1), and so M-y, - Moy, .
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The following theorem plays an important role in computing Iy N F;l. The proof of the
theorem is technical, and so for readability we present it in Appendix [A]

Theorem 6.4. Let v € PN, There exist x,y € Wy such that m, = xu;lmuAy with
0(my) = £(x) + L(uytmuy) + €(y)  and  L(x) + £(y) = L(wy).

Moreover, if v,~' € PJ(F’\) with v+ Qx a7 + Qx then £(my) < £(my) with equality if and only
ifv=1"
Proof. See Appendix [A] O

7 Lusztig’s asymptotic algebra

In this section we compute the set I"y ﬂF;\l, and describe the matrix algebra €y, hence giving an
explicit description of Lusztig’s asymptotic algebra Jy (recall from Theorem that €\ = 7).
Section provides preliminary observations, in particular showing that each A-leading matrix
cx(w) (with w € Ay) has a unique non-zero entry, with the row (respectively column) of this
entry indexed by the right (respectively left) cell containing w. Section gives an explicit
description of the commutative ring

Q:Fmr;l = spang{cy(w) | w € '\ N F;l}

and in Section [7.3] we give our description of €.

7.1 Preliminary observations

Let Maty(Z[¢)]) denote the algebra of N x N matrices with entries in Z[()]. Recall that for
A € Maty(Z[¢)]) we set A* = conj(A?"), where conj(¢]) = ¢, is applied entrywise in the matrix,
and t denotes matrix transposition. We write E; ; for the matrix with 1 in the (¢, j) position
and 0 elsewhere.

Lemma 7.1. Let A € Maty(Z[()\]) be an idempotent matriz of rank 1 with A* = A. Then
A= Eyy for somel <k < N.

Proof. Regard A as an operator on the module M = Z[(,]N (with elements of M regarded
as column vectors). Let My = ker(A) (the 0-eigenspace) and M; = {x € M | Ax = x} (the
l-eigenspace). For x € M write x = (x — Ax) + Ax. Since A? = A we have x — Ax € M
and Ax € M, and so M = My @& M;. By assumption, dim(M;) = 1, and we let x¢ be
a generator of M;. Then Axg = xo and since A* = A we have x{jA = x5. Let y € M
be any vector. Since M = My @ M; we have Ay = pyxo for some puy € Z[()] and hence
HyXixo = X((1yXo) = XAy = x3y. Thus, writing v = x{x¢ € Z[(\] we have puyv = xgy, and
hence vAy = vuyxo = xo(Vpty) = Xox4y = (x0x()y for all y € M. Thus vA = xpx{.

Write xg = (x1,%2,...,7x)" Since x¢9 # 0 there is an index k with x; # 0. We have
v = zyconj(x1)+- - -+xyconj(xy) and the equation vA = xox{ implies that vag, = xpconj(xy),
where A = (a;;). If @ € Z[()] then writing = 3~ ¢,(} with ¢, € Z we have [z conj(z)]ct =
PN ¢ (with ct denoting constant term, as in Section [5.1). In particular, [z conj(z)]e; is strictly

y
positive if x # 0. It follows that [v]cy > [zrconj(xy)]er with equality if and only if z; = 0 for
all i # k. Thus taking constant terms in the equation vag, = xgconj(xy) (noting that ag, € Z
as A* = A) implies that z; = 0 for all i # k. But then xox§ = zpconj(xy)Ey , and since

v = xpconj(zy) the equation vA = xox{) gives A = Ej, ;, as required. O
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Recall that Ny = (n + 1)!/(A!A2!--- Ay ()!). Then Ny = dim(my) (see Section and Ny
also equals the number of right (or left) cells contained in Ay by [28, Theorem 14.4.5]. Recall
that By = {3 @ Xy, | u € /\W} is a basis of the module M), and thus choosing an order on AW
determines the rows and columns of the matrices my(h;By).

Let T'1,...,I'y, be the right cells in Ay and for 1 < i < Ny let d; € D be the unique
distinguished involution with d; € I'; (see P13 in Section .

Theorem 7.2. Let w € T'; N Fj_l. The elements of *W can be ordered such that the matriz
cx(w) has a unique non-zero term, in position (i,j). Moreover, cx(d;) = E; ;.

Proof. Let A; = cx(d;) for 1 <1i < Ny. An easy application of P2 and P7 (see Section gives
tg,;ta; = 0if ¢ # j and t?li = tg,. Thussince €\ = 7, (by Theorem the matrices Ay,..., An, €
Maty, (Z[()]) satisfy A4;4; = 0 if i # j and A? = A;, and hence are pairwise commuting
idempotent matrices. The argument in the first three sentences of the proof of Lemma
shows that these matrices are diagonalisable, and hence simultaneously diagonalisable. Hence
there is an invertible matrix P € Maty, (Z[¢)]) and diagonal matrices D; such that A; = PD; P~}
for 1 < i < N). Moreover, the diagonal entries of D; are 0 and 1, as DZ-2 =D,.

Since (Zi\;ﬁ A)? = Zivz*l A; we have (Zivz*l D;)? = Zivz*l D;. Since the matrices D; are
diagonal matrices with 0 and 1 on the diagonal, this forces the D; to have 1s in different
places. Since Ny = dim(my) this forces D; = E;; for some j. Thus A; = PD,;P~ 1 is arank 1
matrix. Since Af = A; (by Lemma the hypothesis of Lemma is satisfied, and so
A; = Ey, 1, for some k;. Since the matrices Ay, ..., Ay, are all distinct (as €y = J) the map
m:(1,2,...,Ny) — (ki,ke,...,kn,) is bijective.

Thus we may order *W so that cy(d;) = A; = E;;. Suppose that w € I'; N Fj_l. By P2
and P7 we have tg;ty = ty and tyte; = tw. Thus c(d;)ex(w) = cy(w) which forces the nonzero
elements of ¢)(w) to lie on the ith row, and ¢)(w)cy(d;) = ¢y(w) forces the nonzero elements of
cx(w) to be on the jth column. Hence ¢)(w) has a unique nonzero entry, in position (i,7). [

Corollary 7.3. We have w € T'N F;\l if and only if the matriz c\(w) has a non-zero entry in
the (uy, uy)-position.

Proof. This follows from Theorem [7.2| and the fact that cy(wy/) = Ey, u, (see (4.4)). O

7.2 The set I'yN F;l and the ring QSFWF;l

Recall the definition of the G)y-Schur symmetric functions s,((y) and the monomial symmetric
polynomials e (¢y) from Section Let < be the dominance order on P/Q) (considered also
on PW via Proposition .

For f(¢)),g(¢y) in Z[y], we set

(@905 = g |76 conitate - TT (1= 3] .

|G>\| OzG‘PGA

Note that if A, B € Q:FmF;l then by Corollaryﬁwe have A = a(C\)Ey, u, and B = b(C\)Ey, u,
for some a((y),b(¢x) € Z[(»] and then the inner product in Theorem [5.6| becomes

<A7 B>§O = <Q(CA)a b(C)\»io
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Lemma 7.4. The Schur functions s5.(C)) withy € (P/Q))+, are the unique elements of Z[C]%>
satisfying:

(1) 54(Cn) = ey(C0) + Z,y/_</\,y Ay ey Q1) with ay . € Z, and

(2) (87(Cn); 89/ (CA))XT = Oy

Moreover, we have a., > 0.

Proof. The fact that the Schur functions satisfy (1) and (2) is classical, see [23, Proposition 3.4]
(and a,. = K., > 0 are the Kostka numbers). To prove that these elements are unique,
suppose that s/ (Cy) satisfy (1) and (2), and that s/,(Cy) are determined for all 4" < 7. By
(1) and (2) it follows that {s’,(Cx) | 7" <x 7} is an orthonormal basis for the subspace of G-
invariant functions spanned by {m./((x) | 7" <x 7} Thus §,(0) = ey (Q) + 222 4 byv54 ()
for some integers b, ./, and these integers are uniquely determined by b., ,» = —{e,((), 5fy, ()T
using (2). Hence the result.

Proposition 7.5. If v € PJ(:‘) then there is an integer ¢ > 0 such that

[ex(my)]uy,uy = ) + (Z-linear combination of terms C:\Yl with v 4x 7).

