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Dropouts are common in longitudinal study. If the dropout probability depends on the missing obser-
vations at or after dropout, this type of dropout is called informative (or nonignorable) dropout (ID).
Failure to accommodate such dropout mechanism into the model will bias the parameter estimates. We
propose a conditional autoregressive model for longitudinal binary data with an ID model such that the
probabilities of positive outcomes as well as the drop-out indicator in each occasion are logit linear in
some covariates and outcomes. This model adopting a marginal model for outcomes and a conditional
model for dropouts is called a selection model. To allow for the heterogeneity and clustering effects,
the outcome model is extended to incorporate mixture and random effects. Lastly, the model is further
extended to a novel model that models the outcome and dropout jointly such that their dependency is
formulated through an odds ratio function. Parameters are estimated by a Bayesian approach imple-
mented using the user-friendly Bayesian software WinBUGS. A methadone clinic dataset is analyzed to
illustrate the proposed models. Result shows that the treatment time effect is still significant but weaker
after allowing for an ID process in the data. Finally the effect of drop-out on parameter estimates is
evaluated through simulation studies.

Keywords: Bayesian analysis; Conditional and joint model; Informative dropout;
Longitudinal binary data; Selection model.

� Additional supporting information including source code to reproduce the results
may be found in the online version of this article at the publisher’s web-site

1 Introduction

In longitudinal studies, attrition is a common problem. Subjects often drop out prematurely, partic-
ularly when the observation period is lengthy. Failure to obtain a full set of observations on a given
unit may result in incomplete and unbalanced data and possibly loss of efficiency when the units
with missing data are discarded. This research is motivated by a dataset of urine drug screens results,
positive or negative to the presence of morphine, a biological marker of heroin, collected from patients
in a methadone maintenance treatment (MMT) program at a clinic in Sydney in 1986. The data have
substantial population heterogeneity and intracluster correlation as well as salient dropouts. Chan
et al. (1998) and (1997) study the treatment effect for a single drug use and a couple of drug uses
respectively allowing for population heterogeneity and clustering but they do not consider the dropout
process. The aim of the study is to derive efficient dropout models to measure treatment effectiveness,
after allowing for methadone dosage effect and dropouts.
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Dropout is a kind of monotone missings. While Laird (1988) and Troxel (l998) consider the in-
termittent missing, many analyses specifically look at monotone missings or dropouts (Fitzmaurice
et al., 1995; Little, 1995). Rubin (1976) introduces different dropout processes that are summarized in
Little and Rubin (1987) and Laird (1988). Completely random drop-out (CRD) refers to the dropout
mechanism that does not depend upon the observed outcomes. If the dropout mechanism depends on
the observed responses and possibly some covariates, but not the unobserved outcomes during or after
the time of dropout, we have a random dropout (RD). CRD and RD are said to be ignorable because it
is not necessary to specify a dropout model to obtain valid parameter inference in the outcome model.
Likelihood-based methods using standard algorithms give consistent parameter estimates because the
joint densities of observed data can be separated into densities involving parameters in the outcome
model and parameters in the dropout model, respectively. Hence, the estimation of parameters in the
outcome model can be done independently. On the contrary, if the probabilities of dropout depend on
the unobserved outcomes, we have informative dropout (ID). In this case, a valid likelihood-based in-
ference can only be obtained by specifying a dropout model. Diggle and Kenward (1994) demonstrate
that there are biases in the parameter estimates if such dropout mechanism is not accommodated in
the model.

Different linear-mixed models that incorporate dropout models have been proposed for normally
distributed data (Crouchley and Ganjali, 2002; Park et al., 2002; Stubbendick and Ibrahim, 2003).
However, there is less agreement on models for nonnormal data such as binary data or counts (Bradlow
and Zaslavsky, 1999; Fitzmaurice et al., 2001). For binary data, Wu and Carroll (1988) use a probit
censoring model, Cowles et al. (1996) assign informative priors directly to the missing data, Bradlow
and Zaslavsky (1999) consider dropouts as a category of outcome variable, Alfo and Altkin (2000)
model the total number of observations before dropout for each patient as one of the covariates in
the outcome model (see Section 3.4.1), Albert and Follmann (2007) include shared random effects
between the outcome and dropout models and Albert and Follmann (2003) adopt a multinomial logit
transition model for the three events of observed, intermittent missing, and dropout. Instead, Chan
et al. (2009) set up an explicit dropout model such that the probability of dropout for each outcome
(observed or dropped out) is logit linear in some covariates and outcomes. This approach has an
advantage: the explicit dropout model can be applied to data with nonmonotone missing and can
incorporate covariates that affect the missingness process. To model an ID process using a selection
model approach (Rubin, 1976), the conditional probability of dropout will depend on the unobserved
outcome at the time of dropout. Chan and Wan (2011) adopt this selection model to the bivariate
outcome model of Chan et al. (1997) for two drug uses. Adopting the same bivariate model of Chan
et al. (1997), this paper advances the selection model to a joint model for both the probabilities of
outcome and dropout so that the dependency between the two components that captures an ID process
is now modeled by an odds ratio model. This innovative modeling approach has an advantage that
marginal instead of conditional probability of dropout can be obtained and the odds ratio model
provides greater flexibility in modeling the dependency.

To implement the dropout models, various methodologies have been proposed and they include the
weighted generalized estimating equations approach (Robins et al., 1995; Preisser et al., 2002), the
Monte Carlo EM approach (Verzilli and Carpenter, 2002), the classical maximum likelihood (ML)
approach (Ten Have et al., 2002) and the semiparametric approach (Robins et al., 1995; Rotnitzky
et al., 1998). However, the ML approach for random effects model with an ID modeling is not
straightforward since inclusion of random effects complicates the likelihood function considerably.
Chib (1995) suggests using the Gibbs output (Geman and Geman, 1984; Gelfand and Smith, 1990)
in calculating the marginal likelihood function. Chib and Jeliazkov (2001) further investigate the use
of Metropolis Hastings output (Metropolis, 1953; Hastings, 1970) when the full conditional densities
are nonstandard. Chan et al. (2005) propose the method of Monte Carlo (MC) approximation using
Gibbs output in the likelihood approach and Chan et al. (2009) apply the method to implement the
selection model. Chan and Wan (2011) consider the Bayesian approach for the selection model with
bivariate outcomes.
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Comparing to classical likelihood approach, the Bayesian approach using Markov chain Monte
Carlo (MCMC) algorithm converts an optimization problem into a sampling problem, thus avoiding
the numerical difficulties associated with the maximization of complicated high-dimensional likelihood
functions, such as those with random effects. This is done by iterative simulation of model parameters
conditional on other parameters and the data. In case of nonstandard posterior distributions, MCMC
method (Smith and Roberts, 1993; Gilks et al., 1996) with Gibbs sampling and Metropolis Hastings
algorithm produces samples from the intractable posterior distributions of all unknown parameters.
Moreover, the emergence of WinBUGS, a user-friendly software for Bayesian analysis using MCMC
techniques, makes the parameter estimation much easier for nonexpert (Spiegelhalter et al., 2000).
Taking into account the computational efficiency, convenience of implementation, popularity in the
literature and the flexibility for model extension, we adopt the Bayesian MCMC approach.

