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Abstract. We extend the definition of the Maslov index to a broad class of non-Hamiltonian

dynamical systems. To do this, we introduce a family of topological spaces — which we call Maslov–

Arnold spaces — that share key topological features with the Lagrangian Grassmannian, and hence

admit a similar index theory. This family contains the Lagrangian Grassmannian, and much more.

We construct Maslov–Arnold spaces that are dense in the Grassmannian, and hence are much larger

than the Lagrangian Grassmannian (which is a submanifold of positive codimension). The resulting

index is then used to study eigenvalue problems for non-selfadjoint reaction–diffusion systems.
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1. Introduction

From the viewpoint of dynamical systems, the Maslov Index provides a way of distinguishing

trajectories in a (nonlinear) Hamiltonian system. It achieves this by isolating curves of subspaces

in the tangent bundle to the phase space along the underlying trajectory. The Hamiltonian structure

affords a restriction to Lagrangian subspaces of each tangent space, and this structure means that

such curves can be classified according to an integer index. This is known widely as the Maslov

Index.

The Maslov Index has been applied in the Calculus of Variations [19] and to study the stability

of nonlinear waves [5, 9, 10, 11, 12, 17]. In the former case, Arnold [2] showed that the Morse

Index Theorem could be proved using the Maslov Index. In a related paper [3], he showed how

this use of the Maslov Index is a natural generalization of Sturm–Liouville Theory, which relates

numbers of zeroes of an eigenfunction for a self-adjoint operator on an interval (or the real line) to

the place that the associated eigenvalue takes within the ordering of the (real) spectrum. This gives

the connection between these two applications of the Maslov Index and it is the generalization of

Sturm–Liouville Theory, afforded by the Maslov Index, to operators arising in the linearization of

systems of partial differential equations (PDEs) in one space dimension that motivates the work in

this paper.

To date, the need for the underlying system to be Hamiltonian has enforced a restriction to PDEs

that lead to self-adjoint operators when linearized at the wave. Looking in the context of reaction-

diffusion systems of PDEs, this means that the nonlinearity must be of gradient type. It has been

adapted recently to a class of systems, known as skew-gradient, by transforming the problem to one

that is Hamiltonian [9]. It has also been successfully applied to other PDEs that are conservative,

such as the Nonlinear Schrödinger Equation [15, 16, 17], and various water wave problems [5]. In

each of these cases, it can, however, be shown that there is some hidden Hamiltonian (symplectic)

structure in the linearized problem, see for instance [10].

The question we pose here is whether this restriction to underlying Hamiltonian structure can be

weakened in order to open up a greater range of applications. The idea we pursue is to look for

subspaces of the Grassmannian of half-dimensional subspaces of the tangent space that have the

needed topological properties. We then see how these are connected with the underlying PDEs we

wish to study.

We take R2n as the ambient (phase) space. The Grassmannian of n-dimensional subspaces of R2n

is denoted Grn(R2n). Such an n-dimensional subspace is Lagrangian, with respect to a particular

symplectic form ω on R2n, if ω vanishes on it. The space of Lagrangian subspaces, known as the

Lagrangian Grassmannian, is then denoted Λ(n).

The Maslov index is an integral homotopy invariant defined for continuous paths in the Lagrangian

Grassmannian Λ(n). This is well defined because H1(Λ(n);Z) = Z. Moreover, one can explicitly

identify the generator of H1(Λ(n);Z), and hence interpret the index of a curve as a signed count

of its intersections with a fixed Lagrangian subspace, which we can choose to encode the boundary

conditions for the eigenvalue equation.
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Our strategy is to find a large subset of Grn(R2n) that still has the topological features necessary

to define a Maslov-like index. To that end, we introduce the concept of a Maslov–Arnold space —

see Definition 3.1 — and show that every Maslov–Arnold space admits a generalized Maslov index,

which counts intersections of subspaces and hence can be used to count eigenvalues for differential

operators. We then construct a family of Maslov–Arnold spaces that are open, dense submanifolds

of the Grassmannian. (The Lagrangian Grassmannian is a closed submanifold of codimension

n(n− 1)/2, so our index is defined for a much larger class of subspaces.)

Acknowledgements. The authors acknowledge the support of the BIRS FRG program Stability

Indices for Nonlinear Waves and Patterns in Many Space Dimensions, where some of this work

was done. T.B. acknowledges support of NSERC grant RGPIN-2016-05382. G.C. acknowledges the

support of NSERC grant RGPIN-2017-04259. C.J. was supported by ONR grant N00014-18-1-2204.

R.M. acknowledges the support of the ARC under grant DP200102130.

2. Motivation

Many interesting physical phenomena are described by systems of reaction–diffusion equations.

These have the form

ut = Duxx + F (u), (1)

where u(x, t) ∈ Rn, D = diag(d1, . . . , dn) with all di > 0, and F : Rn → Rn. Given a steady state

ū(x), i.e. a solution to Dūxx + F (ū) = 0, it is natural to ask whether or not it is stable to small

perturbations.

The linear stability of ū is determined by the spectrum of the linearized operator

L = D
d2

dx2
+∇F (ū). (2)

The eigenvalue equation Lv = λv can be written as a 2n× 2n system

d

dx

(
v

w

)
=

(
0 D−1

λI −∇F (ū) 0

)(
v

w

)
. (3)

If F = ∇G for some function G : Rn → R, then ∇F = ∇2G is symmetric, hence L is formally

selfadjoint, and the system (3) is Hamiltonian. In this case the state ū has a well defined Maslov

index, which can be shown to equal the number of positive eigenvalues of L.

