Equations defining the affine Grassmannian of SLn\SL_n

Joel Gibson

A solved problem: Standard monomials on the finite Grassmannian

Let V=knV = \bbk^n. The Plücker embedding realises the finite Grassmannian as a projective variety: Gr(r,n)={WVdimW=r}pP(rV),spank{v1,,vr}[v1vr]. \Gr(r, n) = \{ W \subseteq V \mid \dim W = r\} \xinjto{p} \bbP(\wedge^r V), \quad \Span_\bbk\{v_1, \ldots, v_r\} \mapsto [v_1 \wedge \cdots \wedge v_r]. Coordinates on P(rV)\bbP(\wedge^r V) are labelled by the set Cr,n={I{1,,n}I=r}C_{r, n} = \{ I \subseteq \{1, \ldots, n\} \mid |I| = r\} of rr-element subsets: k[P(rV)]=k[xIICr,n], where I={i1<<ir} and xI is dual to ei1eir. \bbk[\bbP(\wedge^r V)] = \bbk[x_I \mid I \in C_{r, n}] , \quad \text{ where } I = \{i_1 < \cdots < i_r\} \text{ and } x_I \text{ is dual to } e_{i_1} \wedge \cdots \wedge e_{i_r}.

The purpose of standard monomial theory is to describe a k\bbk-basis of the homogeneous coordinate ring k[Gr(r,n)]=K[xIICr,n]/P\bbk[\Gr(r, n)] = \bbK[x_I \mid I \in C_{r, n}] / \cP, where P=kerp\cP = \ker p^* is the Plücker ideal.

The monomial xIxJxKk[xIICr,n]x_I x_J x_K \in \bbk[x_I \mid I \in C_{r, n}] is a standard monomial if IJKI \leq J \leq K entrywise, (as a tableau, this means weakly increasing down the columns). Of course there are non-standard monomials, say if I={1,3,6,7}I = \{1, 3, 6, 7\} and J={2,3,4,8}J = \{2, 3, 4, 8\}:

11
33
66
77
22
33
44
88
\rightsquigarrow
11
33
66
77
22
33
44
88

II and JJ are incomparable under \leq (the problem is highlighted pink in the diagram) and so cannot be part of a standard monomial xIxJxKx_I x_J x_K. We will straighten xIxJx_I x_J by finding a quadratic relation PI,JPP_{I, J} \in \cP that contains xIxJx_I x_J and vanishes on the embedded Grassmannian Gr(r=4,n)\Gr(r = 4, n).

Split (I,J)(I, J) into A=(1,3)A = (1, 3), B=(2,3,4,6,7)B = (2, 3, 4, 6, 7) and C=(8)C = (8) as above, and send xAxBxCx_A \otimes x_B \otimes x_C through the map 2V5V1V1comult2,312V2V3V1Vmult2,2mult3,14V4VSym2(4V) \wedge^2 V \otimes \wedge^5 V \otimes \wedge^1 V \xinjto{1 \otimes \mathsf{comult}_{2, 3} \otimes 1} \wedge^2 V \otimes \wedge^2 V \otimes \wedge^3 V \otimes \wedge^1 V \xto{\mathsf{mult}_{2, 2} \otimes \mathsf{mult}_{3, 1}} \wedge^4 V \otimes \wedge^4 V \surjto \Sym^2(\wedge^4 V) to get a quadratic relation PI,JP_{I, J} which includes xIxJx_I x_J. (comult\mathsf{comult} is the signed unshuffling of the sequence): x13x23467x8x13(x23x467x24x367+x26x347+x67x234)x80+x1234x3678x1236x3478+x1367x2348xIxJ=PI,J \begin{aligned} x_{13} \otimes x_{23467} \otimes x_{8} &\mapsto x_{13} \otimes ( x_{23} \otimes x_{467} - x_{24} \otimes x_{367} + x_{26} \otimes x_{347} - \cdots + x_{67} \otimes x_{234} ) \otimes x_{8} \\ &\mapsto 0 + x_{1234} x_{3678} - x_{1236} x_{3478} - \cdots + \underbrace{x_{1367} x_{2348}}_{x_I x_J} = P_{I, J} \end{aligned} PI,JP_{I, J} vanishes on Gr(r,n)\Gr(r, n) because of the r+1\wedge^{r+1} term coming from xAx_A, hence PI,JPP_{I, J} \in \cP. A more detailed inductive argument shows that any monomial xI1xI2xIx_{I_1} x_{I_2} \cdots x_{I_\ell} can be straightened to a linear combination of standard monomials, hence the standard monomials span the ring k[xIICr,n]/P\bbk[x_I \mid I \in C_{r, n}] / \cP. A more careful argument shows they are linearly independent.