Along the line of model development, we first develop the conditional autoregressive (AR) model
with an explicit dropout model for longitudinal binary data and extend it to incorporate mixture and
random effects to capture population heterogeneity and intercluster correlation. Bayesian MCMC
approach avoids the complication in approximating the likelihood functions with random effects
(Chan et al., 2009). We also adopt the mixture approach of Chan (2000) to deal with the initial stage
problem in all AR models. Moreover the random effects are set to be end-(drug)use dependent because,
as discussed in Section 3, there is substantial evidence suggesting that the heterogeneity of heroin use
and dropout process are both end-use dependent. Lastly, we extend the conditional dropout model
with a marginal outcome model to a joint model using the bivariate model of Chan et al. (1997). As
our proposed models should provide robust inference on parameters even under moderate departures
from modeling assumptions on the dropout mechanism, this is investigated through a simulation
experiment.

The paper is presented as follows. Section 2 reviews different drop-out models. Section 3 introduces
a methadone clinic data that is analyzed to evaluate the treatment effects using all proposed models.
Section 4 describes the two types of AR models with an ID modeling: the selection model and joint
model on univariate and bivariate settings, respectively. Then the methodology of Bayesian inference
is explained in Section 5. Section 6 reports the numerical results with discussion. A simulation study
is performed in Section 7 to assess the sensitivity of alternative assumptions of the dropout process on
parameter inference. Finally, Section 8 gives concluding remarks.

2 The dropout model

There are different ways to model the dropout process, for example, Alfo and Aitkin (2000) modeled
the total number of observed events for each subject. We model the probability of dropout in each
occasion and hence the model allows any sequences of missing data, say 1,1,0,0,1 where “1” represents
missing and “0” represents observed. Consequently, the model can be applied to monotone missing as
well as nonmonotone missing. To model both the outcome and dropout process, Rubin (1976) outlined
the selection model and pattern mixture model. Distinction between the two models lies on the way
to factorize the joint probabilities of outcomes and dropouts. A selection model specifies a marginal
model for outcomes y and a conditional model for dropouts w given outcomes using the factorization:

f (y, w|θ) = f (y|θ) f (w|y, θ)

whereas a pattern mixture model uses an alternative factorization:

f (y, w|θ) = f (w|θ) f (y|w, θ),

containing a marginal model for dropouts w combined with a conditional model for outcomes y given
dropouts (Glynn et al., 1986; Little, 1994; Michiels et al., 2002). Measurements for dropouts w can
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be the times of dropout or indicators of dropout in each occasion. The shared parameter approach
adopts some common parameters such as random effects into the marginal models for both outcomes
and dropouts, f (y| θ) and f (w| θ) respectively, to characterize the relationship between measurement
and missingness and induce their conditional dependence (Dunson and Perreault, 2001; Ten Have
et al., 2002).

Selection model is intuitively more appealing because marginal model is adopted for the parameters
of interest in the outcome model. It enables studies of marginal treatment effects and facilitates
treatments comparison. On the other hand, the pattern mixture model measures treatment effects
condition on dropouts (Little, 1993; Demirtas and Schafer, 2002; Pauler et al., 2003). To evaluate
marginal treatment effects, one may need to average the conditional likelihoods for the observed data
across probabilities of dropouts. Since we are interested in studying marginal treatment effect, we
adopt a selection model approach. As the model implicitly fills in some missing outcomes based on
the dropout model, validity of the analyses depends on the use of correct dropout model. In fact, both
selection model and pattern mixture model rely on some untestable assumptions upon the dropout
mechanism and/or its influence on the observed outcomes. The sensitivity of our proposed model to
different dropout assumptions is investigated in Section 7 through simulation experiments.

3 The methadone clinic data

This research is motivated by a methadone clinic data of the results of urine drug screens from patients
in a methadone maintenance treatment (MMT) program at a clinic in Sydney in 1986 (Chan et al.,
1997, 1998). Outcomes are the weekly urine test results that are positive or negative for morphine, a
biological marker for heroin use. The analysis is performed using a restricted dataset in which patients
who completed less than four weeks of treatment are excluded because they may not have received
adequate methadone treatment for measuring the treatment effects on early dropouts. Patients with
missing dose records are also excluded from our analysis. Finally, past experience showed that the
treatment was most effective in the first half year of maintenance and consequently, our study includes
only results of urine screens collected in the first 26 weeks of treatment so as to avoid the distorting
effect from patients being on a withdrawal regimen, something that usually begins after the first half
year of maintenance.

There are 136 heroin users, submitting a total of 2872 urine screens (yi j, i = 1, . . . , 136; j =
1, . . . , ni, ni ≤ 26) with 16% of them being positive for heroin. Table 1 reports the summary statis-
tics of those dropout (ni < 26) and nondropout patients cross-classified with (1) initial (yi1 = 1) and
noninitial user groups and (2) end (yi,ni

= 1) and nonend user groups. From Table 1, the overall average
dosage of methadone is 64 mg and the average number of treatment weeks per patient is 21.1 (each
patient stayed 4–26 weeks). Fifty-one of them dropped out before the end of 26 weeks according for
37.5% of all patients. For all analyses, each urine screen result rather than each patient serves as the
unit of analysis.

As previous research revealed that methadone dosage and duration of treatment were significant
treatment factors, methadone dose d in mg at the time of urine test and log of duration of treatment ln t
in weeks are included as predictor variables in all outcome models described in Section 4. As outcomes
are longitudinal measurements over time, a first-order AR term is also added to the outcome models.
Interaction between dose and time effects and higher order AR terms are found to be insignificant
and are excluded from the models subsequently. Results of separate fitting to each patient and score
tests suggested that there is substantial between-patient variation (Chan et al., 1998). To account for
the population heterogeneity and to facilitate subject-specific inference, we incorporate mixture and
random effects into the models to allow for different drug taking behaviors across patients. Table 1
suggests, in general, higher heroin use, lower dosage, shorter treatment duration, and higher dropout
rate among dropout, initial-use, and end-use patient groups. Figure 1A and B display their variabilities
across time with respect to the proportions of heroin use and dropout rates, respectively. Figure 1A

C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



Biometrical Journal 00 (2015) 0 5

Table 1 Summary statistics for the methadone clinic dataset.