Here we consider the case that F does not have a gradient structure, hence (3) is not Hamiltonian

with respect to the standard symplectic form. This generalization is critical because reaction–

diffusion equations are primarily studied for their propensity to support patterns and other perma-

nent structures. As was shown by Turing [22] (see below for an in-depth discussion), a fundamental

mechanism for generating such patterns requires that ∇F has competing terms, thus ensuring that

F is not a gradient. In the literature, equations of the form (1) for which a stable equilibrium can

be destabilized in the presence of diffusion are called activator–inhibitor systems.

Yanagida [24, 25] initiated the study of a broad class of activator–inhibitor systems called skew-

gradient, for which F = Q∇G with Q = diag{qi}, qi = ±1. Chen and Hu subsequently showed
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how to define the Maslov index of a standing wave and how to use it as a tool in stability analysis

for the skew-gradient case [8, 9]. Cornwell and Jones extended these ideas to traveling waves in

[10, 11]. In both cases, the parity of the Maslov index is shown to determine the sign of the

derivative of the Evans function [1] at λ = 0; cf. [5, 12]. The results in the aforementioned works

hinged on the fact that the eigenvalue equation for L preserves the manifold of Lagrangian planes

for a non-standard symplectic form. In contrast to the Hamiltonian case, the index might be

non-monotone in its parameters, and L might possess complex eigenvalues. Nonetheless, a nonzero

Maslov index can still be used to prove instability. (Jones used the same idea to prove an instability

criterion for standing waves in nonlinear Schrödinger-type equations [17].) The index can also be

used to prove stability in a particular case if the above concerns are addressed. For example, the

Maslov index was used to prove stability of both standing and traveling waves in a doubly-diffusive

FitzHugh–Nagumo equation [9, 11].

For a general (not necessarily gradient or skew-gradient) system, (3) will generate a family of n-

dimensional subspaces in R2n, which need not be Lagrangian. The Grassmannian Grn(R2n) of

n-planes in R2n has first cohomology group H1(Grn(R2n);Z) = Z2, and so the Maslov index does

not admit an extension to this space. A Z2 index theory was recently developed in [14], and used

to study bifurcations of heteroclinic orbits in non-Hamiltonian systems. However, we are interested

in defining an integral index that is defined more generally than the Maslov index.

As mentioned in the introduction, we remedy this situation by introducing Maslov–Arnold spaces.

Using these spaces, and the resulting indices, we can study the spectrum of the non-selfadjoint

operator L defined in (2). In Section 4 we prove that (for a particular choice of Maslov–Arnold

space) the generalized index is monotone with respect to the spatial variable x. As a result, we are

able to conclude that

#
{

positive real eigenvalues of L
}
≥ #

{
conjugate points

}
, (4)

as long as the system (3) leaves the Maslov–Arnold space invariant. Therefore, the existence of a

conjugate point gives a sufficient condition for the instability of the steady state ū.

Consequently, to apply this machinery, we need verifiable invariance conditions for our Maslov–

Arnold spaces, to ensure the index is defined and hence (4) holds. As an illustration of our method,

we completely analyze systems with constant coefficients, corresponding to linearization about

homogeneous equilibria ū, and give some results for systems where the pairwise products of the

diffusion coefficients are large.

3. Maslov–Arnold spaces

In this section we introduce Maslov–Arnold spaces, the main object of study in this paper. We

start with definitions and basic properties in Section 3.1. In Section 3.2 we construct a large family

of Maslov–Arnold spaces that are open, dense subsets of the Grassmannian, and in Section 3.3 we

describe the two-dimensional case in detail. Finally, in Section 3.4 we construct a Maslov–Arnold

space that contains Λ(2) and is dense in Gr2(R4). (The spaces constructed in Section 3.2 are

dense in Grn(R2n) but do not contain all of Λ(n).) This space, which we call the “Fat Lagrangian
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Grassmannian,” does not make an appearance in later sections, where we study systems of reaction–

diffusion equations, but is of theoretical interest, and motivates our construction of Maslov–Arnold

spaces that do not contain Λ(n).

3.1. Preliminaries and definitions. As noted in the introduction, the Maslov index for curves

in the Lagrangian Grassmannian has two features that make it useful for stability analysis:

1) There exists a cohomology class α0 ∈ H1(Λ(n);Z) so that the Maslov index of any contin-

uous loop γ : S1 → Λ(n) equals the canonical pairing 〈α0, [γ]〉 ∈ Z.

2) If γ : S1 → Λ(n) is a sufficiently generic smooth loop, then its Maslov index is equal to a

signed count of intersections between γ and the train of a fixed Lagrangian plane P , where

the train of an n-plane P in Λ(n) is the set ZP ∩ Λ(n), with

ZP :=
{
W ∈ Grn(R2n) : W ∩ P 6= {0}

}
. (5)

In other words, the Maslov index is a well-defined homotopy invariant of loops and it counts

intersections of Lagrangian planes. The last property is essential — in our setup intersections of

Lagrangian planes correspond to solutions to eigenvalue equations (with appropriate boundary

conditions), and so the Maslov index can be used to count unstable eigenvalues for the linear

operator (2).

Before moving further, we make precise the meaning of “sufficiently generic.” The subset

Z1
P

:=
{
W ∈ Grn(R2n) : dim(W ∩ P ) = 1

}
⊆ ZP

is a smooth submanifold of Grn(R2n) with one-dimensional normal bundle ν. We say a smooth map

γ : S1 → Grn(R2n) is sufficiently generic if γ(S1) ∩ ZP = γ(S1) ∩ Z1
P

and all of these intersections

are transverse.