Proof. By Theorem we have m, = zu,'muyy with z,y € Wy and £(m,) = {(z) +
0(uytryuy) + £(y) and €(z) + €(y) = £(wy). Let po be the path starting at uy of type i, =
T - (u;lmu A) -y (where we choose any reduced expressions for x, u;luu », and y) such that the
first ¢(x) steps are folds, the next é(uglmu A) steps are crossings, and the final /(y) steps are
folds. The following observations show that pg is a A-folded alcove path.

(1) Since £(uysj) = £(uy) + 1 and uys; € *W for all j € Jy the first £(z) steps of py are
positive folds (not bounces).

(2) To check that the next £(uy'7,u,) steps can be taken to be crossings we must show that
this part of the path remains in Ay (and hence there are no forced bounces). Note that
the starting alcove of this part of the path is uy.4p (which lies in Ay ) and the end alcove is
u,\(uglﬁuA)Ao = 7yuxAg. Thus by [10, Theorem 2.9] the end alcove lies in Ay, and since
the path is of reduced type, and Ay is convex (being an intersection of half-spaces) the
entire path from uyAg to TyuxAp lies in Ay (see [I, Proposition 3.94]).

(3) To show that the final £(y) steps are positive folds, note first that if s € Jy, then Ty\uysA4y C
Ay (since uys € AW, and apply [I0, Theorem 2.9]). Moreover, since 7,uy = t,y,uy and
l(yyuyrs) = L(yyuy) + 1 we have that 7,uyAg lies on the positive side of the hyperplane
separating 7yuyAg from 7,uysAg, and hence the result.

Now, since £(x) + £(y) = £(wy/) we have Q) (po) = (q — q~1)*™x), and since end(pg) = 7uy we
have wt(pg) = v and 6*(pg) = uy. Thus by Theorem we have

[WA(me B\ uyuy = (a4 — qfl)g(w*')g + Z Q/\(Z?>C,V\Vt(p)-
pepk(rﬁ'yvuA)u)\\{po}

It follows from Theorem 4.7 and the above equation that
q_K(WA’)[ﬂ‘)\(TmW; Bx)luyuy =C) + (Z]q~1]-linear combination of terms (;/ with o € P),

and so to prove the proposition it is sufficient to show that if p € Py(fiy, uy)y, with wt(p) =~/
and v < 7/ then:
(a) if v <\ 7' then deg Qx(p) < £(wx);
(b) if v = 4/ then deg Qx(p) < £(wy/), and if equality holds then Q,(p) has positive leading
coeflicient.
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Consider a path p € Py(f, uy)u, with wt(p) = +'. Since 6*(p) = uy [10, Corollary 2.11]
gives end(p) = 7yuy. Let N = f(p) + b(p) be the total number of folds and bounces in p. If
My = $152- - s¢m then, since p starts at uy, we have end(p) = uxsi---8;, - 8 - - - s¢m, where
the folds and bounces of p occur at the indices i with 1 <41 < iy < --- < iy < /£ (and §;,
denotes omission of the generator in the expression). It follows that £(uy'7,uy) < ¢(m,) — N,
and thus N < £(m,) — £(uy'7,/uy). Since £(my) = £(uy ' uy) + £(wy) we have

N < K(WA/) + é(mv) - K(mﬂ/).
Since Qx(p) = (—q) P (q — q~1)f®) it follows that deg Qx(p) < £(wy) + £(m,) — £(m./) with

equality if and only if f(p) = €(wy/) 4+ £(m,) — £(m,/) and b(p) = 0. Both (a) and (b) now follow
from the monotonicity statement in Theorem [6.4] O

The following theorem is one of the main theorem of this paper. It gives a A-relative version
of [I5], Proposition 8.6] (see also [23, Theorem 2.22(b)]). Recall that

Cronrgt = spang{cy(w) |w € TANT '}

By Theorem [5.8 we have

Qrmrgl = jrmrgl'
Theorem 7.6. We have '\NT, "' = {m, |~ € PJ(F)‘)}, and if v € PWY) then

TA(Cm.,) = 57(C)mA(Cw,,)-

Moreover, cx(my) = sy(C))Eu, uy, and the linear map

¢ F;1—>Z[(,\]GA with cx(my) = 5,(Cy)

TanN
is an isomorphism of unital rings.

Proof. We argue as follows.

Claim 1: If w € TyNTy " then mA(Cy) = fw(C)TA(Cw,,) for some f,(Cr) € Z[C\] .

Proof of Claim 1. If w € T'y, ﬁI‘;\l then by Theoremthe matrix 7y (Cy; By) attains the bound
¢(wy) in the (uy, uy)-position, and only in this position. Define f,,(¢x) = g~ ") [13(Cuo; Ba)]uy s s
and 5o f,(¢\) € (Z[q7Y)[¢)]. Since Llwwy) = £(wyw) = €(w) — £(wy) Lemma combined
with Theorem gives

q 2 Wy (62)273(Cw) = Tr(Cwryy CowCinyy ) = FA(C)TA(Clny, ) (7.1)
Reading the (uy, uy)-entries (using Proposition gives q {0y (92)2 Fu(Cn) = g/ ™) £1(C).
In particular, f(Cy,) is divisible (in R[¢\]) by Wy (q?)?, and we have

q2€(w/\/)

fw((k) = Wf)\(cw)

It then follows from Corollary that §,(()\) = fw(¢)), and since §,(()) € (Z[q71)[¢)] this

forces i, ((\) € Z[()\]. Then by Theoremwe have f,(Cy) € Z[()\]%*, and (7.1) gives 7\ (Cy) =
fuw(CA)TA(Cuw,, ), completing the proof of Claim 1.

Claim 2: We have {m, |y € Pf‘)} CT,yNTy !, and if v € PN then fm., (C0) = 54(00).
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Proof of Claim 2. By Proposition 7.5( we have deg[my(Tm.;Bx)]uy,uy = £(wy), and so by Corol-
lary we have m, € I'y N F;l, hence the claimed containment.
Let v € P, Since my, = m, for all g € G (see Proposition we may assume that

v E PJ(;\). By Proposition we have
fm, (Cx) = ¢ + (Z-linear combination of terms C;/ with v £ 7/), (7.2)

where ¢ > 0 is an integer. Since fm ((x) € Z[(1]%*, and since the Schur functions s,(()),
v E€ P(/\), form a Z-basis of this ring we have

fm«, () = Z a'y’5’y/(C>\)

Y Ee(P/Qx)+

for some integers a,,. By Theorem we have (fm, (1), fm, (C1))S° = 1, and then Lemma
gives >/ ai, = 1. Thus fm,(Cx) = €54,(Cx) for some 71 € PJ(F)‘) with e € {—1,1}. By and
the positivity in Lemma [7.4) we have e = 1. Moreover, the triangularity in Lemma gives
v <x 71, and hence v; = v by completing the proof of Claim 2.

Claim 3: We have TyNTy!' = {m, |y € PJ(F)‘)}.

Proof of Claim 3. If w € T'y N F;l then it follows from Claim 1 that cy(w) = fu(())Euy uy
with §,(C) € Z[G\]. Tfw ¢ {m, |y € PJ(F)‘)} then by Claim 2 and the asymptotic Plancherel
Theorem (Theorem we have (f,(Cx),5,(C))) = 0 for all v € PY| contradicting the fact
that the Schur functions s,((y), v € P()‘)7 form a basis of Z[()\]*. Thus w = m, for some

v E PJ(F/\). Claim 2 provides the reverse containment.
It is now clear that the linear map Qrmrgl — Z[¢\]E with cx(m,y) — s.(¢y) is a ring

isomorphism (see Theorem [5.8]), and the proof of the theorem is complete. O

We can now complete the proof of Lemma (and hence the A-relative Satake Isomor-
phism).

Proof of Lemma|3.11. By Theorem we have fi(Cn,) = q_%(wk’)W,\/(qQ)Qs,y(C,\), and the
Schur functions form a basis of R[(y]“*. O

7.3 The ring €, and Lusztig’s asymptotic algebra

As in Section let di,...,dn, be the distinguished involutions of Ay with d; = wy,. Let I';
denote the right cell containing d;, and order W so that cy(d;) = Ej (see Theorem [7.2). In
particular, uy € AW is the first element in this order, and T'; = T'y.