Our problem: Standard monomials on the affine Grassmannian GrSLn\Gr_{\SL_n}

The affine Grassmannaian GrSLn\Gr_{\SL_n} admits an embedding ini_n into the infinite Grassmannian Gr()\Gr(\infty), which in turn embeds via the Plücker embedding pp into the projectivisation P(F)\bbP(\cF) of Fock space. Drawing analogies from above, Gr()\Gr(\infty) is like Gr(r,n)\Gr(r, n) and F\cF is like rV\wedge^r V, however GrSLn\Gr_{\SL_n} is quite a different object. GrSLninGr()pP(F) \Gr_{\SL_n} \xinjto{i_n} \Gr(\infty) \xinjto{p} \bbP(\cF) \quad \quad The ideal P\cP cutting out Gr()\Gr(\infty) inside P(F)\bbP(\cF) is an infinite analogue of the Plücker relations. By a conjecture of Kreiman, Lakshmibai, Magyar, and Weyman [KLMW07] recently proven by Muthiah, Weekes, and Yacobi [MWY18], the set Sn\cS_n of linear functions on F\cF vanishing on GrSLn\Gr_{\SL_n} are given by the shuffle equations.

Problem: Confirm that Sn\cS_n is the defining ideal of GrSLn\Gr_{\SL_n} inside Gr()\Gr(\infty).

Approach: Develop a standard monomial theory for k[Gr()]/Sn\bbk[\Gr(\infty)] / \cS_n, and compare with a known basis for k[GrSLn]\bbk[\Gr_{\SL_n}] given by FLOTW multpartitions.

Maya diagrams, semi-infinite wedges, and charged partitions

A Maya diagram m ⁣:Z{,}\mathsf{m} \colon \bbZ \to \{\circ, \bullet\} is a 2-colouring that is eventually white to the left and black to the right.

\cdots6-65-54-43-32-21-10011223344556677\cdots

It can be recorded by the location of its white beads m ⁣:Z<0Z\mathsf{m}^\circ \colon \bbZ_{<0} \to \bbZ, or its black beads m ⁣:Z0Z\mathsf{m}^\bullet \colon \bbZ_{\geq 0} \to \bbZ.

m=(,6,5,4,2,1,2,4)(3,0,1,3,5,6,7,)=m \mathsf{m}^\circ = (\ldots, -6, -5, -4, -2, -1, 2, 4) \, \mid \, (-3, 0, 1, 3, 5, 6, 7, \ldots) = \mathsf{m}^\bullet

The union m ⁣:ZZ\mathsf{m}^\circledcirc \colon \bbZ \to \bbZ is a bijection, where m(i)i\mathsf{m}^\circledcirc(i) - i stabilises to the charge c(m){\color{blue} c(\mathsf{m})} (here c(m)=1{\color{blue} c(\mathsf{m})} = 1).