Heroin use Initial Not End Not Overall
Yi1 = 1 Yi1 = 0 Yini

= 1 Yini
= 0

Dropout Number of patients 12 39 15 36 51
(ni < 26) Average dose 56.7 67.8 59.2 67.7 65.3

Weeks in treatment 12.5 13.1 12.2 13.3 13.0
Percentage of positive test 46.7 19.7 38.8 20.9 25.8

Nondropout Number of patients 25 60 6 79 85
(ni = 26) Average dose 59.4 66.0 49.8 65.1 64.1

Weeks in treatment 26 26 26 26 26
Percentage of positive test 25.8 8.3 34.0 11.9 13.5

Total Number of patients 37 99 21 115 136
Average dose 58.9 66.5 54.9 65.6 64.4
Weeks in treatment 21.6 20.9 16.1 22.0 21.1
Percentage of positive test 29.8 11.1 36.6 13.6 16.3
Percentage of dropout 32.4 39.4 71.4 31.3 37.5
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Figure 1 (A) Proportion of heroin use across time. (B) Proportion of dropout across time.

shows heroin uses in the dropout and nondropout groups converge approximately after week 17 when
the dropout rate is high. As such selective attitude toward dropout among the heavy heroin users may
lead to a false treatment effect of reduced heroin use over time if the reduced use is primarily due to the
dropout of heavy users, the dropout process should be properly accounted for in the model. Moreover,
there is substantial variation in heroin uses and dropout rates across time between the end-use and
non end-use groups. To account for the heterogeneity, we will adopt an end-use specific mixture and
random effects models as well as an ID model in the next section.

4 The models

Let yit(i = 1, . . . , m; t = 1, . . . , ni) denote the observed outcome of urine test for the i-th patient at
week t and let N = n1 + · · · + nm denote the total number of observations. The vector of all n = 26

C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



6 J. S. K. Chan: Bayesian informative dropout model for longitudinal binary data

possible outcomes for patient i can be separated into

yi = (yit )
T = (yi1, . . . , yi,ni︸ ︷︷ ︸

Observed yT
o,i

, yi,ni+1, . . . yi,n︸ ︷︷ ︸
Unobserved yT

m,i

)T

where ni denotes the number of observed yit and the vector of observed outcomes is denoted by
yT = (yT

o,1, yT
o,2, . . . , yT

o,m).
Similarly, let Wit denote the drop-out indicator for patient i in week t such that Wit = 1 if Yit is

unobserved (t > ni) and zero otherwise. Then the vector of drop-out indicators is wT = (wT
1 , . . . , wT

m )

where wT
i = (0, . . . , 0, Iw,i) for patient i is a series of (ni − 1) “0” for t = 2, . . . , ni followed by Iw,i =

I(ni < 26), an indicator of whether patient i drops out from treatment before week 26.

4.1 Conditional AR model

We model both outcome and dropout process simultaneously using the selection model approach.
For the outcome model, we model the serial correlation using an AR model such that the conditional
probabilities of heroin use are logit linear in some covariates including the duration of treatment
in weeks t, the dosage administered dit in mg and the “previous outcomes” yi,t−1. Writing Pr(Yit =
1| yi,t−1,β) = py,it , we have

logit(py,it ) = ηit = β0 + βd dit + βt ln t + βpv yi,t−1, (1)

t = 2, . . . , ni where β = (β0, βd , βt, βpv)
T is a q-dimensional (q = 4) vector of parameters. However

when t = 1, Yi0 is unobserved. Alfo and Aitkin (2000) fitted AR models for t ≥ 2 and added an inter-
action term, Yi1 × dit (Tables 2 and 5) or initial outcome specific group probabilities, πk0 and πk1 (Table
3) to the mixture models. To avoid loss of information and difficulties in parameter interpretation, we
adopt the mixture approach in Chan (2000) to solve the initial stage problem in AR models. Essentially,
we assume Yi0 follows a Bernoulli distribution, that is

Yi0 ∼ B(πy,0) with πy,0 = Pr(Yi0 = 1) (2)

being constant across patients since there is no data information when t = 0. Writing py,i1b = Pr(Yi1 =
1|Yi0 = b,β), we have

logit(py,i1b) = ηi1b = β0 + βd di1 + βpv b, (3)

where yi0 = b = 0, 1 is an estimate ofYi0. For the dropout model, we model the conditional probabilities
of dropout as logit linear in some covariates as well as the “present outcomes” yit that signify an ID
process. Writing Pr(Wit = 1| yit,α) = pw,it, 2 ≤ t ≤ ni + 1, we have

logit(pw,it ) = ζit = α0 + αt ln t + αps yit (4)

where the dropout indicators Wit = 0 for 2 ≤ t ≤ ni when Yit are observed. Then the s-dimensional
(s = 3) vector of parameters in the dropout model is α = (αo, αt, αps)

T . At the time of dropout when
t = ni + 1 and ni < 26, Yi,ni+1 is unobserved. Writing pw,i,ni+1,b = Pr(Wi,ni+1 = 1|Yi,ni+1 = b,α), we
have

logit(pw,i,ni+1,b) = ζi,ni+1,b = α0 + αt ln(ni + 1) + αps b (5)

where yi,ni+1 = b = 0, 1 as an estimate of the missing Yi,ni+1 is given by (1). Hence the vector of

model parameters is θ = (βT ,αT , πy,0)
T and the vector of missing data is (yT

0 , yT
ni+1)

T where yt =
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Table 2 Parameter estimates and s.e. (in italics) for AR, MX, RI and BRI models with and without
an ID modeling.

Model Intc Dose Time Prev Pres σ0 σ1 πy0 π1 BIC DIC

AR β −1.19 −0.0092 −0.24 2.44 0.24 2186 2282
with ID 0.26 0.0029 0.08 0.12 0.10

α −6.44 0.68 2.05
0.98 0.26 0.82

AR β −1.23 −0.0086 −0.26 2.45 0.24 2064 2080
no ID 0.26 0.0030 0.08 0.12 0.09

MX β1 −1.63 −0.015 −0.24 1.58 0.43 0.64 2004 1936
with ID 0.62 0.008 0.09 0.14 0.23 0.06

β2 −0.52 0.0009 −0.24∗ 1.58∗ 0.33
0.32 0.0042 0.09∗ 0.14∗ 0.19

α −6.76 0.73 2.38
1.05 0.26 0.85

MX β1 −1.65 −0.013 −0.33 1.60 0.31 0.65 1867 1823
no ID 0.63 0.008 0.09 0.14 0.16 0.06

β2 −0.42 0.0010 −0.33∗ 1.60∗

0.34 0.0043 0.09∗ 0.14∗

RI β −0.90 −0.017 −0.25 1.46 1.76 2.37 0.37 1838 1975
with ID 0.42 0.006 0.09 0.15 0.44 1.14 0.19

α −6.45 0.68 2.09
0.94 0.28 0.70

RI β −1.02 −0.014 −0.32 1.47 1.79 2.35 0.32 1714 1867
no ID 0.39 0.005 0.08 0.15 0.45 1.15 0.17

JRI β −1.08 −0.015 −0.37 1.23 2.98 0.34 1851 1832
with ID 0.38 0.005 0.07 0.10 0.58 0.18

α −4.88 0.38
0.37 0.14

γ −16.1 −1.62 50.0
0.98 0.53 0.99

∗Set to be constant across groups.
Models with BIC and/or DIC in bold are the best models among all with an ID modeling.