Fix bijections ¢;; : I'; N F;l = TN I’;l, as in [31} §2.3]. Write Ej;(a) for the matrix with a
in the (i, j)-position and 0 elsewhere. The following result of Xi reduces the understanding of
J to understanding the ring jr)\mr;l.

Theorem 7.7 (|31, Theorem 2.3.2]). We have:
(1) The map ty + tg4,, () induces a ring isomorphism jrmr;l — jr)\mrgl.
(2) The map ty — Eij(ty, (), for w € TN I‘;l, defines an isomorphism from J to
MatNA<~7FmF;1)-

The following theorem gives an explicit description of Lusztig’s asymptotic algebra for affine
type A (recall from Theorem that J, = €, and J = €).
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Theorem 7.8. There are weights v1,...,7n, € PO and e, .. ., €ény, € {—1,1} such that
D—let D=M G — A; 71 TNy
AD = Maty, (Z[(x]">)  where D = diag(e1¢)",...,en ¢y )

Moreover there is a function hy : Ay — Pf_A) such that:
a) for eac <14,7 < Ny the map h) : I';NL. " — 18 byjective, an
for each 1 <i,j < Ny th ha: TNt = PY s bijective, and

(b) ifwelyn Fj_l then D_IC)\(U))D = ﬁhA(w)(CA)Eij’

Proof. By Theorem we have ¢y(d;) = Ey. Let w;; = qbi_jl(wx) e Iin Fj_l. By [311
Lemma 2.3.1] we have wy; = d; and wj; = wizl. Since Eij(tw,,)Eji(tw,,) = Eii(tgw) = Ey(tw,,)

it follows (under the isomorphism in Theorem (2)) that ty,;t,—1 = tg,- By Theorem ﬂ we
ij

have ¢y (w;;) = a(C\)Esj for some a(Cy) € Z[¢)]. Then the above equation, and the isomorphism
from Theorem gives (using 1} Eii = c\(di) = c,\(wij)c,\(wigl) = a(¢)a(¢ "), and

hence a(¢y)a(Cy ") = 1. Writing a((y) = >3- ¢,(} (with ¢, € Z and the sum over 7y € PW) it
follows that Y ¢ = 1, and hence a(¢y) = €;;¢}"” for some 7 € PW and ¢;; = +1. Thus the
elements Wi satisfy C)\(wi]’) = GijczijEij, with €4i = €ij and Yii = —YVij (Wlth €5 — 1)

We claim that, for all 4, 7, k,

Yij + ik i =0 and  eiejper; = 1. (7.3)
To see this, it follows from Theorem [7.7] that ty, tuy,, tu,; = ta;- On the other hand,

i Yk Vi
cx(wij)ex(win)ea(wii) = eeperiCy” 7 By,

and since ¢y (d;) = Ej; the claim follows (using Theorem [5.8)).
It is now elementary, using 1’ that one may choose weights v1,...,vn, € P™ and signs

€1,...,en, € {—1,1} such that €; = €¢; and (7 = (J°¢, . [This is a consequence of the
following: if z;;, 1 < 7,7 < n, are invertible satisfying z;;zj; = zy for all 1 < 4, j,k < n then
there exist invertible x1, ..., z, such that xiwj_l = z;j for all 1 <4, j < n. The proof is induction

on n with the induction step given by setting xn41 = z12;, }L +1]- It follows that
Dich(Wi]‘)D = Ez‘j where D = diag(q{;l, cee s €N ;\YN)‘).

Let Rij = {{[D71AD};; | A € €\}. We claim that R;; = Z[(,]“*. To see this, suppose that
a(Cy),b(¢x) € Rij. Then there exist A, B € €, such that [D7YAD];; = a(()) and [D7!BD);; =
b(¢y). Then

D~ Yey(d;) Acy(wj;)Bex(d;)D = D' E;; AD(D e\ (w;)D)D ' BE;; D
= E;D"'ADE;;D"'BDEj;
= a(CQ)b(CN) Eijs
and so R;; is a ring. Moreover

Dilt)\(wli)AC)\(le)D = Dilt)\(wli)D(DilAD)DilC)\(le)D = Q(C)\)EH,

and so ¢y (wy;)Acy(wj1) = a())E11, and hence a((y) € Z[(\]9*. So Rij C Z[(\]9*. On the other
hand,
D™ ex(win)ea(ms)ex(wiz) D = 54(C2) By,

42



and so Z[(,]%* C R;j, completing the proof of the claim. Thus D~1€\D = Maty, (Z[(\]*).
Let w € T ﬂF;l, and write D~ ley(w)D = a(¢)) E;j for some a(Cy) € Z[(\]“*. An argument
similar to the proof of Claim 2 in Theorem gives that a(Q\) = €wSp, (w)(Cx) for some €, €

{—1,1} and hy(w) € PJ(F)‘). The map hy : T; N Fj_l — PJ(F)‘) is injective (using Theorem and
surjective (as Ri; = Z[(\])9*). We claim that €, = 1 for all w € Ay. We have

D™ ey (wig)ex(w)ex(wyn) D = ewsp, () ((2) E11 = €D~ ex(my, w)) D,

and so cx(wii)ex(w)ex(wji) = €wex(Mp, (). Thus tw,, twtw;, = €wtm, (- 1t is known that the
structure constants of 7, are nonnegative (see [16} (3.1.1)]), and hence €, = 1. Thus we have
D_lc,\(w)D = 5hA(w)(C)\) for all w € Aj. ]

We make the following conjecture.
Conjecture 7.9. In Theorem[7.8 we have ¢, = 1 for all 1 <i < Nj.

Theorem [7.8| gives rise to a balanced system of cell representations, in the sense of [12]
Definition 1.5].

Corollary 7.10. The matriz representations wx(-;By), with A= n+1, form a balanced system
of cell representations.

Proof. We verify properties B1-B6 from [12, Definition 1.5]. Property B1 is the killing property
(Theorem [4.3)), and property B2 is boundedness (Theorem [4.7, with bounds ay = f(wy/)).
Property B6 (monotonicity of the bounds) is then immediate from Lemma Property B3
is the statement that m) recognises precisely Ay (Theorem , and property B4 (freeness of
the leading matrices over Z) follows from the freeness of the Schur functions and Theorem
Finally, if 2z € Ay then z € T'; N F;l for some 1 < 4,5 < N, and by Theorem W we have
cx(2)en(d;) = ex(z), verifying B5. O

Remark 7.11. Conjugation by D in the above theorem amounts to choosing a basis associated
to a (signed) “fundamental domain” for the action of Ty on A different from the standard
fundamental domain *W. See [I0, Section 4.5] for details. Specifically, the basis chosen is
{&® e,-XT;ilui | 1 <i< Ny} where "W = {u; | 1 <i < Ny} is ordered as in Theorem

Example 7.12. Consider A with A = (2,2) (see Examples and [2.25). We have
uy = 5o, and "W = {s9, e, 5951, 5253, 525153, 52515352} (ordered with uy being the first element).
Writing Q = q — g~ !, the path formula in Theorem m gives

rQ 0 1 0 0 0 o 1 0 0 0 0
0 —qo1 0 0 o0 0 1 Q 0 0 0 0
|1 0 0 0 O 0 |10 0 —q! 0 0 0
o) =19 o o Q1 o0 ™(T2) =1y o o —q7' 0 o0
0 0 0 1 0 0 0 0 0 0 Q 1
L0 0 0 0 0 —q 'l L0 0 0 0 1 0
rQ 0 0 1 0 0 7 r o 0 0 0 0 21/ 72
0 —g! 0 0 O 0 0 0 0 0 21/ 22 0
_]o 0 Q 0 1 0 N 0 0 —q~! 0 0 0
™mIE) =11 o 000 o ™(To) = | 0 0 —q' 0 0
0 0 1 0 0 0 0 z2/z1 0 0 Q 0
L0 0 0 0 0 —q 'l Lza/21 0 0 0 0 Q
rO 0 0 0 =z 0
0 0 0 =z 0 0
|0 2z 0 0 0 O
M) =10 o 0 o o 21
z2 0 0 0 0 O
LO 0 2z 0 0 0
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The distinguished involutions are

di = 5183 dp = 52518352 d3 = S3525053 d4 = 51525051 ds = S0S2  dg = 50515350,

and after making choices of the bijections ¢;; : I'; ﬂF;l —- I ﬁFfl the elements w;; = qﬁfjl(wx)

(see the proof of Theorem are

W12 = 815352 w13 = 8183500 W14 = 5183520
W15 = 81830 W16 2281838202 W3 — 828183500
Woq4 = 89851583520 wos = §9515830 woe — 828183820’2
W34 = 83525051 W35 = 835250 W36 = $35280510
W45 = S$15250 W46 = S$15250510 W56 = $250510

-1

;). We compute

(with wy; = d; and wj; = w

o(wiz) = Fra, cox(wis) = 21E13, o\(wis) = 21F1, ox(wis) = 21E15,  cx(wie) = 21 Eg.
The conjugating matrix (from Theorem may thus be taken as
D =diag(L, 1,227 2 ).