ii \cdots 6-6 5-5 4-4 3-3 2-2 1-1 00 11 22 33 44 55 66 \cdots
m(i)\mathsf{m}^\circledcirc(i) \cdots 5-5 4-4 2-2 1-1 22 44 3-3 00 11 33 55 66 77 \cdots
m(i)i\mathsf{m}^\circledcirc(i) - i \cdots 11 11 22 22 44 55 3-3 1-1 1-1 00 11 11 11 \cdots
m(i)ic(m)\mathsf{m}^\circledcirc(i) - i - {\color{blue} c(\mathsf{m})} \cdots 00 00 11 11 33 44 4-4 2-2 2-2 1-1 00 00 00 \cdots

The sequence (m(i)ic(m))-(\mathsf{m}^\circledcirc(i) - i - {\color{blue} c(\mathsf{m})}) defines a partition (4,2,2,1,0,0,0,)({\color{purple} 4}, {\color{purple} 2}, {\color{purple} 2}, {\color{purple} 1}, 0, 0, 0, \ldots). The following are in bijection:

  1. The Maya diagram m ⁣:Z{,}\mathsf{m} \colon \bbZ \to \{ \circ, \bullet \} shown above, 2-colouring the integers.
  2. The semi-infinite wedge e3e0e1e3e5e6e_{-3} \wedge e_0 \wedge e_1 \wedge e_3 \wedge e_5 \wedge e_6 \wedge \cdots giving the sequence m\mathsf{m}^\bullet.
  3. The charged partition (c,λ)=(1,(4,2,2,1))({\color{blue} c}, {\color{purple} \lambda}) = ({\color{blue} 1}, {\color{purple} (4, 2, 2, 1)}).

These three combinatorial objects all label the same basis of Fock space F\cF.

Fermionic Fock space

The Fermionic Fock space F\cF is the vector space with basis given by Maya diagrams (or semi-infinite wedges, or charged partitions). It is graded by charge: F=cZF(c), where F(c)=spank{(c,λ)λPartitions}. \cF = \bigoplus_{c \in \bbZ} \cF^{(c)}, \quad \text{ where } \cF^{(c)} = \Span_\bbk\{ (c, \lambda) \mid \lambda \in \mathsf{Partitions} \}. The homogeneous coordinate ring is a polynomial ring in infinite variables: k[P(F)]=k[xmmMayas]\bbk[\bbP(\cF)] = \bbk[x_\mathsf{m} \mid \mathsf{m} \in \mathsf{Mayas}]. Similarly to the finite case, we say that xm1xmx_{\mathsf{m}_1} \cdots x_{\mathsf{m}_\ell} is a standard monomial if m1m\mathsf{m}_1 \leq \cdots \leq \mathsf{m}_\ell, where the ordering \leq is by containment of charged partitions.

The standard monomials form a k\bbk-basis of k[Gr()]\bbk[\Gr(\infty)], however they do not appear to play nicely when the shuffle relations Sn\cS_n are also introduced.

The infinite (or Sato) Grassmannian

Define a vector space F=spank{eiiZ}F^\infty = \Span_\bbk\{e_i \mid i \in \bbZ\} and distinguished subspaces Fi=spank{ejji}F^{\geq i} = \Span_\bbk\{e_j \mid j \geq i\}.

A subspace VFV \subseteq F^\infty is virtual if FnVFnF^{\geq n} \subseteq V \subseteq F^{\geq -n} for some n0n \geq 0.

The infinite Grassmannian Gr()={VFV is virtual}\Gr(\infty) = \{ V \subseteq F^\infty \mid V \text{ is virtual} \} is the set of virtual subspaces of FF^{\infty}.

The Plücker embedding Gr()pP(F)\Gr(\infty) \xinjto{p} \bbP(\cF) forms the semi-infinite wedge of a virtual space. (FnVFn)top(V/Fn)enen+1 \left(F^{\geq n} \subseteq V \subseteq F^{\geq -n}\right) \mapsto \bigwedge^{\mathrm{top}} \left(V/F^{\geq n}\right) \wedge e_n \wedge e_{n+1} \wedge \cdots The relative charge of V,WGr()V, W \in \Gr(\infty) with FnV,WFnF^{\geq n} \subseteq V, W \subseteq F^{\geq -n} is relcharge(V,W)=dim(V/Fn)dim(W/Fn), \relcharge(V, W) = \dim(V / F^{\geq n}) - \dim(W / F^{\geq n}), while the charge of VV is its relative charge to F0F^{\geq 0}, written c(V)=relcharge(V,F0). c(V) = \relcharge(V, F^{\geq 0}). The Plücker embedding respects charge: Gr()(c)pP(F(c))\Gr(\infty)^{(c)} \xinjto{p} \bbP(\cF^{(c)}).