(y1t, . . . , ymt )
T , t = 0 or ni + 1. The conditional likelihood function for the complete data is given by

f (y, w, y0, yni+1|θ) =
m∏

i=1

{[
1∏

b=0

(
πy,0b

eyi1ηi1b

1 + eηi1b

)yi0b

][ ni∏
t=2

(
eyitηit

1 + eηit

)(
1

1 + eζit

)]
×

×
[

1∏
b=0

((
e

bηi,ni+1

1 + e
ηi,ni+1

)(
e
ζi,ni+1,b

1 + e
ζi,ni+1,b

))yi,ni+1,b
]Iw,i

⎫⎬⎭ (6)

where yit1 = yit, yit0 = 1 − yit for t = 0, ni + 1, πy,01 = πy,0 and πy,00 = 1 − πy,0.
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Table 3 Summary statistics for heavy and light use groups.

Heroin use Heavy Light Overall
Igi ≤ 0.5 Igi > 0.5

Dropout Number of patients 29 22 51
(ni < 26) Average dose 63.0 68.5 65.3

Weeks in treatment 13.1 12.8 13.0
Average of ui 1.26 −0.55 0.48
Average of ŷi,ni+1 0.75 0.32 0.57
Percentage of positive test 42.3 3.6 25.8

Nondropout Number of patients 22 63 85
(ni = 26) Average dose 57.2 66.4 64.1

Weeks in treatment 26 26 26
Average of ui 1.18 −0.76 −0.26
Percentage of positive test 39.5 4.4 13.5

Total Number of patients 51 85 136
Average dose 59.5 66.7 64.4
Weeks in treatment 18.7 22.6 21.1
Average of ui 1.23 −0.71 0.02
Percentage of positive test 40.6 4.3 16.3
Percentage of dropout 56.9 25.9 37.5

4.1.1 Extension to mixture model

To accommodate the substantial group effects across patients in the methadone clinic data, Chan et al.
(1998) considered the mixture (MX) model. They assumed that β follows a multinomial distribution
with β = βk = (βk0, βkd , βkt, βkpv)

T at a probability πg,k for the k-th group of patients and selected the
number of groups using Akaike Information Criterion (AIC). We adopt a two-group MX model (k = 2)
for illustration and define the group-one membership indicator Ig,i = 1 if patient i belongs to group
one and Ig,i = 0 otherwise. Note that Ig,i is unobserved since the group membership of each patient
is unknown. Based on Chan et al. (1998), we include group-specific intercept and dose effect while
the time and previous outcome effects are set to be the same across groups in the outcome model. If
patient i belongs to group k (k = 1, 2 ), the conditional probabilities py,itk = Pr(Yit = 1| yi,t−1,β = βk)

are

logit(py,itk) = ηitk = βk0 + βkd dit + βt ln t + βpv yi,t−1 (7)

where β∗
k = (βko, βkd )T , β∗ = (βt, βpv)

T and βk = (β∗T
k ,β∗T )T , k = 1, 2. When t = 1, Yi0 is again

unobserved. Writing py,i1kb = Pr(Yi1 = 1|Yi0 = b;β = βk) conditioning on group k and Yi0 = b, we
have

logit(py,i1kb) = ηi1kb = β0 + βkd dit + βpv b (8)

where yi0 = b = 0, 1 is an estimate of Yi0 and Yi0 ∼ B(πy,0k) under the mixture approach of Chan
(2000) with group-specific probability πy,0k = Pr(Yi0 = 1| β = βk). For the dropout model, Eqs. (4)
and (5) follow. Then the vector of model parameters is θ = (β∗T

1 ,β∗T ,β∗T
2 ,αT ,πy,0, πg,1)

T and the
vector of missing data is (yT

0 , yT
ni+1, IT

g )T where Ig = (Ig,1, . . . , Ig,m)T and πy,0 = (πy,01, πy,02)
T . The
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conditional likelihood function for the complete data is given by

f (y, w, y0, yni+1, Ig|θ) =

=
m∏

i=1

⎧⎨⎩
⎡⎣ 2∏

k=1

(
πg,k

1∏
b=0

(
πy,0kb

eyi1ηi1kb

1 + eηi1kb

)yi0b
ni∏

t=2

eyitηitk

1 + eηitk

)Ig,ik
⎤⎦[ ni∏

t=2

1

1 + eζit

]
×

×
⎡⎣ 1∏

g=0

⎛⎝⎡⎣ 2∏
k=1

(
πg,k

e
bηi,ni+1,k

1 + e
ηi,ni+1,k

)Ig,ik
⎤⎦ e

ζi,ni+1,b

1 + e
ζi,ni+1,b

⎞⎠yi,ni+1,b
⎤⎦Iw,i

⎫⎪⎬⎪⎭ (9)

where πy,0k1 = πy,0k, πy,0k0 = 1 − πy,0k, k = 1, 2, Ig,i1 = Ig,i, and Ig,i2 = 1 − Ig,i.

4.1.2 Extension to random intercept model

Since the methadone clinic data exhibits considerable individual variation, Chan et al. (1998) added
a random intercept (RI) into the mean function. Then the conditional probabilities py,it = Pr(Yit =
1| yi,t−1,β, u) in the outcome model for t = 2, . . . , ni become

logit(py,it ) = ηit = βo + βd dit + βt ln t + βpv yi,t−1 + λi, (10)

and

logit(py,i1b) = ηi1b = β0 + βd di1 + βpv b + λi (11)

for t = 1 where λi is a RI term and the vector of RIs is λ = (λ1, . . . , λm)T . The dropout models again
follow Eqs. (4) and (5).

We further assume that the random effects λi depend on the end drug-use Yi,ni
= h in general, and

follow a separate normal distribution N(0, σ 2
h ) with density φ(·| 0, σ 2

h ). A vector of parameters for
the whole model is θ = (βT ,αT , πy,0, σ

2)T where σ2 = (σ 2
0 , σ 2

1 )T . The conditional likelihood function
f (y, w, y0, yni+1,λ|θ) for the complete data is given by

f (y, w, y0, yni+1,λ|θ) =

=
m∏

i=1

{[
1∏

b=0

(
πy,0b

eyi1ηi1b

1 + eηi1b

)yi0b

][ ni∏
t=2

(
eyitηit

1 + eηit

)(
1

1 + eζit

)]
×

×
[

1∏
b=0

((
e

bηi,ni+1

1 + e
ηi,ni+1

)(
e
ζi,ni+1,b

1 + e
ζi,ni+1,b

))yi,ni+1,b
]Iw,i

[
1∏

b=0

φ
(
λi| 0, σ 2

b

)yinib

]⎫⎬⎭ (12)

where yini1
= yini

and yini0
= 1 − yini

.
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4.2 Joint model with random intercept

Chan and Wan (2011) applied a bivariate model to describe two drug uses jointly. We adopt this ap-
proach to model jointly the heroin use and dropout process because bivariate model can better describe
their association. Similar to the univariate model, this model allows easy extension to incorporate
mixture and random effects to account for population heterogeneity and facilitate subject-specific
inference. We consider a joint RI (JRI) model and define simultaneously the conditional probabili-
ties py,it = ℘it(1, ·) = Pr(Yit = 1 | yi,t−1,β), pw,it = ℘it(·, 1) = Pr(Wit = 1 | yi,t−1,α) as well as the odds
ratio