Then D~ tey(wi;)D = Eyj for all 1 <4, j < 6 (note that all signs ¢; are +1, see Conjecture ,
and we have D™1¢\D = Matg(Z[(\]%*). For example, if w = s95051535250515352500° We com-
pute

D7l ex(w)D = (202 + 2125 + 21 + 23 + 2122) Es6 = 852,48, (()) Ese,

showing that w € I's N Fgl and hy(w) = 3e1 + 2e3 + €3 € PJ(F)‘).

A Proof of Theorem [6.4]
In this appendix we prove Theorem (see Theorems and [A.17)). In Section we give

general analysis of maximal length double coset representatives in affine Weyl groups, before
turning attention to the specific elements m, in Section where we show that ¢(m,) =
O(uytmyuy) + £(wy). In Section we compute £(uy 'Tyuy), and in Section we use this
length formula to prove a monotonicity of £(m,) with respect to <.

A.1 Maximal length double coset representatives in affine Weyl groups

This section gives some general facts about maximal length double coset representatives in affine
Weyl groups.

Lemma A.1. Letv€ P andu € W. For 1 < j <n we have:

(1) U(sjtyu) = L(tyu) — 1 if and only if (y,a;) <0 and if {(y,a;) =0 then v a; < 0.

(2) L(tyus;) = L(tyu) — 1 if and only if (u™'y, ;) > 0 and if (u™'v, ;) = 0 then ua; < 0.
Proof. Tt is sufficient to prove (1), because (2) follows by applying (1) to (tyu)™' =t_,—u™".
By counting hyperplanes separating A from t,uAy, we have (see [22] (2.4.1)])

Utu) = D [(y.0) = x " (ua),

acdt
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where x (o) = 1 if € —®7, and 0 otherwise. The simple reflection s; permutes ®*\{«;}, and
since sjtyu = ts;4S5u it follows that

U(sjtyu) = [(v, ;) + X_(—U_laj)’ + Z (v, @) — x~ (uta)),
o€\ fay)

and 50 £(tyu) — L(sityu) = |(v,05) — X~ ay)] = {9,a5) + X~ (~ulay)]. Thus £(s;t,u) =
{(tyu) — 1 if and only if either (y,a;) <0, or (y,a;) =0 and uta; < 0. O

Lemma A.2. Letye€ P,ue W, and J C{1,2,...,n}. Let

Li(v,u) ={a€ @V | (y,a) >0 or (y,a) =0 and u”'a > 0}
Ry(v,u) = {a € ®F | (uly,a) <0 or (u"'y,a) =0 and ua > 0}.

Then there exist (unique) elements x,x’ € Wy with ®(x) = Lj(y,u) and ®(z') = Ry(y,u).
Moreover x_ltvu is of mazximal length in Wit u, and tyux’ is of mazimal length in t,uWy, and
Oz Myu) = () 4+ L(tyu) and L(tyuz’) = £(tyu) + ().

Proof. 1t is sufficient to prove the results concerning the coset Wt u (for the other statements
follow by considering (tyu) ™' =t_,-1,u~!). We argue by induction on |L; (v, u)|. If [L;(v,u)| =
0 then Lemma gives (st u) = €(tyu) — 1 for all j € J. Thus tyu is of maximal length in
Wt u, and the result follows with = e. Suppose |L;(v,u)| > 0. Then there is j € J with
aj € Ly(v,u) (otherwise Lj(v,u) = 0) and so £(s;jtyu) = £(tyu) + 1 by Lemma [A.1] We have
sjtyu = ts;~(sju), and we claim that

Ly(sjv,sju) = si(Ly (v, u)\{ay}). (A1)

Note first that o; ¢ L;j(sjv,s;u) (for otherwise either (s;vy,a;) > 0 or (s;v,co;) = 0 and
ulsja; > 0, and so either (v, ;) < 0 or {7,a;) =0 and u~'a; < 0, contradicting the fact that
aj € Ly(v,u)). Now, to prove , suppose that o € Lj(sjv,s;u). Then either (v,sja) > 0
or (v,sja) =0 and u'sja > 0. Since o € ®T\{a;}, and since s; permutes this set of positive
roots, it follows that sja € Lj(y,u) and so a € sj(Lj(v,u)\{e;}). The converse is similar.

It follows by induction using that there exist ji,...,jx € J such that, writing 7! =
Sjy + 8y, we have (z 7 tyu) = k+£(t,u), and such that L;(zvy,zu) = 0. By Lemmawe have
that 271t u is of maximal length in Wt u, and it follows from that ®(x) = Ly(v,u). O

Corollary A.3. Let v € P, u € W, and J C {1,2,...,n}. Let m be the longest element of
WityauWy. Then
m=x 'ty with £(m)=£(z)+ L(tyu) + L(y),

where ®(z) = Lj(v,u) and ®(y) = Ry(x~ y, 27 ). In particular,
U(m) = £(tyu) = [Ly(v,u)| + [Ry(z ™y, 2™ ).
Proof. By Lemmawe have that x_ltwu = tfw(:v_lu) is of maximal length in Wt u, where
®(z) = Ly(7,u), and that £(x~ . u) = £(z) + £(t,u). Then, again using Lemma we have
that (z71t,u)y is of maximal length in 2=, ulW,, where ®(y) = Ry(z~'v,271u), and that
U((w ™y u)y) = Uz~ tyw) + Ey) = £(z) + U(tu) + U(y).

Thus xilt,yuy is of maximal length in W;t,uWj, and the result follows. O
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A.2 The elements m,

In this section we prove that £(m,) = £(uy'7yuy) + £(wy) (see Theorem [A.11). The length
€(u;177u ) is computed in the next section (see Theorem .

Proposition A.4. Let v € PN, We have £(m,) — £(u} 'myuy) = |L(7)| + |R(v)], where

L(y)={p € u>\<I>:\F, {(v,8) >0 or (v,8) =0 and u)_\ly,;lﬁ > 0},
R(y)={p € u)\<I>j\r, | (wxv, ) <0 or (wyy,8) =0 and u;1y76 >0 and u;lyyﬁ ¢ <I>:\", .

Proof. Since uy'myuy = tu;17u;1y7u Corollary [A.3| gives £(m,) — £(uy '7yuy) = |L(7)| + | R (7))

with L(v) as given in the statement of the proposition, and R'(Y) given by
R'(y) ={B € u®f, | {y;'7.8) <0or (y;'v,8) =0 and 2~ 'uy'y, > 0}

where € W is defined by ®(z) = u)_\lL(’y). It remains to show that R'(y) = R(7). By (2.4) we
have yo1 = waw,,\ s, (). Moreover, since y € PW and Jy(v) = {j € Jx | (y,;) = 1} we have
(7,a5) = 0 for all j € Jy\Jx(7), and hence y; 1y = wyy.