The Plücker ideal

For d0d \geq 0 define a quadratic map (and check the sum is well-defined!) Ωd ⁣:F(c)F(c+d)F(cd),Ωd(ω)=IZ,I=dψI(ω)ψI(ω), \Omega_d \colon \cF^{(c)} \to \cF^{(c + d)} \otimes \cF^{(c - d)} ,\quad \quad \Omega_d(\omega) = \sum_{I \subseteq \bbZ, |I| = d} \psi_I(\omega) \otimes \psi_I^*(\omega), where ψI\psi_I means ψi1ψid\psi_{i_1} \circ \cdots \circ \psi_{i_d} for I={i1<<id}I = \{i_1 < \cdots < i_d\}. The Plücker ideal P\cP is the set of equations formed by postcomposing the {Ωdd0}\{\Omega_d \mid d \geq 0\} with coordinate functions on F(c+d)F(cd)\cF^{(c + d)} \otimes \cF^{(c - d)}, for d0d \geq 0.

The action of sln^\widehat{\fsl_n} on Fock space, the representation V(Λ0)V(\Lambda_0)

The Lie algebra sln^\widehat{\fsl_n} is the Kac-Moody algebra associated to a cycle diagram on nn nodes. For example, sl3^\widehat{\fsl_3} is generated by the Chevalley generators EE_{\color{orange} \bullet}, EE_{\color{cyan} \bullet}, EE_{\color{purple} \bullet}, FF_{\color{orange} \bullet}, FF_{\color{cyan} \bullet}, FF_{\color{purple} \bullet}, and the derivation dh{\color{purple} d} \in \fh satisfying [d,Ei]=δi,Ei[{\color{purple} d}, E_i] = \delta_{i, {\color{purple} \bullet}} E_i.

0\overline{0}
1\overline{1}
2\overline{2}

The action of sln^\widehat{\fsl_n} on the charged partition (c,λ)(c, \lambda) examines its residues:

Take a charged partition (c,λ)=(1,(4,2,2,1))(c, \lambda) = (1, (4, 2, 2, 1)) Assign each cell its content, shifted by the charge cc Reduce modulo nn to find the residues
11
00
1-1
2-2
22
11
33
22
44
1\overline{1}
0\overline{0}
2\overline{2}
1\overline{1}
2\overline{2}
1\overline{1}
0\overline{0}
2\overline{2}
1\overline{1}

The Chevalley generators E,E,EE_{\color{orange} \bullet}, E_{\color{cyan} \bullet}, E_{\color{purple} \bullet} remove boxes of the their colour, without modifying the charge:

1\overline{1}
0\overline{0}
2\overline{2}
1\overline{1}
2\overline{2}
1\overline{1}
0\overline{0}
2\overline{2}
1\overline{1}
E \xto{E_{\color{orange} \bullet}}
1\overline{1}
0\overline{0}
2\overline{2}
2\overline{2}
1\overline{1}
0\overline{0}
2\overline{2}
1\overline{1}
+ +
1\overline{1}
0\overline{0}
2\overline{2}
1\overline{1}
2\overline{2}
1\overline{1}
0\overline{0}
2\overline{2}

The Chevalley generators F,F,FF_{\color{orange} \bullet}, F_{\color{cyan} \bullet}, F_{\color{purple} \bullet} add boxes their colour, without modifying the charge:

1\overline{1}
0\overline{0}
2\overline{2}
1\overline{1}
2\overline{2}
1\overline{1}
0\overline{0}
2\overline{2}
1\overline{1}
F \xto{F_{\color{purple} \bullet}}
1\overline{1}
0\overline{0}
2\overline{2}
1\overline{1}
0\overline{0}
2\overline{2}
1\overline{1}
0\overline{0}
2\overline{2}
1\overline{1}
+ +
1\overline{1}
0\overline{0}
2\overline{2}
1\overline{1}
2\overline{2}
1\overline{1}
0\overline{0}
0\overline{0}
2\overline{2}
1\overline{1}
+ +
1\overline{1}
0\overline{0}
2\overline{2}
1\overline{1}
2\overline{2}
1\overline{1}
0\overline{0}
2\overline{2}
1\overline{1}
0\overline{0}

The derivation dd acts on (c,λ)(c, \lambda) by counting boxes of its colour (purple), so dd scales our example by 2.

In terms of the Clifford operators, we have Ei=ji+nZψj1ψjE_i = \sum_{j \in i + n \bbZ} \psi_{j - 1} \psi_j^* and Fi=ji+nZψjψj1F_i = \sum_{j \in i + n \bbZ} \psi_j \psi_{j - 1}^*.

The basic representation V(Λ0)V(\Lambda_0) of sl^n\widehat{\fsl}_n is the submodule of F\cF generated by the charge zero empty partition: V(Λ0)=U(sl^n)(0,)F(0). V(\Lambda_0) = U(\widehat{\fsl}_n) \cdot (0, \varnothing) \subseteq \cF^{(0)}. The shuffle relations Sn\cS_n cut out V(Λ0)V(\Lambda_0) inside F\cF.

Clifford operators on Fock space

The Clifford operators ψi,ψi ⁣:FF\psi_i, \psi_i^* \colon \cF \to \cF form the wedge or interior product with eie_i. ψi(ω)=eiω,ψi(ω)=ιei(ω) \psi_i(\omega) = e_i \wedge \omega, \quad \psi_i^*(\omega) = \iota_{e_i}(\omega) In terms of Maya diagrams, ψim\psi_i \mathsf{m} turns the iith bead of m\mathsf{m} black (ψim=0\psi_i \mathsf{m} = 0 if it is already black) and multiply by a sign depending on the number of black beads to the left of ii. With the m\mathsf{m} shown above, ψ1m=0\psi_1 \mathsf{m} = 0 while ψ2m\psi_2 \mathsf{m} is the negative of the following diagram:

\cdots6-65-54-43-32-21-10011223344556677\cdots

ψi\psi_i^* acts similarly after swapping white with black. The Clifford operators are graded: ψiψiF(1)ψiψiF(0)ψiψiF(1)ψiψi \cdots \xtofrom[\psi_i^*]{\psi_i} \cF^{(-1)} \xtofrom[\psi_i^*]{\psi_i} \cF^{(0)} \xtofrom[\psi_i^*]{\psi_i} \cF^{(1)} \xtofrom[\psi_i^*]{\psi_i} \cdots

The shuffle equations

For IZI \subseteq \bbZ and nZn \in \bbZ, set I+n={i+niI}I + n = \{i + n \mid i \in I\}. For d1d \geq 1, define the linear map shdn ⁣:FF,shdn=IZ,I=dψI+nψI \sh_d^{n} \colon \cF \to \cF, \quad \quad \sh_d^{n} = \sum_{I \subseteq \bbZ, |I| = d} \psi_{I + n} \circ \psi_{I}^*

The shuffle ideal Snk[P(F(0)]\cS_n \subseteq \bbk[\bbP(\cF^{(0)}] cutting out the sl^n\widehat{\fsl}_n representation V(Λ0)F(0)V(\Lambda_0) \subseteq \cF^{(0)} is Sn=d1imshdn\cS_n = \sum_{d \geq 1} \im \sh_d^n.