Given a subset M ⊆ Grn(R2n) and an n-plane P ∈ Grn(R2n), we call ZP ∩M the train of P in

M. A co-orientation of the train is an orientation of the restricted line bundle ν|M∩Z1
P

. Given a

sufficiently generic curve γ : S1 →M⊆ Grn(R2n) and a co-orientation ofM∩Z1
P

, the intersection

number of γ with the train M∩ZP is defined to be the finite sum∑
t∈S1

γ(t)∈Z
P

sgn(t)

where sgn(t) = 1 (resp. −1) if the induced linear isomorphism TtS
1 → νγ(t) is orientation preserving

(reversing).

Definition 3.1. A rank n Maslov–Arnold (MA) space (M, P, α) consists of

• a connected subset M⊆ Grn(R2n),

• a rank n vector space P ∈ Grn(R2n), and

• a cohomology class α ∈ H1(M;Z) of infinite order,

where ZP ∩M has a co-orientation such that for any sufficiently generic smooth loop γ : S1 →M,

the intersection number with ZP equals the pairing 〈α, [γ]〉.
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The idea is that the paths of interest lie in M, and thus have a Maslov-type index, while the

subspace P , through its train, provides the mechanism for evaluating this index. Note the ironic

fact that P itself is not required to be an element ofM. When it is unlikely to cause confusion, we

will sometimes refer to an MA space (M, P, α) simply by the underlying space M or by (M, P ).

For any continuous loop γ : S1 →M, we define the (generalized) Maslov index of γ with respect to

P by

Mas(γ;P ) = 〈α, [γ]〉. (6)

For the hyperplane Maslov–Arnold spaces constructed below, the index has a simple geometric

interpretation as a winding number in RP 1. This gives us a practical method for computing the

index, and also allows us to define it for continuous paths γ : [a, b]→M with distinct endpoints.

It follows from [2] that (Λ(n), P, α0) is a Maslov–Arnold space for any P ∈ Λ(n), and α0 ∈
H1(Λ(n);Z) ∼= Z either one of the two generators. Moreover, the symplectic form defining Λ(n)

determines a canonical choice of α0, called the Maslov class. With this choice of generator we call

(Λ(n), P, α0) a classical Maslov–Arnold space. On the other hand, Grn(R2n) cannot be an MA

space if n ≥ 2, because H1(Grn(R2n);Z) ∼= Z2 contains no cohomology classes of infinite order. In

the case n = 1, it is easy to see that Λ(1) = Gr1(R2) = RP 1 ∼= S1. This is the home of classical

Sturm–Liouville theory, which is often approached through studying the angle of a path in S1.

Definition 3.2. Given a pair of equal rank Maslov–Arnold spaces, we say (M1, P1, α1) extends

(M2, P2, α2) if M1 ⊇M2, P1 = P2, and i∗(α1) = α2, where i : M2 ↪→M1 is subspace inclusion.

To extend the definition of the classical Maslov index, it is natural to look for proper extensions of

the classical Maslov–Arnold spaces. This is possible when n = 2.

Theorem 3.3. There exists a rank two Maslov–Arnold space (F , P, α), with F dense in Gr2(R4),

that extends the classical Maslov–Arnold space (Λ(2), P, α0), where P ∈ Λ(2) and α0 is the Maslov

class.

Therefore, one can assign an integer index to every continuous loop in F , and for a loop in Λ(2) it

coincides with the classical Maslov index. This new index has the advantage of being much more

broadly defined, since F is dense in Gr2(R4), whereas Λ(2) is a hypersurface.

However, the space F given by Theorem 3.3 is not a submanifold of the Grassmannian. It will be

seen in the proof (which we postpone to Section 3.4) that it does not contain an open neighbourhood

of Λ(2), which makes it difficult to use in practice. Although F is left invariant by the flow of any

Hamiltonian system with Lagrangian initial data (because Λ(2) is), an arbitrarily small perturbation

of the system may cause its trajectories to leave F , in which case the index is no longer defined.

It turns out this undesirable behaviour is inevitable for extensions of the classical Maslov–Arnold

spaces.

Theorem 3.4. If (M, P, α) is an extension of the classical Maslov–Arnold space (Λ(n), P, α0), and

M is strictly larger than Λ(n), then M is not a smooth submanifold of Grn(R2n).
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In other words, the only smooth MA space that extends Λ(n) is Λ(n) itself. Therefore the re-

quirement that an MA space contain Λ(n) is overly restrictive. By dropping this requirement, we

are able to produce a large family of open, dense MA spaces, each the complement of a closed,

codimension two real variety. Moreover, there is considerable freedom in the choice of variety to

remove. The particular construction we use in applications will be dictated by properties of the

differential equation and boundary conditions under consideration. The general construction is

given in Section 3.2, and in Section 4 we show how to choose an MA space that is suited to the

study of reaction–diffusion equations.

Proof of Theorem 3.4. We start by reviewing the spectral flow interpretation of the Maslov index,

as given by Robbin and Salamon [21].

Equip R2n with the standard inner product product 〈·, ·〉 and define a complex structure J : R2n →
R2n by ω(v, w) = 〈v, Jw〉. Then the Lagrangian subspace P has a Lagrangian complement Q :=

J(P ) = P⊥, so R2n = Q⊕ P . We define the coordinate neighbourhood UP ⊆ Grn(R2n) to be the

set of n-planes in R2n that intersect Q trivially and can therefore be represented as graphs of linear

maps from P to Q. We have

UP = {gr(B) : B ∈ Hom(P,Q)} = {gr(JA) : A ∈ Hom(P, P )} ∼= Hom(P, P ) (7)

where we have abused notation and denoted by J : P → Q the restriction of J . In this coordinate

neighbourhood

Λ(n) ∩ UP ∼= {A ∈ Hom(P, P ) : A = AT }

Z ∩ UP ∼= {A ∈ Hom(P, P ) : detA = 0}.