ψit = ℘it(1, 1)℘it(0, 0)

℘it(1, 0)℘it(0, 1)

for the bivariate outcomes Yit and Wit using the models

logit(py,it ) = ηit = βo + βd dit + βt ln t + βpv yi,t−1 + λi, (13)

logit(pw,it ) = ζit = αo + αt ln t, (14)

ln(ψit ) = ςit = γo + γd dit + γc Ci,t−1 (15)

for t = 2, . . . , ni + 1 and the random intercept λi ∼ N(0, σ 2). Note that the JRI model has an odds ratio
model (15) to model the dropout dynamic as related to the outcomes. To reduce the model complexity,
we do not adopt an end-use specific random effect model as in the RI model. When t = 1,Yi1 is modeled
marginally instead of jointly with wi1 since wi1 = 1 always. Then py,i1b = Pr(Yi1 = 1|Yi0 = b,β) is given
by (11) where Yi0 ∼ B(πy,0) adopting again the mixture approach of Chan (2000). Note that while the
data model for py,it follows Eq. (1), the dropout model for pw,it differs from (4) by dropping the current
heroin use term αps yit because the dependency of Wit on Yit is now modeled by the odds ratio in the
bivariate model. In the odds ratio model, the concordance indicator, Ci,t−1 = 1 if Yi,t−1 = Wi,t−1 and 0
otherwise, is included as a covariate to model the autoregressive effect for cross-correlation. This model
also has a tractable likelihood function that facilitates likelihood inference. The joint probabilities
℘uv,it = Pr(Yit = u, Wit = v| yi,t−1, θ), u, v = 0, 1 where θ = (β,α, γ, πy,0, σ

2) can be obtained by first
expressing ℘11,it in terms of py,it , pw,it and the odds ratio ψit (Fleiss, 1981, p.68) as follows

℘11,it = fyw(1, 1|py,it, pw,it, ψit ) =
= 1

2(ψit − 1)

{
(ψit − 1)[py,it + pw,it ] + 1 − {1 + (ψit − 1)[ψit [py,it +

−pw,it ]
2 − [py,it + pw,it(·, 1)]2 + 2[py,it + pw,it ]]}

1
2

}
, (16)

℘10,it = fyw(1, 0|py,it, pw,it, ψit ) = py,it − fyw(1, 1|py,it, pw,it, ψit ), (17)

℘01,it = fyw(0, 1|py,it, pw,it, ψit ) = pw,it − fyw(1, 1|py,it, pw,it, ψit ), (18)

℘00,it = fyw(0, 0|py,it, pw,it, ψit ) = 1 − py,it − pw,it + fyw(1, 1|py,it, pw,it, ψit ). (19)

For simplicity, we write fyw(u, v) for fyw(u, v|py,it, pw,it, ψit ) in all subsequent equations. Then the
complete data likelihood f (y, w, y0, yni+1,λ|θ) is given by

f (y, w, y0, yni+1,λ|θ) =
m∏

i=1

{[
1∏

b=0

(
πy,0b

eyi1ηi1b

1 + eηi1b

)yi0b

]
×

×
( ni∏

t=2

fyw(yit, 0)

)
fyw(yi,ni+1, 1)

Iw,iφ(λi|0, σ 2)

}
(20)

where yi01 = yi0, yi00 = 1 − yi0, πy,01 = πy,0 and πy,00 = 1 − πy,0.
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5 Bayesian methodology

Despite the theoretical appeal, classical ML estimation of model parameters is difficult as numerical
methods must be used to evaluate some complicated marginal likelihood function of the RI model
in (10) which involves integration over the vector of latent RIs λ from the joint density function. In
recent years, simulation-based Bayesian MCMC methods become a routine tool for a wide range of
complicated statistical models. When the sample size is large, the Bayesian estimator is asymptotically
equivalent to ML estimator under appropriate regularity conditions (Ghosal et al., 1995).

In the Bayesian approach, the posterior distribution of unknown parameters is generated, incor-
porating both data and prior information for parameters. Since prior information is unavailable,
noninformative priors with large variance, normal for unrestricted parameters, and inverse gamma
(IG) priors for positive parameters such as the variance σ 2, are adopted. The MCMC algorithm
consists of constructing an irreducible and aperiodic Markov chain, whose equilibrium distribution
is the desired joint posterior distribution. Gibbs sampler can be applied to generate a sequence of
samples of one or more variables at a time from the set of full conditional distributions. Outputs from
the simulated chain are used for posterior analysis, for example, parameters are estimated by their
posterior means. If the full conditional distributions are not standard, techniques such as Metropolis
Hastings may be used. The MCMC algorithm using Gibbs sampler can be easily implemented using
the Bayesian software WinBUGS. Full sets of conditional distributions and WinBUGS command codes
are available upon request.

Due to the complexity of the models, high posterior correlations exist between some parameters.
These dependencies may slow down the convergence rate in the Gibbs samplers. As a result, the number
of iterations I should be large enough to ensure that the sample is stationary. We set I = 15,000 and
the burn-in period is at least T = 5000 iterations. After the burn-in period, parameters are drawn from
every 10th iteration to mimic a random sample of size at least M = 1000 from the intractable joint
posterior distribution. Trajectory plots and autocorrelation plots of the simulated values are used to
check for independence and convergence of the sample. Then we list below the Bayesian hierarchies
and joint posterior distributions for all models.

The Bayesian hierarchy for the AR model is

Observed data model: yit ∼ B(py,it ), 1 ≤ t ≤ ni, (21)

Missing data model: yit ∼ B(py,it ), t = 0, ni + 1, (22)

Dropout model: wit ∼ B(pw,it ), 2 ≤ t ≤ ni + 1, (23)

where py,i0 = πy,0, wit = 0 for t ≤ ni, wi,ni+1 = 1 for ni < 26 and py,it , py,i1b, pw,it and pw,i,ni+1,b are given
by (1), (3), (4), and (5), respectively. The priors are

β0, βd , βt, βpv, α0, αt, αps ∼ N(0, a) and πy,0 ∼ U (0, 1) (24)

whereU (·), B(·), and N(·) represent uniform, Bernoulli, and normal distributions, respectively, and the
hyperparameter a is set to be large such as 106. The complete data likelihood f (y, w, y0, yni+1|θ) is given
by Eq. (6). Together with the prior distributions, the joint posterior distribution for 	 = (θ, y0, yni+1)

where θ = (β,α, πy,0) is given by

f (y, w, y0, yni+1,β,α, πy,0) = f (y, w, y0, yni+1|θ)

⎡⎣ 4∏
j=1

fN (β j )

⎤⎦⎡⎣ 3∏
j=1

fN (α j )

⎤⎦ fU (πy,0).