To conclude the proof we must show that if (wyvy, 5) = 0, then x_luglywﬁ > 0 if and only
if u;lywé’ > 0 and u;lyﬂ,ﬁ ¢ <I>;\r,. Suppose first that m_luglywﬁ > 0. If uglyvﬁ < 0 then

—uy'y,8 € ®(z) = u,'L(y), and so B/ = —y,B € L(7). Since (y,3") = —(wy7,58) = 0 the
definition of L(vy) forces uf\lyv_lﬁ’ > 0, however u;ly;lﬁ’ = —u;lﬁ € —<I>;\r,, a contradiction.
Thus u;lyvﬁ > 0, and so y,( ¢ L(7y) (because u)_ilywﬁ ¢ &(x)). If uglyyﬂ € <I>:\", then ' =y, €
uy®3, and since (v,8) = (wyv,8) = 0 and uj y;lﬁ’ = u;lﬁ > 0 we have §' = vy,08 € L(v),
a contradiction. Conversely, suppose that (wyvy,3) = 0 with u;lyﬁ,ﬁ > 0 and u;ly,yﬂ ¢ @j\r,.
If x_luglywﬁ < 0 then u;lyvﬁ € O(x) = u;lL(fy) and so y,3 € L(z) C uy®},, contradicting
u;lywé’ ¢ <I>;\r, and concluding the proof. O

Recall that A[k, ] denotes the entry in the kth row and ith column of t,(X).
Lemma A.5. We have
uy®*t = {exmg — e 10 <kl <r(N), 1<i<j< N, andifi=jthen k <l}.

Proof. Tt follows from the definition of uy that ux®* consists of the roots e;, — e;, such that iy
occurs before iy in the column reading of t,.(\), and hence the result. O

Lemma A.6. Let 8= ey — ez ) with 1 <k <l < r(A), 1 <i< A, and 1 < j < ). Then
(1) u;lﬂ > 0 if and only if © < j.
(2) u;lﬁ € @1‘, if and only if i = j.

Proof. Again this follows directly from the definition of uy. O
In particular, we have
U)\(I):\b = {6)\[]”} — €[] | 1<k<lI< ’I”()\), 1< < )\l}.

It is convenient to decompose u )\<I>:\F, as follows:

n®h = || Ar where Apy={eyg_1)ri — exgonysi | 1< i< N (A.2)
1<k<I<r())
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For the next three results we will fix 1 <k <[l <r(\) and 1 < i < \;, and set
(1) B=-expi — e € Akl
(2) v € PW with v+ Q) = Z;(Z’\l) a;jéj, and a; = A\jb; + ¢; with 0 < ¢j < Aj for 1 < j < r(N),
(3) ¢ =Aj —c¢jfor 1 <j<r(A).

The following lemmas are helpful in determining L(y) and R(7).

Lemma A.7. Let 5 and 7y be as above. We have u;lyfﬁ > 0 if and only if either:
(a) i < ¢ and i < ¢ with ¢ < cf, or
(b) i >cp andi < ¢, or
(¢) i>cp and i > ¢ with ¢; < ¢k

Proof. Recall that y, = wy,\ s, (y)Wa. A direct calculation gives y-, Ip=e A[k,i'] — €Afl,j] Where

Ly’

j =

g c.+1i ifi<cy y c+i ifi<q
i—¢ ifi>q.

1—c ifi>cy
Now use that fact that u/(lyv_lﬁ > 0 if and only if i’ < j' (see Lemma . O

Lemma A.8. Let 5 and vy be as above. We have u;lyﬂ,ﬁ > 0 with u;lyyﬂ ¢ @j\, if and only if
either:

(a) i < cf and i < ¢ with ¢ < ¢, or

(b) i>c; andi < cj, or

(c) i > A, and i > N\ with ¢f < c}.

Proof. Similarly to in Lemma a direct calculation gives y, 3 = ey, — exp,j] where

y i—cp ifi>cf y i—c ifi>c
v = . J = .
cp+1 ifi < g+i ifi<¢.

The result follows from the fact that u)_\lyﬂ,ﬁ > 0 if and only if ¢/ < j/, and if i/ = j' then
u;lyvﬁ € <I>;\r, (see Lemma . O

In the following proposition we determine L(y) and R(7).

Proposition A.9. Let § and vy be as above. We have 5 € L(7) if and only if either by, — b > 1,
or by, — by = 0 with ¢, > ¢ and either:
(a) ¢ >cf witheg <i< A\, or
(b) ¢ <cf with1 <i <\
We have B € R(v) if and only if either by, — by < —1, or by, — by = 0 with ¢, > ¢ and either:
(a) cx > ¢ with ¢f <i < N\, or
(b) cx < with1 <i<\.

Proof. By Proposition [2.6] we have

b — by ifi <cpandi<c,ori>c,andi> ¢
(7,8) =qbpr—b+1 ifi<cpandi>¢
by —by—1 ifi>c¢pand i < ¢,

and it follows that:
o If by — b < —2 then (v,3) <0 and so 8 ¢ L(v).
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e If by — by = —1 then S ¢ L() unless i < ¢ and ¢ > ¢ and u;lny > 0. However by
Lemmaifi < ¢, and i > ¢ then u;lyv_lﬂ < 0, and so B ¢ L(v) whenever b, —b; = —1.
o If b, — by = 0 then we have the following:
(a) If i < ¢ and i > ¢; then B € L(v).
(b) If i > ¢ and i < ¢; then 5 ¢ L(7y).
(c) If i < ¢, and i < ¢ we have (v,3) = 0, and using Lemma [A.7] we have 3 € L(v) if
and only if ¢ < ¢
(d) Similarly, if i > ¢ and i > ¢; we have 5 € L() if and only if ¢; < ¢.
If b, —b; = 1 then S € L(7y) unless ¢ > ¢ and i < ¢; with u;lyglﬁ < 0, but by Lemma
if ¢ > ¢, and ¢ < ¢; then u;lyglﬁ > (0. Thus § € L(vy) whenever by — b; = 1.
e If by — b > 2 then (v,8) > 0 and so 5 € L(y).
It follows from the above observations that if b, = b then 8 € L(y) if and only if either
g <1< ¢ ori<candi < ¢ with ¢ < ¢, ori > ¢, and 1 > ¢ with ¢; < ¢, and this in
turn is equivalent to the inequalities stated in the lemma (noting that the situation ¢ < ¢; and
;. < ¢f is impossible, since it implies that A\, <\ — (¢ — i) < Ap).
For R(7), by Proposition and the fact that w8 = e\ x,—i+1] — €xj1,n—i+1) We have

b — by if i <cpandi<¢,ori>cpandi>cf
Wrzy,B8) = Qb —b+1 ifi>c)andi<cf
b —b—1 iti<c;andi>cf

and the analysis is then completely analogous to the L(y) case, making use of Lemma O
Corollary A.10. Let vy € PN, For 1<k <1< r()\) we have
[L(y) N Al + [R(y) N Aga| = A

Proof. Write v+ Q) = > a;€é; with a; = \;b; + ¢; as before. By Proposition if |b, —by| > 1
then |L(y) N Ag,| + |R(y) N Ak = Ni. Moreover, if by, — by = 0 then

A —c¢ if by — by =0 with ¢ > ¢ and ¢, > ¢

|L(v) N Akl = S N if by, — by = 0 with ¢ > ¢; and ¢ < ¢f
0 otherwise,
and
¢ if by — b =0 with ¢ > ¢; and ¢, > ¢
|R(’y) N Ak,l =N\ if by — by = 0 with ¢ < ¢ and CZ > Czk
0 otherwise,
and hence the result (again, noting that the situation ¢ < ¢; and ¢} < ¢ is impossible). O

Theorem A.11. Let v € PWY. There exist z,y € Wy such that m, = xu;lﬁyu,\y with
l(my) =(z)+ K(UXIT,YU)\) +/l(y) and l(x)+L(y) =Ll(wy).
Proof. By and Corollary we have
L)+ IROI= Y (L) NAgl+ RO NAg) = Y a=> (-DA,

1<k<I<r(\) 1<k<I<r()\) 1>1
and the latter equals ¢(w)ys). The result now follows from Proposition O
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A.3 The length of U;\lT,YU)\

In this section we compute the length of u;\lﬁu A (see Theorem . We begin with some
preliminary observations. For 1 <k <1 < r(\) define

Bk, 154, 5) = expr — ealj) for 1<i<j<xN
B (k, 151, 5) = exp ) — exfk,i] for 1 <j<XNandj<i<\.