The co-orientation of the train in Λ(n) is such that under the identification (7), the index of a

path γ : I → UP ∩ Λ(n) counts the difference between the number of positive eigenvalues of the

symmetric matrices γ(1) and γ(0). That is, the Maslov index of γ equals the spectral flow of the

corresponding family of symmetric matrices; see [21, Theorem 2.3].

Now let φ : M∩UP → Hom(P, P ) be the composition of inclusion with the diffeomorphism (7). To

prove the theorem, it suffices to find a path γ : I →M∩UP that does not intersect the train ZP , such

that φ(γ(0)) and φ(γ(1)) are symmetric matrices with different numbers of positive eigenvalues.

To begin, observe that the image of the tangent map dφP : TPM → T0 Hom(P, P ) = Hom(P, P )

must contain some non-zero B ∈ im(dφP ) ⊆ Hom(P, P ) such that B = −BT . Therefore B admits

an orthogonal eigenspace decomposition R2n = ⊕λ≥0Vλ with purely imaginary eigenvalues ±λ ∈ iR.

Since B is non-zero, there exists λ0 6= 0 for which Vλ0 6= {0}. Let Π be the orthogonal projection

onto Vλ0 and let Π′ := I2n −Π. Then the path in im(dφP ) defined by

dφP (γ̃(t)) := Π′ + cos(πt)Π + sin(πt)B

is non-degenerate for all t ∈ [0, 1] and has endpoints I2n and Π′−Π, which are non-degenerate and

symmetric, with different numbers of positive eigenvalues.

To complete the proof, choose an arbitrary Riemannian metric on M, and let exp
P

: TPM→M
denote the exponential map at P . Since (φ◦exp)(0) = 0 and d(φ◦exp)(0) = dφP , Taylor’s theorem



8 T. BAIRD, P. CORNWELL, G. COX, C. JONES, AND R. MARANGELL

gives the uniform estimate φ(exp(v)) = dφP (v) + O(|v|2) for small v ∈ TPM. It follows that

ε−1φ
(

exp(εγ̃(t))
)

= dφP (γ̃(t)) +O(ε), and so for sufficiently small ε the path

t 7→ φ−1
(
ε−1φ

(
exp(εγ̃(t))

))
has the desired property. �

3.2. Hyperplane Maslov–Arnold spaces. Let V ∼= R2n and denote by
∧n(V ) the nth degree

exterior product of V , which is a vector space of dimension
(

2n
n

)
. The projective space P (

∧n(V ))

is the set of the one dimensional subspaces of
∧n(V ). Given a non-zero n-vector ξ ∈

∧n(V ), we

denote by [ξ] ∈ P (
∧n(V )) the span of ξ. The Plücker embedding maps Grn(V ) into P (

∧n(V )),

sending span{v1, . . . , vn} to [v1 ∧ · · · ∧ vn]. We will sometimes abuse notation and simply identify

Grn(V ) with its image G ⊆ P (
∧n(V )). Observe that G equals the subset of [ξ] ∈ P (

∧n(V )) for

which ξ is decomposable as a product of vectors in V .

Let V ∗ := Hom(V,R) denote the dual vector space of V . For k ≥ 1, each ω ∈
∧k(V ∗) corresponds

to a skew-symmetric multilinear map ω : V k = V ×· · ·×V → R. There is a canonical isomorphism∧k(V ∗) ∼=
∧k(V )∗, so elements ω ∈

∧k(V ∗) are also in one-to-one correspondence with linear maps

ω̃ :
∧k(V )→ R. Both interpretations of

∧k(V ∗) will be important in what follows.

Each non-zero n-form ω ∈
∧n(V ∗) represents a point [ω] ∈ P (

∧n(V ∗)), which corresponds by

projective duality to a hyperplane Hω = H[ω] ⊆ P (
∧n(V )), namely

Hω =
{

[ξ] ∈ P
(∧n

(V )
)

: ω̃(ξ) = 0
}
. (8)

Conversely, a hyperplane H ⊆ P (
∧n(V )) determines a unique one-dimensional space of n-forms

[ω] ∈ P (
∧n(V ∗)) such that H = Hω.

If the hyperplane Hω is intersected with G, we get

G ∩Hω =
{

[v1 ∧ · · · ∧ vn] ∈ P
(∧n

(V )
)

: ω(v1, . . . , vn) = 0
}
, (9)

and by the Plücker embedding this corresponds to

G ∩Hω
∼=
{

span{v1, . . . , vn} ∈ Grn(V ) : ω(v1, . . . , vn) = 0
}
. (10)

For instance, if n = 2 and ω is a non-degenerate two-form (i.e. a symplectic form), then G ∩Hω is

the Lagrangian Grassmannian Λω.

Another important type of hyperplane, particularly relevant to our theory of Maslov–Arnold spaces,

is that corresponding to the train of a fixed subspace, as defined in (5). Given a vector v ∈ V ,

the contraction map ιv :
∧k(V ∗) →

∧k−1(V ∗) is defined for each k ≥ 1 by (ιvω)(w1, . . . , wk−1) :=

ω(v, w1, . . . , wk−1). Define the kernel of ω by kerω := {v ∈ V : ιvω = 0}.

Lemma 3.5. Let ω ∈
∧n(V ∗). If kerω ⊆ V has dimension n, then G ∩ Hω is the train of the

subspace kerω, i.e.

G ∩Hω
∼= Zkerω =

{
W ∈ Grn(V ) : W ∩ kerω 6= {0}

}
.
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Proof. Let v1, . . . , vn be a basis of kerω, and extend to a basis v1, . . . , v2n of V , with dual basis

v∗1, . . . , v
∗
2n ∈ V ∗. Then ω = cv∗n+1 ∧ · · · ∧ v∗2n for some nonzero c ∈ R. It follows from (9) that

[w1 ∧ · · · ∧ wn] ∈ G ∩Hω if and only if span{w1, . . . , wn} intersects kerω non-trivially. �

Now consider a pair of hyperplanes H1 and H2 corresponding to linearly independent n-forms ω1

and ω2.