C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



12 J. S. K. Chan: Bayesian informative dropout model for longitudinal binary data

The Bayesian hierarchy for the MX model is given by (21) to (23) and

Missing data model: Ig,i ∼ B(πg,1)

where logit(py,it ) = Ig,i (β10 + β1d dit + βt ln t + βpv yi,t−1) +
+ (1 − Ig,i)(β20 + β2d dit + βt ln t + βpv yi,t−1), 2 ≤ t ≤ ni + 1

logit(py,i1,yi0
) = Ig,i (β10 + β1d di1 + βpv yi0) + (1 − Ig,i)(β20 + β2d di1 + βpv yi0)

and pw,it, t = 2, . . . , ni and pw,i,ni+1,yi,ni+1
are given by Eqs. (4) and (5), respectively. The priors are

β10, β1d , βt, βpv, β2d , α0, αt, αps ∼ N(0, a),

πy,0k, πg,1 ∼ U (0, 1), k = 1, 2.

Label switching problem for the MX model is handled by setting β20 > β10 so that the prior for β20 is
β20 ∼ N(0, a)I(β10,∞) (Lee et al., 2008). The complete data likelihood function f (y, w|y0, yni+1, Ig, θ)

is given by Eq. (9). Together with the prior distributions, the joint posterior distribution for 	 =
(y0, yni+1, θ) where θ = (Ig,β,α,πy,0, πg,1) is given by

f (y, w, y0, yni+1, Ig,β,α,πy,0, πg,1) =

= f (y, w, y0, yni+1, Ig|θ)

⎡⎣ 5∏
j=1

fN (β j ) fN∗ (β6)

⎤⎦⎡⎣ 3∏
j=1

fN (α j )

⎤⎦⎡⎣ 2∏
j=1

fU (πy,0 j )

⎤⎦ fU (πg,1)).

where fN∗ (β6) denote the truncated normal for β20.
The Bayesian hierarchy for the RI model is given by (21) to (23) and

Missing data model: λi ∼ N
(

0, σ 2
yi,ni

)
where logit(py,it ) = β0 + βd dit + βt ln t + βpv yi,t−1 + λi, 2 ≤ t ≤ ni + 1,

logit(py,i1yi0
) = β0 + βd di1 + βpv yi0 + λi,

and again, pw,it, t = 2, . . . , ni and pw,i,ni+1,yi,ni+1
are given by Eqs. (4) and (5), respectively. The priors

are given by Eq. (24) and

σ 2
b ∼ IG(a1, a2), b = 0, 1

where the hyperparameters a1 and a2 are set to be small such as 10−3. The complete data likelihood
function f (y, w, y0, yni+1,λ|β,α, πy,0, σ

2) is given by Eq. (12) where λ are additional missing data

and σ 2
b , b = 0, 1 are additional model parameters for the RI model as compared to the AR model.
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Lastly, the Bayesian hierarchy for the data and latent variables for the JRI model is

yi1 ∼ Bernoulli(py,i1),

(I∗
11,it, I∗

10,it, I∗
01,it, I∗

00,it ) ∼ MN(℘11,it,℘10,it,℘01,it,℘00,it, 1),

λi ∼ N(0, σ 2),

where MN denotes the multinomial distribution, I∗
uv,it = I(yit = u, wit = v) for t = 2, . . . , n∗

i based on
the data (yit, wit ), n∗

i = ni(1 − Iw,i) + (ni + 1)Iw,i, and py,it , pw,it , ψit and ℘it(u, v) are given by Eqs.
(13), (14), (15), and (16)–(19), respectively. Note that at the time of dropout t = ni + 1, we have
(ŷit, wit ) where ŷit is the predicted outcomes. The complete data likelihood f (y, w, y0, yni+1,λ|θ) where

θ = (β,α, γ, πy,0, σ
2) is given by Eq. (20) and the priors are

β0, βd , βt, βpv, α0, αt, γ0, γd , γc ∼ N(0, a), πy,0 ∼ U (0, 1), and σ 2 ∼ IG(a1, a2). (25)

Together with the prior distributions, the joint posterior distribution for 	 = (y0, yni+1, θ) where

θ = (λ,β,α, γ, πy,0, σ
2) is given by

f (y, w, y0, yni+1,λ,β,α, γ, πy,0, σ
2) =

= f (y, w, y0, yni+1,λ|θ) ×

×
⎡⎣ 4∏

j=1

fN (β j )

⎤⎦⎡⎣ 2∏
j=1

fN (α j )

⎤⎦⎡⎣ 3∏
j=1

fN (γ j )

⎤⎦ fU (πy,0) fIG(σ 2).

6 Results

To compare the performance of each model, Bayesian Information Criterion (BIC) and Deviance
Information Criterion (DIC) (Spiegelhalter et al., 2002) defined as

BIC = −2 ln f(y, w|θ̄) + p ln N, (26)

and DIC = D(θ) + pD = − 4
M

M∑
l=1

ln f(y, w|θ(l )) + 2 ln f(y, w|θ̄),

are often used in Bayesian analysis. Both criteria contain two components: a measure of model fit
and a penalty for model complexity where D(θ) = Eθ |y,w[D(θ)] is the posterior expectation of deviance
D(θ) = −2 ln f(y, w|θ), f(y, w|θ) is the likelihood function, p is the number of model parameters,
N = 2 × 2872 − 136 = 5608 is the number of observations, pD = D(θ) − D(θ̄) is the effective number
of parameters, θ̄ = 1

M

∑M
l=1 θ(l ), θ(l ) is the l-th estimate of θ in the posterior sample and M (M = 1000)

is the posterior sample size. The likelihood functions f(y, w|θ) for the four models are given by:

AR & RI : f(y, w|θ) =
m∏

i=1

{[(
eyi1ηi11

1 + eηi11

)
yi0 +

(
eyi1ηi10

1 + eηi10

)
(1 − yi0)

]
×

×
ni∏

t=2

[(
eyitηit

1 + eηit

)(
1

1 + eζit

)]}
,
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MX : f(y, w|θ) =
m∏

i=1

{
Ig,i

[(
eyi1ηi111

1 + eηi111

)
yi0 +

(
eyi1ηi110

1 + eηi110

)
(1 − yi0)

] ni∏
t=2

(
eyitηit1

1 + eηit1

)
+

+ (1 − Ig,i)

[(
eyi1ηi121

1 + eηi121

)
yi0 +

(
eyi1ηi120

1 + eηi120

)
(1 − yi0)

] ni∏
t=2

(
eyitηit2

1 + eηit2

)}
×

×
ni∏

t=2

(
1

1 + eζit

)
,

JRI: f(y, w|θ) =
m∏

i=1

[(
eyi1ηi11

1 + eηi11

)
yi0 +

(
eyi1ηi10

1 + eηi10

)
(1 − yi0)

][ ni∏
t=2

fyw(yit, 0)

]

where ηi1b, b = 0, 1, and ηit are given by (3) and (1) and p = 8 for AR model; by (11) and (10), and
p = 10 for RI model; ηi1kb, k = 1, 2, b = 0, 1, and ηitk by (8) and (7) and p = 12 for MX model;
ηi1b, b = 0, 1 by (11), fyw(yit, 0) by (19), (17) and p = 11 for JRI model; and ζit by (4).