Let By = B,j:l U B,;l, where

B, ={87(k5;i,j) |11 <i<j <N} and B, ={8"(k1i,j)[1<j<Nandj<i<}.

By Lemmathe set uyx® T\ @) is the disjoint union of the sets By over 1 <k < < r()). Let
o/ =B U(-Bg)).

Note that (I)lil consists precisely of the roots e, — e, € ®* with p in row & of t,()\) and ¢ in row

[ of t,(\). Thus @7\ @, is the disjoint union of the sets ®;, over 1 < k < I < r(\).
r(A)

me1 @m€m, where a, = A\pby + ¢y with 0 <

As in the previous section, we write 7 = >
Cm < Ay for 1 <m < r(X). Let ¢, = Ay — o

Lemma A.12. Let v € PWY and let B+ = g+(k,1;4,5) (respectively B~ = S~ (k,1;4,5)). We
have u;ly;lﬁ‘F > 0 (respectively u;ly;lﬁ_ > 0) if and only if either:

(a) i <cp, j < withi+cp < j+cf (respectively i < ci, j < ¢ with j +¢f <i+cf), or

(b) i <cp, j>c withi+cj, <j—c (respectively i < c, j > ¢), or

(c) i>cp, j < (respectively i > ¢, j < ¢ with j+¢f <i—cy), or

(d) i>cp, j>c withi—cp <j—c (respectively i > cx, j > ¢ with j — ¢ < i — ¢g).

Proof. As in Lemma , a direct calculation gives y,;lﬁ+ = e[k, — e,y and y;lﬂ* =
6)\[[’]'/} — eA[k,i’]a where
y c,+i ifi <y y g+j ifj<g
1 = =
1—cp ifi>cg J j—c ifj>q.

We have u;ly;l,é”r > 0 if and only if ' < j/, and u;ly,;lﬂ_ > 0 if and only if j" < 7'. O

Lemma A.13. If v € PY and o € T with uya € &y then (v, upa) = X‘(uglyglu)\a).

Proof. Let 8 = ujya. Since 8 € @\ we have 8 = ey — ek,5) for some 1 < k < r()\), with

1 <i < j < A (see Lemma |A.5). Let v+ Q) = Z;"(jl) ajé;. Write ap = Apby + ¢ with

0 < ¢ < A;. By Proposition [2.6] we have

0 if either 4,5 < cp ori,j > ¢
(v, 8) = o :
1 ife < <y.

We claim that in the first case u;lny > (0 while in the second case u;lyv_lﬁ < 0. For if
1,7 < ¢k then as in Lemma we have y;lﬁ = €xlkyi+ct] ~ EAlk,j+ci] and so u;ly,;lﬂ >0 (as
i+cj, < j+cg, see Lemma or a similar argument). Similarly if i, > ¢x. On the other hand,
if i < ¢, < j then we have y;luAB = exlkyi+cr] ~ EAlk,j—ck]’ and since i + ¢ > j — ¢; (because
i+ A\ > j) we have u;lyglﬁ < 0. Hence the result. O
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Theorem A.14. Let~ € PO with Y+Q\ = ZZ(:)‘E ag€r where ap = A\pbr +c with 0 < ¢ < A,
and let ¢ = A\, — ci. Then

|Niax, — Apag if b, # b

uTitouy) = 2(v,k,l)  where z(v,k,l) =
(uy " 7yun) . kD L {CTICk—Cl|+cz|CZ—CZk\ if b, = by

1<k<I<r(\)

Proof. For g € ® let h(v,B) = (v,8) — X‘(uglyglﬁ), and so since u;leYU)\ = tu;1,yu;1y7u,\ we
have

Luytmun) = Y0 |h(y, B)].

EGU)\‘P+

By Lemma we have h(vy,8) = 01if 8 € ®), so we can omit these roots from the analysis.
Then uy®*\®, is a disjoint union of the sets By; with 1 <k < < r()), and hence

Lutmu) = Y0 D (L B)l.

1<k<I<r(\) BE€By.1

Thus to prove the theorem it is sufficient to prove that

> Ih(y. B)] = 2(v, k. 1). (A.3)

BEBk 1

Let BT = BT (k,1;4,j) € By, where 1 <i < j < X\;, and let 3~ = B~ (k,l;4,j) € B, where
1<j<Xandj<i< M\ Since

b — b ifi<ce, j<cgori>cg j>q
(1B =qbe—bi+1 ifi<c,j>q (A.4)
b —b—1 ifi>ck,j§01.

Thus it follows that if by —b; < —1 then h(y, 3%) <0, and if by — b; > 1 then h(vy, 37) > 0 (note
that if by, — b; = 1 with ¢ > ¢; and j < ¢; then by Lemma we have u;ly,?lﬁ*' > 0 and so

h(y,8%) = —=x"(uy'y;'87) = 0).
Similarly, since

by — b, ifigck,jgclori>ck,j>cl
(LB =qbi—bp+1 ifi>e, j<q (A.5)
bp—br,—1 ifi<ep, j>¢q
it follows that if by, — b; > 1 then h(~,57) <0, and if by — b; < —1 then h(y,87) > 0 (note that

if b, — b = —1 with ¢ < ¢; and j > ¢; then by Lemma we have h(vy,37) =0).
To prove (A.3]) we consider the following cases.

Case 1: Suppose that by, — by > 1. The above observations give

Yo h(nBl= Y h(v.B) = Y k(1.5

BEBy,1 BeB, BEB;,
=D B = D B = Y x B+ D x(uyly;A).
/36le BEBy, BEBL BEB,,
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The first two terms combine to give (7, 2p,), where
1 1
Pri =5 > p=3 > B,
BeBfU(-B;,) ped,

and 50 Ygep, | [h(v, B)] = (v,2pra) =S where S = Y5 pr X7 (uy'y5 " B) = pep- X~ (uy'y3'6)-
We claim that S = 0. To see this, note that since B;, = ®;,\®(uy) and —B,_, = ®(uy) N Oy,
we have

S= > x''B- Y x (v ')

Bedl \@(uy) BEP(un)NPy 1
= ) x '8 - DY B+ x e (—uy s )]
ﬁG‘PL BEP(ux)NPy
Each term in the second sum is 1, and hence S = |[®(y,uy) N Pp| — [P(uy) N Py y|. Since

U(yyuy) = £(uy) + £(yy) we have ®(y,uy) = P(y,) Uy, P(uy) and so |P(yyuy) N Py | = [@(y,) N
Ppg| + [P(uy) N y7_1<I>k7l|. But ®(y,) NPy, = 0 (as (y,) C <I>;\“) and y;lCIDkJ = ¥y, and so
S = 0. Thus
Z |h(75 B)‘ = <’7’2pk,l>7
BEBk,1
but 2p,; = X Zj:’“l eAlk,d] — Mk 2;1:1 exi,) and so by Proposition (7, 2pk,1) = Nak — Agag,
and hence (A.3) holds.

Case 2: Suppose that by, —b; < —1. Then the above observations, along with the calculations in
Case 1, give

STIrEB) == > k(.8 + D> (v, B8) = — (1. 2pk1) = Mear — Ny
BEBk, BeB}, BeBy,
and so again ((A.3)) holds.
Case 3: Suppose that by, — by = 0. We first note that in this case

ALCl — Ncg if ¢ < ¢ (and hence ¢j > ¢f)
2(v, k1) = ¢ New — Mie if ¢, > ¢ and ¢ < ¢f (A.6)
of (e — ) +alcg —¢f) ifeg>¢and ¢ > .

From (A.4)) and (A.5) we have the following (noting that 1 — x~(-) = x*(-) where x*(-) is the
characteristic function of ®7).

» If i < o and j < ¢ then |h(y, A1) = x~(uy'y5'87) and |h(y, 57)| = x~ (uy'y;'67).