Proposition 3.6. Let M := P (
∧n(V )) \ (H1 ∩ H2). Then M is an orientable manifold with

H1(M ;Z) ∼= Z generated by the Poincaré dual to H1 ∩M .

Proof. Let m + 1 =
(

2n
n

)
and choose an isomorphism Rm+1 ∼=

∧n(V ) such that H1 and H2 are

determined by xm = 0 and xm+1 = 0, respectively. This gives a diffeomorphism

M ∼= RPm \ RPm−2.

The surjective map Rm−1×S1 → RPm\RPm−2 sending (x1, . . . , xm+1) 7→ [x1 : · · · : xm+1] descends

to a diffeomorphism between M and the Möbius bundle Rm−1 × S1/∼ under the quotient relation

(x, y) ∼ (−x,−y). Therefore M is orientable (since
(

2n
n

)
is even), and π1(M) ∼= Z is generated by

a loop that winds once around the base of the Mobius bundle S1/∼ = RP 1. Finally, M ∩ H1 is

identified with one of the fibres of the Möbius bundle, so it is Poincaré dual to the generator of

H1(M ;Z). �

As an immediate corollary, we have the following.

Corollary 3.7. Given any pair of distinct hyperplanes H1, H2 ⊆ P (
∧n(V )), defineM := G\(H1∩

H2). Then H1 ∩M represents a cohomology class in H1(M;Z) which is calculated via a geometric

intersection number with H1 ∩M.

Proof. The cohomology class is simply the image of the one defined in H1(M ;Z) via the inclusion

map. �

We can understand the cohomology class as follows. If ω1 and ω2 are the n-forms defining H1 and

H2, then we get a map

φ : M−→ RP 1

span{u1, . . . , un} 7→ [ω1(u1, . . . , un) : ω2(u1, . . . , un)].
(11)

This is well defined because ω1(u1, . . . , un) and ω2(u1, . . . , un) cannot vanish simultaneously when

span{u1, . . . , un} ∈ M. Given any loop γ : S1 →M, its generalized Maslov index, the intersection

number with H1 ∩M, coincides with the winding number of φ ◦ γ. We will use this idea below to

define the index for non-closed curves in M.

According to Corollary 3.7, any loop in G \ (H1 ∩H2) has a well defined intersection number with

respect to H1 ∩ G. If H1 ∩ G is the train of an n-plane, we obtain a Maslov–Arnold space, as in

Definition 3.1.

Theorem 3.8. With notation as above, suppose that H1 = Hω, where kerω ⊆ V has dimension n.

Then M is a Maslov–Arnold space with respect to P = kerω.
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Proof. It only remains to prove the Poincaré dual of H1 ∩M inM has infinite order. It suffices to

identify a loop γ : [0, 1]→M with non-zero index.

By iterative application of Lemma 3.9 we can find vectors v1, . . . , vn−1 so that the contractions

ιv1∧···∧vn−1ω1 and ιv1∧···∧vn−1ω2 are linearly independent. Therefore, there exist u1, u2 ∈ V such

that ωi(uj , v1, . . . , vn−1) = δij . Consequently, the loop

γ(t) = span{cos(πt)u1 + sin(πt)u2, v1, . . . , vn−1}

has index one. �

Lemma 3.9. Let V be a vector space and k ≥ 2. If ω1, ω2 ∈
∧k(V ∗) are linearly independent,

then there exists a vector v ∈ V such that the contractions ιvω1, ιvω2 ∈
∧k−1(V ∗) are linearly

independent.

Proof. Choose a basis e1, . . . , en ∈ V , with dual basis e∗1, . . . , e
∗
n ∈ V ∗, and expand ω1 =

∑
I aIe

∗
I

and ω2 =
∑

I bIe
∗
I , where I = {i1 < · · · < ik} are multi-indices and e∗I := e∗i1 ∧ ... ∧ e

∗
ik

. Since ω1

and ω2 are linearly independent, there is a pair of multi-indices I, J such that the minor

det

(
aI bI

aJ bJ

)
6= 0. (12)

If there exists a pair of multi-indices I, J satisfying (12) and an index i ∈ I ∩ J , then ιeiω1 and

ιeiω2 are linearly independent and we are done.

Suppose instead that every pair of multi-indices satisfying (12) has I ∩ J = ∅. For a particular

such pair, select i ∈ I and j ∈ J and define I ′ := I ∪ {j} \ {i} and J ′ := J ∪ {i} \ {j}. Since k ≥ 2

it follows that each of I ∩ I ′, I ′ ∩J , I ∩J ′, and J ∩J ′ is non-empty. Considering the corresponding

minors, we deduce that aI′ = aJ ′ = bI′ = bJ ′ = 0 and consequently that ιei+ejω1 and ιei+ejω2 are

linearly independent. �

It was observed above that the intersection number of a loop γ : S1 → M with H1 ∩M is equal

to the winding number of φ ◦ γ : S1 → RP 1. We can thus define the generalized Maslov index of a

non-closed path γ inM to be the winding number of φ◦γ through the point φ(H1) = [0 : 1] ∈ RP 1.

Since RP 1 ∼= S1, it suffices to define the winding number of a continuous path in S1. This amounts

to choosing an (arbitrary) convention for the endpoints, which we do as follows.