Table 2 reports the parameter estimates for the four models with and without an ID modeling.
Results show that there is a gradual improvement in model performance from AR to MX and to RI
models and the RI model with an ID modeling and JRI model are the best model according to BIC
and DIC, respectively. In fact, JRI model gives the best model fit according to D(θ) without a model
complexity penalty as it allows the dependency between outcome and dropout through an explicit
odds ratio function in Eq. (15) that includes dose and concordance effects rather than simply a current
heroin use covariate in the dropout model as in Eq. (4). We also find that all models adopting the
mixture approach of Chan (2000) using Eq. (2) to handle the initial stage problem for all AR type
models provide better model fits. For example, the loglikelihood � = ln f(y|θ̄) of the observed data y
using the AR model with an ID modeling improves from −1041 to −1012 after adopting the mixture
approach of Chan (2000).

6.1 Treatment effect

Table 2 shows that parameter estimates β in the outcome model are quantitatively similar and consistent
in direction across the four model types as well as across models with or without an ID modeling.
Moreover, they are similar to those reported in Chan et al. (1998): increases in methadone dosage and
duration of treatment are associated with a decrease in heroin use. However, after allowing for the
group effects, the dose effect in the MX model exists only marginally among light heroin users but
not heavy users. Alfo and Altkin (2000) detect a substantial change in the parameter estimate for the
dose effect after modeling the dropout process. However, we do not observe such effect in our models.
The strong and positive association between the previous and present outcomes suggests that some
patients tend to use heroin continuously (heavy users) while others (light users) do not, supporting the
use of MX model to capture different treatments effects across patients with different levels of heroin
uses.

6.2 Mixture and random effects

To classify patients, we assign patients to the group 1 of light heroin users if their group-1 indicators
Ig,i in the MX model are Îg,i > 0.5. Otherwise, they will be classified to group 2. Table 3 reports the
summary statistics of those dropout (ni < 26) and nondropout patients cross-classified with light and
heavy user groups.
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Table 4 Chi-square test statistics for association in 2 × 2 contingency tables.

Groups Dropout/nondropout Heavy/light Initial/noninitial End/nonend
(ni < 26/ni = 26) (Gp. 2/Gp. 1) (Yi1 = 1/Yi1 = 0) (Yi,ni

= 1/Yi,ni
= 0)

Dropout/nondropout –
Heavy/light 12.6 –
Initial/non-initial 0.56 18.3 –
End/non-end 12.2 31.9 1.5 –

Test values significant at 0.1 level are shown in italic.

Table 5 Simulation study for the effect of ID modeling on outcome parameters.

With ID model Without ID model

β0 βd βt βp β0 βd βt βp

True −1.5 −0.5 −0.5 3.5 −1.5 −0.5 −0.5 3.5

Lower dropout rate and less max. ni = 10: D0 = 0.26, Dp = 0.48
APE ∗−1.576 ∗−0.466 ∗−0.457 3.488 −1.520 −0.507 −0.535 3.491
ASE 0.245 0.179 0.127 0.164 0.245 0.179 0.124 0.164
RMSE 0.292 0.188 0.156 0.153 0.290 0.187 0.159 0.151

Higher dropout rate and less max. ni = 10: D0 = 0.46, Dp = 0.77
APE †∗−1.540 †∗−0.492 †∗−0.495 ∗3.558 −1.450 −0.570 −0.586 3.516
ASE 0.304 0.235 0.161 0.201 0.302 0.234 0.154 0.202
RMSE 0.299 0.241 ∗0.156 ∗0.187 0.296 0.244 0.164 0.204

Lower dropout rate and more max. ni = 20: D0 = 0.45, Dp = 0.75
APE ∗−1.536 ∗ −0.509 ∗ −0.479 3.529 −1.526 −0.526 −0.533 3.530
ASE 0.193 0.142 0.084 0.140 0.194 0.142 0.083 0.139
RMSE 0.231 0.162 ∗0.088 0.129 0.231 0.166 0.092 0.131

Higher dropout rate and more max. ni = 20: D0 = 0.68, Dp = 0.96
APE ∗−1.589 ∗−0.441 ∗−0.472 3.512 −1.526 −0.500 −0.550 3.489
ASE 0.258 0.202 0.123 0.183 0.260 0.204 0.119 0.183
RMSE ∗0.285 ∗0.228 ∗0.119 ∗0.190 0.276 0.209 0.125 0.184

Notes: ASE: average standard error; RMSE: root mean squared error; Parameter estimate in italic is significant.
∗ Improvement, less bias or RMSE, in model with ID as compared with model without ID.

∗ Worsening, more bias or RMSE, in model with ID as compared with model without ID.
† Improvement of ID model, less bias or RMSE, in data with more missings as compared with those with less missings.

Group 1 contains 85 (62.5%) light users returning only 82 positive screens out of 1919 screens
(4.3%). They respond to treatment in a dose-dependent fashion with lower heroin use at higher level
of methadone dose. Patients in group 2 are heavy users returning 387 positive screens out of 953
screens (40.6%). This group has insignificant dose effect indicating that patients continue to use heroin
regardless of the level of methadone dose received. Moreover, heavy users have a higher dropout rate
(56.9% versus 25.9%), lower level of methadone dose (59.5 versus 66.7) and stay shorter in treatment
(18.7 weeks versus 22.6 weeks). The Chi-squared tests for association in the 2 by 2 contingency tables,
as reported in Table 4, show that heavy use is significantly associated with end use and dropout.
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Figure 2 Observed and fitted probabilities of heroin use across time using the JRI model

The significance of the variances σ 2
b for the random intercepts λi in both RI and JRI models suggests

the presence of patient heterogeneity. We obtain the same classification of light and heavy-users as
the MX model except for four (two) patients if we use the JRI (RI) model and classify patients with
λ̂i ≤ 0.57 (λ̂i ≤ 0.34) to light-user group. The estimates λ̂i using JRI (RI) model are averaged to −0.94
(−0.71) and 1.63 (1.23) respectively for the light and heavy users groups of the MX model showing
heterogeneity of heroin use across the two groups. Based on classification using either Îg,i in the MX

model or λ̂i in the JRI and RI models, health care officers can derive a more patient-oriented MMT
program allowing for the differences in responses to treatments (methadone dosage and duration)
between these two groups of patients.

6.3 Dropout effect

In all dropout models, the treatment time effect αt is significant, showing that the probability of dropout
increases with duration in treatment. Moreover, the present heroin use effect αps is also significant in
all conditional models, indicating the presence of an ID process in the data and hence the necessity
of incorporating an ID model. It also suggests that patients currently taking heroin are more likely
to drop out. The low values of intercepts α0 in the dropout models demonstrate the low probabilities
of dropout in general because only 51 (38%) patients drop out of the program before the 26-th week.
Furthermore the significances of dose and concordance effects (γd and γc) in the odds ratio equation
using the JRI model suggest that the association between heroin use and dropout deceases with dose
and increases with previous association.