* 1fi>cpand j > o then [A(y, F) = X" (u) 'y;1B%) and [h(y, B )I ‘(UleJIB‘)-

o If i < ¢, j > ¢ then |h(y, 7)) = x (u/\ yvlﬁ“') and |h('y, “)] =1 (see Lemma |A.12)).

« If i > ¢ and j < ¢; then |h(y, 87)| =1 (see Lemma and |h(v, 87) = xT(uyy; 1 87).
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Thus, by Lemma we have > s p  [h(v, B)| = | Xa| + - + | Xs], where

Xi={(,))|1<i<j<N,i<cpj<c,itc,>j+c}

Xo={(t,)) |1 <i<j<A,i>ck,j>c,i—ck>]—q}
Xs={(,))|1<i<j<A,i<er,j>c,i+c,<j—q}
Xe={(,)) |1 <i<j<A,i>ck,J<c}

Xs={(4,)) |1 <j<N,j<i<A,i<cpj<c,it+c <j+}
Xe={(t,7))|1<j< A, j<i< g, i>cp,j>c,i—cp<j—c}
Xe={(,7) |1<j< AN, j<i< A, i1<ck, J>a}

Xe={(t,7) |1 <j< A, j<i<Ag,i>c,j<c,i—cp>j+c}

We compute the cardinalities of these sets (to do so it helps to draw a sketch of the corresponding
regions in the (i, 7)-plane). The analysis divides into the following sub-cases.
(a) Suppose that ¢, < ¢ (then necessarily ¢, = A\, — cx > A\ — ¢; = ¢f). Then we compute

(g =) =5 =) e =N —1) ifag>c—c
cp(er +1) — seplep +1) if e <cf—¢
IXq| %(c’,;—cf—l)(c;;—c?) if e > ¢ —¢f
8| = )
alcy — ) —sala+1) ifag<c —df,
and | Xo| = (c—cx)(N—cr), | X4| = 3 (a—ck)(q—cp+1), and |X3| = | X5] = | X¢| = | X7| = 0.

Summing gives > scp , [h(7, B)| = Aker — Aiex, as required (see (A-6]).
(b) Suppose that ¢, > ¢ and ¢ < ¢f. Then |X;| = [Xo| = [X4 | Xs| = 0, |X3]
s(cf =) — g +1), |X5] = alcf —c}), and

Xq| = {(Al cx) (e — cl) + l( ck—ca)(egk—c+1)— %(c}" —cp)ef —cp+1) ife <N

(e +1) = 3(cf —cp)(cf —cp + 1) if cp > N\
|X7| _ %(Ck —C — 1)(Ck — Cl) if Cl S )\l
Hew—a—1D(ek—a)— 3k —N—1)(ck —N) if e > N

Thus > scp, , Ih(7, B)| = Aick — Agcr as required.
(c) Suppose that ¢, > ¢; and ¢ > ¢f. Then | Xo| = | X3]| = [X4| = |X5| =0, and

Xy = {%cl(cﬂ—l) %fCZSCZ—c;‘
(e = (et =) — )+ %(c,’g ) —c+1) ifg>c—c
Xe| = {(1>\z —cp)(ex —a) + 5(ce —a)(ep — e + 1) %f e <N
56 (cf +1) if e, >N\
Xs| = {%(ck—cl—l)(ck—q) 1 ?fckﬁ)\l
slee—a=1)(ex —a) — sl =N =1)(ecx = N) if x> N
Xs| = {%cl(cl—1)+cl(02—)\l) ?fcl§02—c;‘
slep—c =1)(cg —¢) ifa>c—¢.

Thus | X1| + | Xs| = (¢ — ¢f) (in both cases) and |Xg| + |X7| = ¢ (cx — ¢) (in both
cases), and hence » 5.  [h(7,B)| = ¢ (cx — a) + ac, — ¢f) as required, completing the
proof. ’ O
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Remark A.15. Note that by we have z(v, k,l) = |[Nar — Agay| in all cases except when
by, = by with ¢, > ¢; and ¢ > ¢f. Moreover, if A = (d") (that is one block of row length d with
r rows) then the case ¢, > ¢; and ¢} > ¢ cannot occur, and thus z(v,k,l) = dlar, — a;] in all
cases. Thus in the 1-block case we have the simplified formula

L(uytryuy) =d Z lak — ay.

1<k<iI<r
Example A 16. Consider the A = [4,2] case with v = 2€; + é3. The by = by = 0, ¢; = 2,
cg=1,¢f =2,and ¢§ = 1, and so ¢; > ¢ and ¢} > ¢5. The formula from Theorem [A.14] gives

€(u/\ Twu,\) = 02(01 —c2) + ca(c] — ¢3) = 2. Indeed a direct calculation gives u} 17;,u>\ = 51540°.

A.4 Monotonicity of /(m,) with respect to <,

The following theorem will be used in the important Proposition The broken symmetry in
the definition of z(v, k,[) (that is, the existence of two cases in the definition) complicates the
proof.

Theorem A.17. If v, € Pf‘) with v + Qx <\ 7 + Qi then {(my) < £(my) with equality if
and only if v =+'.
Proof. By Theorem it suffices to prove that £(uy'7yuy) < £(uy'7,uy) with equality if

and only if v = 4. Let L(y) = £(uy'7u,) and let Bi,..., B, be the blocks of t.(\). By
Theorem [A.14] we have

T
= > kD + > > kD, (A7)
p=1 k,l€By, k<l 1<p<q<r k€B,, 1B,

and similarly for L(v7/). Write v/ + Q) = v+ € + Q, with € € Qf‘i_ From Lemma we
have ¢ = Z:Ql) d;é; where Zz‘eBp di =0foralll < p < randdy +---+d; > 0 for all
1 <i<r(A). Thus € = €1 + -+ + ¢ where ¢, = ZieBPdiéi € Q),and forany 1 < p <r
we have v+ ¢, + Qx € (P/Qx)+ with v+ Qx a7 + € + Qx <1 7' + Q. Thus it suffices to
prove the result in the case v + Q) = v + ¢, + Q) for some 1 < p < r (that is, v + Q@ and
7' 4+ @, only differ in one block), and then by well known properties of the dominance order on
the symmetric group (see, for example, [29] Corollary 2.7]) it suffices to prove the result when

€p = €; — €; for some ¢, j € B, with i < j.
Thus we henceforth assume that v+ Qx, 7 +Qx € (P/Qx)+ with v/ + Q) = ’y+éz —&;+Qx
for some i,j € B, with i < j. Write v + Q) = ng)‘)l Amém and v + Q) = ZT(A ! €m. Thus

m=1 &m®
ay, = ay unless m € {4, j}, and a} = a; + 1 and aj = a; — 1. Note that if by, > b; then we have

NG — Apa; = )\k)\l(bk — bl) + ()\lck — )\kcl) > M A — A =0, (A.S)

and similarly if by < b; then A\jap — A\pa; < 0.
Let Bcp = B1U---UBy_1 and B> = Bpy1U---UB,. Since z(v/, k,1) = 2(v, k,l) whenever
k,l ¢ {i,5} the formula (A.7) gives

L(V,) _L(V) = Z (Z(’ylakvl) _Z(’y’k‘?l))

k1€ By, k<l

+ > (200 ki) = 2(v, ko) + 2(Y K, ) — 2(7, K, )
keB-,

+ ) (20600 = 2(v 0, D) + 2(Y, 4, 0) — 2(7,5,1) -
1€B~,
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We must show that L(y") — L(y) > 0. We analyse each sum separately. Let \g = )\ for any
k € By, (so Ag is the length of the rows in block B,).

Consider the first sum. For k,l € B, with k < [ we have (by dominance within the block)
2(y,k, 1) = Xo(ar, — ;) and z(y/, k,1) = Ao(aj, — a;). Then, since aj, = aj, and @; = a] whenever
k.l ¢ {i,j} and aj = a; + 1 and a} = a; — 1 we see that

Z (Z(f)/a kv l) - Z(’Ya k? l)) = 2)‘()(] - Z) > 0.
k,leBp, k<l

Now consider the second and third sums in the above formula for L(v') — L(~y). To prove the
theorem it is sufficient, given the strict inequality for the first sum, to show that each summand
is nonnegative. We have a; = a; + 1 and @} = a; — 1, and

b — b; ife; < Ni—1 o= G +1 ife<—1
bi+1 ife; =X\ —1 ! 0 ife; =M\ —1

b/~: bj iij>0 C/~: Cj—l iij>0

7o lbi -1 ife;=0 TN =1 ife =0.