Definition 3.10. Let η : [a, b] → S1 be a continuous path. If η(t0) = 1 for some t0 ∈ [a, b], then

there is a unique lift θ : [a, b]→ R such that θ(t0) = 0 and eiθ(t) = η(t) for t ∈ [a, b], and we define

W (η) =

⌊
θ(b)

2π

⌋
−
⌊
θ(a)

2π

⌋
. (13)

If no such t0 exists we set W (η) = 0.

It is not hard to see that this is well defined (independent of the choice of t0). It is clearly additive

under concatenation of paths, and if η(a) = η(b) it reduces to the usual winding number of a

loop, (θ(b) − θ(a))/2π. Some consequences of this definition are shown in Figure 1. The path eit,
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W = 1 W = −1 W = 0 W = 0

Figure 1. Illustrating the winding number, with respect to the point (1, 0), for

non-closed curves with crossings at their endpoints. Our convention is to count

negative crossings at the beginning of a curve and positive crossings at the end.

−π/2 ≤ t ≤ 0 has winding number 1 and e−it, 0 ≤ t ≤ π/2 has winding number -1, whereas eit,

0 ≤ t ≤ π/2 and e−it, −π/2 ≤ t ≤ 0 both have winding number 0.

A special case is when the path is monotone. If η is C1 and has the property that θ′(t∗) > 0

whenever η(t∗) = 1, then the set {t∗ ∈ [a, b] : η(t∗) = 1} is finite, and

W (η) = #
{
t∗ ∈ (a, b] : η(t∗) = 1

}
. (14)

Similarly, if θ′(t∗) < 0 whenever η(t∗) = 1, then

W (η) = −#
{
t∗ ∈ [a, b) : η(t∗) = 1

}
. (15)

3.3. The two-dimensional case. We consider in detail the n = 2 case, whereM can be described

explicitly. The hyperplanes now come in two types. If ω is a non-degenerate 2-form, i.e. a sympectic

form, then Hω∩G is the corresponding Lagrangian Grassmanian. If ω is degenerate, then kerω ⊆ V
is two-dimensional, and Hω ∩G is the train of kerω.

Given linearly independent forms ω1, ω2 ∈
∧2(V ), they span a pencil of bilinear forms xω1 + yω2,

(x, y) 6= (0, 0). Consider the homogeneous quadratic polynomial q(x, y) := Pf(xω1 +yω2), where Pf

denotes the Pfaffian. The roots of q correspond to the degenerate two-forms in the pencil. There

can be zero, one, two, or infinitely many roots.

Proposition 3.11. Up to a change of basis transformation of V , there are four possible isomor-

phism types for M. They are classified by the number of real roots of q(x, y) := Pf(xω1 + yω2).

Proof. The Plücker embedding identifies G ⊆ P (
∧2(V )) ∼= RP 5 as a quadric, the so-called Klein

quadric, defined by the non-degenerate, split signature symmetric bilinear form

B :
∧2

(V )⊗
∧2

(V )→
∧4

(V ) ∼= R B(η, ξ) = η ∧ ξ.

We call a linear transformation A ∈ GL(
∧2(V )) orthogonal if it leaves B invariant and anti-

orthogonal if it sends B to −B. Observe that both orthogonal and anti-orthogonal transformations

preserve G.

Let W ⊆
∧2(V ) be the four-dimensional subspace for which P (W ) = Hω1 ∩ Hω2 . Since B is

non-degenerate, the B-complement of W , W⊥ := {u ∈
∧2(V ) : B(u,w) = 0, for all w ∈ W}, is

two dimensional. Consider the restricted bilinear form B′ := B|W⊥ . The associate quadratic form
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q′(v) := B(v, v) on W⊥ can be identified via duality with q(x, y). By Sylvester’s law of inertia,

there are six isomorphism possible classes for B′ modulo change of basis, and four isomorphism

classes modulo multiplication by ±1. These are classified by the number of roots of q(x, y).

If W1,W2 ⊆
∧2(V ) are four-dimensional subspaces such that B|W⊥1 is isomorphic to B|W⊥2 , then

by Witt’s Theorem (see [18, Thm 1.2]) there exists an orthogonal transformation of
∧2(V ) sending

W1 to W2. Similarly, if B|W⊥1 is isomorphic to −B|W⊥2 then there exists an anti-orthogonal trans-

formation sending W1 to W2. It follows in either case that G \ P (W1) is isomorphic to G \ P (W2).

Finally we must show that the orthogonal transformation of
∧2(V ) used above can be induced by

a linear transformation of V (the anti-orthogonal case is an easy consequence). Denote by O(B)

the group of orthogonal transformations of (
∧2(V ), B). The natural homomorphism φ : SL(V )→

O(B) has kernel ±I4, so since both groups are 15 dimensional, it is a surjection onto the identity

component of O(B). It remains to show that for each two-dimensional U ⊆
∧2(V ), there exists

A ∈ O(B) in each path component of O(B) such that A(U) = U .

Choose a basis e1, . . . , e6 ∈
∧2(V ) so that B(ei, ej) = (−1)iδij , where δij is the Kronecker delta.

According to [18, Cor 1.1], representatives for the four path components of O(B) are given by

the transformations that fix e1, e2, e3, e4 and send e5 7→ ±e5 and e6 7→ ±e6. Since every different

isomorphism class of B|U can be realized by a two-dimensional U ⊆ span{e1, . . . , e4}, this completes

the proof. �

Up to a change of basis for V , the pencil of bilinear forms above is isomorphic to one of four

possibilities
0 x y 0

−x 0 0 0

−y 0 0 0

0 0 0 0

 ,


0 x 0 0

−x 0 0 0

0 0 0 y

0 0 −y 0

 ,


0 0 x y

0 0 −y x

−x y 0 0

−y −x 0 0

 ,


0 x y 0

−x 0 0 y

−y 0 0 0

0 −y 0 0

 ,

which have respective Pfaffians (up to sign) q(x, y) = 0, xy, x2 + y2, and x2.