Patients who drop out have a higher percentage of heroin use than those nondropout patients (25.8%
versus 13.5%) and hence are more likely to be classified as heavy users (56.9% versus 25.9%). Figure 2A
displays the good agreement of the observed and fitted probabilities of heroin uses for both heavy and
light-user groups based on℘10,it in the JRI model. It shows a sharp decline in the probability of heroin
use among the heavy users and a moderate decline among the light users across time demonstrating a
clear treatment effect. Figure 3 displays the gradual increasing trend of dropout and provides another
good agreement of the observed and fitted probabilities of dropout. In summary, the JRI model can
describe the dynamic of both heroin use and dropout across time well.

Figure 2B shows that dropout patients (black dotted line) have heavier heroin use up to week 14
and thereafter, their level of heroin use drops rapidly to those nondropout patients possibly due to
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Figure 3 Observed and fitted probabilities of dropout across time using the JRI model.

the dropouts of heavy users. From Table 3, heavy users stay in the program for 18.7 weeks on average.
Comparing the AR, MX, and RI models with an ID modeling to those without an ID modeling,
the dose effects have consistently increased (by 13, 1, and 5%, respectively) but the time effects have
consistently decreased (by 13, 24, and 23%, respectively) though they are still significant. This finding
shows that the dose effect is more prominent after accounting for the ID process. Moreover, the gradual
dropout of heavy users may lead to a false treatment duration effect of reduced heroin use associated
with longer duration in treatment. However, results show that the treatment duration effect is still
significant though weaker after allowing for an ID process in the data. This treatment duration effect
is also significant in the JRI model. As the treatment effect is confirmed, health care administrators
should set up policies to encourage patients to stay longer in the MMT program.

7 Simulation

Sensitivity analyses are often suggested to assess the effect of alternative assumptions about the dropout
process on parameter inference (Glynn et al., 1986; Verbeke et al., 2001; Michiels et al., 2002). Hence
a simulation study is carried out to evaluate the sensitivity and robustness of parameter estimates in
the outcome model to misspecification of the dropout model.

7.1 Procedure

We simulate 200 datasets, each consisting of I = 300 heroin users using the AR model with an
ID modeling and set the maximum number of outcomes n per patient to be 10 or 20 with two
levels of dropout rates in each case. The total number of outcomes without dropouts should be
N = 300 × 10 = 3000 and 6000 for n = 10 and 20, respectively.

True parameters are set to be β = (−1.5,−0.5,−0.5, 3.5) for the outcome model and α =
(−3.0, 0.1, 1) or (−2.0, 0.1, 0.5) for the dropout model with moderate and high dropout rates, re-
spectively. Levels for dose are set to be four “1”, four “0” and then repeat with four “1” and so on
until n = 10 or n = 20 values are obtained. The values of true parameters are set to achieve a desirable
percentage of dropout patients and missing outcomes, (48%, 26%) and (77%, 46%), respectively, for
the moderate and high rates when n = 10 and (75%, 45%) and (96%, 68%), respectively, when n = 20,
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while ensuring convergence of parameter estimates. The moderate rates are much lower than the high
rates for both n to examine the effects of adopting an ID model on the outcome parameters when the
dropout rate varies. It is obvious that the percentages of dropout patients and missing outcomes when
n = 20 are higher than those when n = 10 because patients are more likely to drop out when they stay
longer in treatment.

The simulated data with an ID process are then fitted to models with or without an ID modeling.
The first 5000 samples of the Gibbs output in the burn-in period are discarded and thereafter with a
skip of 50, the posterior sample of size 1000 is taken from each simulated data set for inference.

7.2 Results

Table 4 reports, for each model with and without an ID modeling, the average of parameter estimates
(APE) in the outcome model and their standard error estimates (ASE) across simulated datasets, and
the root mean squared errors (RMSE) defined as

RMSE =
⎡⎣ 1

m − 1

m∑
j=1

(β̂k j − βk)2

⎤⎦
1
2

,

where β̂k j is the parameter estimate for βk in the j-th simulated dataset and m is the number of
simulated datasets.

Results show that all parameter estimates β in the outcome model are significant and the ASE
are similar across the two types of models, with and without an ID modeling. Moreover, comparing
outcome parameters in models with and without an ID modeling, those in models with an ID modeling
show less biases and hence higher accuracy when n = 10 and the dropout rate is higher. This confirms
the necessity to apply ID models to data with higher dropout rates. Furthermore, βt always shows less
bias and lower RMSE except for n = 10 and dropout rate is lower. For other parameters, there are
no obvious trends of improvement in terms of both biases and RMSE. This shows that the treatment
duration effect can be estimated more accurately in the model with an ID modeling when an ID process
is actually present, supporting the analysis of treatment effect in the methadone clinic data using ID
models. Improvement of outcome parameters in the MX and RI models with ID modelings are similar
but less in scale. One possible reason is that the ID process in the data may be partially accounted
for in the outcome models with mixture or random effects. Results from the MX and RI models are
omitted from reporting. Moreover, the JRI model is not considered because the ID model cannot be
separated and hence the comparison of outcome parameters from models with and without an ID
modeling is not possible.

8 Conclusion

Dropout is common in longitudinal studies. If the dropout process is nonrandom, it may bias certain
parameter estimates in the study of treatment effect over time. Through a methadone treatment data,
we demonstrate that a separate ID model is necessary. We propose two types of models, the conditional
and joint models, to model the ID process. To account for autocorrelation in repeated measurements,
an AR term is added to the outcome model and the mixture approach of Chan (2000) is adopted to
tackle the initial state problem in AR models. Moreover, the heterogeneity and clustering effects in
the data are catered for by incorporating mixture and random effects models of which the random
effects are set to be end-use specific to allow for the end-use effect as demonstrated in Fig. 1A. Four
proposed models, namely the AR, MX, RI, and JRI models, are estimated by Bayesian approach using
MCMC sampling method and implemented using WinBUGS. Sets of full conditional distributions for
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all parameters are also derived for the proposed models and are available upon request. According to
DIC, the JRI model provides the best model performance possibly because it adopts a separate odds
ratio function to model the dynamic of the ID process more precisely.

The four proposed models are demonstrated using a methadone clinic data with the aim of evaluating
treatment effectiveness. Previous analyses did not allow for an ID process in the data (Chan et al.,
1997, 1998). This analysis extends the models to incorporate an ID process and new results indicate the
significance of duration time effect on treatment outcome and the more prominence dose effect after
allowing for an ID process. Moreover, results also show that longer duration in treatment and present
heroin use are associated with higher probability of dropout. Classification from the MX model shows
that heavy heroin users have higher dropout rates and the dose effect is only significant among the light
users. Hence to improve the treatment effectiveness in a MMT program, one important consideration
is to retain patients in treatment. Lastly, a simulation study is conducted to investigate the performance
of parameters in the outcome model with or without an ID model when the ID process is actually
present and when the length of time series and the rate of dropout vary. Results show improvements
in the accuracy of parameters in the outcome model with an ID modeling when the size n is small and
the dropout rate is high.
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