We first analyse the second sum. For k € B, let

x1(k) = z2(v, k,i) — 2(v,k,i) and  xa(k) = 2(7, k. §) — 2(7, k. 4),

and set z(k) = z1(k) + x2(k). We must show that z(k) > 0 for all k € B,
First consider x;(k). As before, let ¢, = A\, — ¢, for 1 < m < r(X). We claim that

¢

— Ak if by > b;
— g if by, = b; = b, with ¢ > ¢; and ¢}, < ¢}
21(k) = ik+2(c,~—cf—|—l—ck) ?fbkibii% W?th ¢k > ¢ and ¢ > ¢ (A.9)
k if by, = b; = b; with ¢, < ¢;
A if by = by with ) = b; + 1
A if by, < b

To prove (A.9)) we consider the following cases.
» Suppose that by > b;. If either by > b; + 2, or by, = b; + 1 with b} = b;, then by > b;,b; and

so by (A.8)
x1(k) = Noar — Ak(a; + 1)) — (Noag — A\pa;) = — .

If b = b; + 1 with b; =b; + 1 then ¢; = A\g — 1, and C; =0 (SO C;* = /\0). Since by, > b; we
have 2(7/7 k‘,Z) = |C{£*(Ck - C,z)‘ + |C;(Cz - C{L*)‘ = )\Ock and Z('Y, k72) = )\Oak - )\k’aia and so

z1(k) = Xock — (Aoag — Akai) = AoAg(bi — br) + Akci = — Aok + Apg(Ao — 1) = —Ag.

+ Suppose that by, = b; with b, = b;. Soc¢; < \;—land ¢, = ¢;+1,s0¢," = Ng—¢;—1 = ¢f —1.
Then we have z(v, k, i) = cf|ci, — ;| + ¢ilcf — ¢f| and

2(7 ki) = (¢f = Dlex — i = 1| + (¢ + Ve, — ¢f + 1.
We have the following sub-cases. Suppose first that c¢;, > ¢; and ¢}, < ¢j. Then

zi(k)=(cf —D(exr—ci— 1)+ (i +1)(c; —c. — 1) — ¢ (cx — 1) — cic; — ) = = A
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Now suppose that ¢ > ¢; and ¢ > ¢;. Then
z1(k) = (¢ —D(cx —ai — 1) + (ci + 1) (¢ — ¢ +1) — ¢j (e — i) — cileg — ¢7)
=X +2(ci — ¢ +1—cg).
Finally suppose that ¢, < ¢;. Then ¢ = A\ —cx > A\i —¢; = ¢}, and
z1(k) = (cj —D)(ci+1—cp) + (i + 1)(cg — ¢ + 1) = ¢j(ci — ) — cilc — ;) = Ak,

completing the analysis for this case.

* Suppose that by = b; with o, = b; +1. So ¢; = A\g — 1 and ¢/ = 1. Since by < b, we have
2(7, k. i) = —Xoax + Ag(a; +1). Since ¢ < Ay —1 < Xg — 1 we have ¢ < ¢; and ¢ > ¢
and so z(7,k,i) = ¢f|ck, — ;| + cil|cf, — ¢f| = Aocj — Ag. Thus

x1(k) = —Xoag + A\kai + A\, — /\ocz + A = A
+ Finally suppose that by, < b; — 1. Thus by < b; and by < b, and so
l‘l(k) = — ()\Qak — )\k(ai + 1)) + ()\o(lk — )\kai) = )\k,

completing the proof of the claim.
We now consider x2(k). We claim that

A if by, > b;
Ak if by, = b; with b;-:bjfl
(k) A if by, = bj = b; with ¢ > Cj and CZ < C}( (A 10)
x = .
2 —)\k—i—Q(c;—cj—i—l—i—ck) ifbk:bj:b; with ¢, > ¢;j and ¢ > ¢
— A if by, = bj = b;- with ¢, < ¢
— Ak if by, < b;.

The proof of the claim is very similar to the case of z1(k). For example, consider the most

involved case with by = b; and b; = b;. So ¢; > 0 and ¢ = ¢; — 1 (so ¢ = ¢f 4+ 1). Thus

ealk) = &' le — &1+ ek — | — flex — 5] — el — <)
= (c; + Dlex —¢j + 1+ (¢j = D[cg, — ¢; — 1| = cjlex — ¢j| = ¢jle, — ¢l

We have the following sub-cases. If ¢, > ¢; and ¢, < ¢} it follows that xa(k) = Ap. If ¢ > ¢; and
¢y > ¢ it follows that xo(k) = — Ay + 2(6; —¢j + 1+ ¢). Finally if ¢ < ¢; then ¢ = A\, — ¢ >
Ai — ¢ = ¢, and we calculate xo(k) = —Ag. The details of the remaining cases are omitted.

We now use (A.9) and (A.10)) to show that z(k) = x1(k) + x2(k) > 0. Recall that a; > aj,
and so b; > bj, and moreover if b; = b; then ¢; > ¢; (by dominance in a block). If either
x1(k) = z2(k) = Mg, or z1(k) = Ay = —x2(k), or x1(k) = =\ = —w2(k) then x(k) > 0. It
remains to consider the following potentially problematic cases:

(1) z1(k) = =X and x2(k) = —Ag. This situation implies that by = b; = b} with ¢, > ¢
and ¢, < ¢, and also b, = b; = b;- with ¢ < ¢;. But then b; = b; with ¢; < ¢ < ¢j,
contradicting dominance. So this case does not occur.

(2) z1(k) = —Ag and x2(k) = —Ap +2(cj — ¢j + 1+ ¢x). The condition on x1(k) implies that
either by > b; or by, = b; = b} with ¢, > ¢; and ¢ < ¢, and the condition on z2(k) implies
that by = b; = b;. with ¢ > ¢; and ¢ > cj». Since b; > b; the case by > b; is eliminated,
and so we obtain b; = b; with ¢j > ¢ > c;f, and hence c¢; > ¢;, again a contradiction. So
again this case does not occur.
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(3)
(4)

z1(k) = Ay and @2(k) = —Ap +2(cj — ¢j + 1+ ¢x). In this case the condition on z2(k)
implies that ¢ > ¢;, and so z(k) = z1(k) + z2(k) = 2(c] + cx —¢; +1) > 0.

z1(k) = A +2(ci — ¢ +1—¢) and z2(k) = —\j. The condition on (k) gives by = b; =V
with ¢, > ¢; and ¢ > ¢}, and the condition on x2(k) gives either by < b;, or b, = b; = b;-
with ¢, < ¢j. Since b; > b; the case by < b; is eliminated. Thus b; = b; and ¢; < ¢; < ¢j,
a contradiction. So this case does not occur.

z1(k) = Mg +2(c; — ¢f + 1 —¢x) and z2(k) = A In this case the condition on x;(k) gives
c; > ¢, and so x(k) =2(c; —c¢f +¢;+1) > 0.

z1(k) = A +2(¢; — ¢f + 1 —¢x) and z2(k) = —Ap +2(¢f — ¢j + 1+ ¢x). The condition
on x1(k) gives by = b; = b} with ¢ > ¢ and ¢ > ¢, and the condition on zy(k) gives
br, = b; = b with ¢t > ¢; and ¢ > ¢j. We have z(k) = 2(2 + ¢; — ¢; + ¢} — ¢f), and by
dominance ¢; > ¢; and ¢} > ¢}, hence x(k) > 0.

Thus we have shown that 2(k) > 0 for all k € B.,. It remains to consider the third sum in the

formula for L(ﬂy,) —L(’}/) Forl e B>p let yl(l) = z(’ylai7 l) —Z(’}/,’i, l)v yQ(l) = Z(’}//’j7 l) _z(’%jv l)a
and set y(I) = y1(1) + y2(1). A similar analysis to the above shows that y(I) > 0 for all | € B,

completing the proof. ]
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