FLOTW multipartitions and standard monomials

By a theorem of Kostant, k[GrSLn]r0V(rΛ0)\bbk[\Gr_{\SL_n}] \cong \bigoplus_{r \geq 0} V(r \Lambda_0)^*, with the Cartan product as the algebra structure on the right. The work of [FLOTW99] describes a basis for V(rΛ0)V(r \Lambda_0) in terms of FLOTW multipartitions, an rr-tuple of partitions satisfying containment and nn-cylindricity:

1\overline{1}
0\overline{0}
2\overline{2}
1\overline{1}
0\overline{0}
2\overline{2}
2\overline{2}
1\overline{1}
0\overline{0}
2\overline{2}
0\overline{0}
2\overline{2}
1\overline{1}
0\overline{0}
2\overline{2}
\supseteq
1\overline{1}
0\overline{0}
2\overline{2}
1\overline{1}
0\overline{0}
2\overline{2}
1\overline{1}
0\overline{0}
2\overline{2}
0\overline{0}
1\overline{1}
\supseteq
1\overline{1}
0\overline{0}
2\overline{2}
1\overline{1}
2\overline{2}
1\overline{1}
0\overline{0}
\supseteq
1\overline{1}
0\overline{0}
2\overline{2}
2\overline{2}
0\overline{0}
\supseteq
1\overline{1}
0\overline{0}
2\overline{2}
1\overline{1}
0\overline{0}
2\overline{2}
2\overline{2}
1\overline{1}
0\overline{0}
2\overline{2}
0\overline{0}
2\overline{2}
1\overline{1}
0\overline{0}
2\overline{2}

Above is an (r=4)(r = 4)-multipartition λ\pmb{\lambda} satisfying containment and (n=3)(n=3)-cylindricity. To be FLOTW, the union of residues Res(,λ)\Res(\ell, \pmb{\lambda}) for each length \ell row needs to be incomplete, for all >1\ell > 1. For λ\pmb{\lambda} above:

\ell 66 55 44 33 22 11
Res(,λ)\Res(\ell, \pmb{\lambda}) {}\{{\color{cyan} \bullet}\} {}\{\purple{\bullet}\} {,}\{{\color{cyan} \bullet}, \orange{\bullet}\} {}\{{\color{cyan} \bullet}\} {,,}\{{\color{cyan} \bullet}, \orange{\bullet}, \purple{\bullet}\} {,,}\{{\color{cyan} \bullet}, \orange{\bullet}, \purple{\bullet}\}

and hence λ\pmb{\lambda} is not a FLOTW multipartition, as both Res(2,λ)\Res(2, \pmb{\lambda}) and Res(1,λ)\Res(1, \pmb{\lambda}) are complete.

Our plan

In the finite Grassmnannian Gr(k,n)\Gr(k, n) of kk-planes in nn-space, extracting certain relations from the Plücker ideal P\cP lead to a straightening rule in the coordinate ring k[P(kkn)]\bbk[\bbP(\bigwedge^k \bbk^n)], rewriting arbitrary monomials in terms of standard monomials: multipartitions satisfying the containment relation above.

In the infinite case we have both the Plücker ideal P\cP and the shuffle ideal Sn\cS_n, and we are aiming to find a straightening law to rewrite monomials (multipartitions) into FLOTW multipartitions.

References

[KLMW07]
V. Kreiman, V. Lakshmibai, P. Magyar, and J. Weyman, "On ideal generators for affine Schubert varieties", Algebraic groups and homogeneous spaces, Tata Inst. Fund. Res. Stud. Math. 19 (2007), 353-388.
[MWY18]
D. Muthiah, A. Weekes, and O. Yacobi, "The equations defining affine Grassmannians in type AA, arXiv:1708.07076v2.
[FLOTW99]
O. Foda, B. Leclerc, M. Okado, J. Thibon, and T Welsh, "Branching functions of An1(1)A^{(1)}_{n−1} and Jantzen-Seitz problem for Ariki-Koike algebras", .Adv. Math., 141:322–365, 1999.