If n = 2 then X := G ∩H1 ∩H2 is homeomorphic to one of the following four respective types.

(i) If q = 0, then every linear combination xω1 + yω2 is degenerate. In this case X is the

intersection of trains for kerω1 and kerω2, which intersect non-trivially. It follows that X

is a union of RP 1 × RP 1 with RP 2 along a wedge sum RP 1 ∨ RP 1.

(ii) If q has two distinct real roots, then X is the intersection of trains for a pair of two-

dimensional subspaces P1, P2 ⊆ V which intersect trivially. In this case X = P (P1) ×
P (P2) ∼= RP 1 × RP 1 is a torus.

(iii) If q has one root with multiplicity two, then X can be identified with the intersection of

the Lagrangian Grassmannian and the train of a Lagrangian subspace, for some symplectic

form ω. Therefore, X is isomorphic to the Maslov cycle described by Arnol’d [3, §3]; it is

homeomorphic to the one point compactification of S1 × R.

(iv) If q has no real roots, then there exists a quaternionic structure I, J,K on V in which

the pencil is spanned by symplectic forms ωI and ωJ , and X can be identified with the

intersection of their respective Lagrangian Grassmanians, ΛI ∩ ΛJ . Equivalently, X ∼= S2
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is identified with the complex projective line P (C2
K) with respect to the third complex

structure K. In this case G \ (H1 ∩H2) is not an MA space, because H1 is not a train.

In Section 4 we construct a Maslov–Arnold space for the study of n×n systems of reaction–diffusion

equations. When n = 2 it is of the type (iii) described above.

Proposition 3.12. If M is one of the four cases above, then H1(M;Z) ∼= Z and is generated by

the Poincaré dual of H1 ∩M.

Proof. By Poincaré duality H1(M;Z) ∼= H3(G,X;Z). Consider the long exact sequence of the pair

H3(G)→ H3(G,X)→ H2(X)→ H2(G).

We know H3(G) = 0 and H2(G) ∼= Z/2 (see [13]) and that X is isomorphic to a two-dimensional cell

complex, so H2(X;Z) is torsion free. Exactness therefore implies that H3(G,X;Z) is isomorphic

to H2(X;Z). In all four cases above it is straightforward to check H2(X;Z) ∼= Z, so it follows

that H1(M;Z) ∼= Z. In Theorem 3.8 we constructed a loop in M whose intersection number with

H1 ∩M is one, so it must generate H3(G,X;Z) ∼= H1(M;Z). �

3.4. The Fat Lagrangian Grassmannian. In this section we prove Theorem 3.3, constructing

a rank two Maslov–Arnold space (F , P ) that extends the classical Maslov–Arnold space (Λ(2), P )

for any P ∈ Λ(2).

As described above, F has the desirable property of being a large MA space that contains the entire

Lagrangian Grassmannian, and the undesirable property of not being a smooth manifold. The lack

of smoothness follows directly from the construction given below, but also from Theorem 3.4, which

demonstrates that this problem is essential, and does not depend on the particular details of our

construction.

Let v1, v2, v3, v4 ∈ V ∼= R4 be a basis, with dual basis v∗1, v
∗
2, v
∗
3, v
∗
4 ∈ V ∗. Define symplectic forms

ωI := v∗1 ∧ v∗3 + v∗2 ∧ v∗4 ωJ := v∗1 ∧ v∗4 − v∗2 ∧ v∗3.

with corresponding Lagrangian Grassmannians

ΛI := G ∩HωI ΛJ := G ∩HωJ .

Observe that both Q := [v1 ∧ v2] and P := [v3 ∧ v4] lie in the intersection ΛI ∩ ΛJ .

Denote Plücker coordinates by pij = v∗i ∧ v∗j , regarded as linear functions pij :
∧2(V ) → R. The

image of the Plücker embedding, G ⊆ P (
∧2(V )), is defined by the homogeneous quadratic equation

p12p34 − p13p24 + p14p24 = 0.

Consider the closed subset S ⊆ P (
∧2(V )) defined by the linear equation p14 − p23 = 0 and the

inequality p12p34 ≥ 0. The inequality makes sense in P (
∧2(V )) because given ξ ∈ Λ2(V ) and c ∈ R,

we have p12p34(cξ) = c2p12p34(ξ), so the sign of p12p34 is well-defined.

Lemma 3.13. The intersection ΛI ∩ S consists of the two points P,Q ∈ G.
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Proof. The intersection is determined by the system of inequalities

p12p34 − p13p24 + p14p23 = 0

p13 = −p24

p14 = p23

p12p34 ≥ 0

where the first two equations determine ΛI and the second two inequalities determine S. Substi-

tuting the first three equalities into the inequality yields p2
13 + p2

24 ≤ 0, which is only possible if

p13 = p24 = 0. So we are reduced to the equivalent equations

p12p34 = p13 = p24 = p14 = p23 = 0,

which have only two solutions: Q = [v1 ∧ v2] and P = [v3 ∧ v4]. �

Define U := G \ S. This is an open, dense subset of G, hence it is a non-compact, orientable

4-manifold, so by Poincaré duality H1(U ;Z) is naturally isomorphic to the relative homology group

H3(G,S;Z) (alternatively, the Borel–Moore homology group HBM
3 (U ;Z)). The train of P in U is

the intersection U ∩Hv∗3∧v∗4 .

Lemma 3.14. The train of ZP ∩ U in U is a smooth, closed, co-orientable submanifold of U .

Proof. The intersection G ∩Hv∗3∧v∗4 is transverse except at P = [v3 ∧ v4]. By Lemma 3.13 we see

P 6∈ U , so the intersection U ∩Hv∗3∧v∗4 is transverse, hence it is a smoothly embedded codimension

one submanifold.

The intersection U ∩Hv∗3∧v∗4 is determined in Plücker coordinates by

U ∩Hv∗3∧v∗4 = G ∩ ({p14 − p23 = 0} ∩ {p12p34 ≥ 0})c ∩ {p34 = 0}

= G ∩ {p34 = 0} ∩ {p14 − p23 = 0}c

= (G \HωJ ) ∩Hv∗3∧v∗4

where we have applied de Morgan’s law and the fact that {p34 = 0} ⊆ {p12p34 ≥ 0}. Therefore,

the normal bundle of U ∩ Hv∗3∧v∗4 in U is the pullback of the normal bundle of the affine space(
P (
∧2(V )) \HωJ

)
∩ Hv∗3∧v∗4

∼= R4 in the affine space P (
∧2(V )) \ HωJ

∼= R5. But this is clearly

co-orientable, so we are done. �

Remark 3.15. One might expect, based on the above argument, that since the linear inclusion

R4 ⊆ R5 has a trivial Poincaré dual in H1(R5) ∼= {0}, the same must be true of U ∩Hv∗3∧v∗4 in U .

However, since U is not a subset of P (
∧2(V ) \HωJ

∼= R5, there is no natural map in cohomology

from H1(R5) to H1(U).

Corollary 3.16. The open set U ⊆ G is a Maslov–Arnold space with respect to P .

Proof. Let N := ΛI \ {P,Q}. By Lemma 3.13 we know N = U ∩ ΛI . Since ΛI is a 3-manifold

and N is the complement of two isolated points in ΛI , the inclusion determines an isomorphism

H1(N ;Z) ∼= H1(ΛI ;Z) ∼= Z, which is generated in both cases by the Poincaré dual of the train of

P (with a chosen co-orientation).
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It follows from Lemma 3.14 that the train ZP ∩U , equipped with a chosen co-orientation, represents

a well-defined cohomology class in H1(U ;Z) ∼= HBM
3 (U ;Z). This cohomology class must have

infinite order, because it is sent to a generator of H1(N ;Z) under restriction to N ⊆ U . �

We now define the Fat Lagrangian Grassmannian

F := U ∪ Λ(2) = U ∪ {P,Q}. (16)

Note that F is not a manifold. However, it is a semialgebraic set, since U is defined by polynomial

inequalities.

Consider the coordinate neighbourhood of P ∈ G by

UP = {gr(A) : A ∈ Hom(P,Q)}

consisting of all 2-planes that intersect Q trivially, and hence can be realized as graphs of linear

maps from P to Q. Denote by J : P → Q the complex structure with J(v3) = −v2 and J(v4) = v1.

As in the proof of Theorem 3.4, we have

UP = {gr(JA) : A ∈ Hom(P, P )} ∼= Hom(P, P ).

Using the matrix representation with respect to the basis {v3, v4} of P determines a coordinate

chart

UP ∼= R4 =

{
A =

(
x y

z w

)
: x, y, z, w ∈ R

}
.

Under this identification

ΛJ ∩ UP = {gr(JA) : A = AT },

Hv∗3∧v∗4 ∩ UP = {gr(JA) : det(A) = 0}.

Similarly, we have a coordinate neighbourhood of Q ∈ G,

UQ = {gr(A) : A ∈ Hom(Q,P )} = {gr(AJ−1) : A ∈ Hom(P, P )} ∼= R4.

Lemma 3.17. The spaces UQ \ S and UP \ S are both homeomorphic to R × (R3 \ {0}), and are

therefore homotopy equivalent to S2.

Proof. Under the identification UP ∼= Hom(P, P ) ∼= R4, the intersection S ∩ UP is defined by the

equations tr(A) = x + w = 0 and det(A) = xw − yz ≥ 0. These describe a solid, closed double

cone in the three-dimensional subspace {x+w = 0}. The complement UP \S is therefore invariant

under multiplication by the positive scalar R+ and intersects the unit sphere S3 in the complement

of two closed 2-disks, which is diffeomorphic to R3 \ {0}. The case UQ \ S is similar. �

Proposition 3.18. The inclusion U ⊆ F defines an isomorphism H1(F ;Z) ∼= H1(U ;Z). Conse-

quently, F is an MA space that extends ΛI and is dense in G.

Proof. By definition U = F \ {P,Q}. Let U ′ be the union of two small open balls around P and

Q in UP and UQ, respectively, intersected with F . From the local picture described in the proof of

Lemma 3.17, it is clear that U ′ deformation retracts onto the two point set {Q,P} and that U ∩U ′
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deformation retracts onto S2
∐
S2. The isomorphism follows from the Mayer–Vietoris long exact

sequence

H0(U)⊕H0(U ′) � H0(U ∩ U ′)→ H1(F)→ H1(U)⊕H1(U ′)→ H1(U ∩ U ′)

since H1(U ′) ∼= H1(U ∩ U ′) ∼= {0} and H0(U)⊕H0(U ′) � H0(U ∩ U ′) is surjective.

Any sufficiently generic loop γ : S1 → F is contained in U , so F is an MA space extending U .

Finally, following the proof of Corollary 3.16, subspace inclusions determine a commuting diagram

of isomorphisms

H1(F ;Z)
∼= //

∼=
��

H1(ΛI ,Z)

∼=
��

H1(U ;Z)
∼= // H1(N ;Z)

so F also extends ΛI . �

4. Counting unstable eigenvalues

We now explain how the theory of Maslov–Arnold spaces relates to the eigenvalue problem Lv = λv

for the operator L defined in (2). In this section we give the general framework and some preliminary

results, and construct an MA space that has desirable monotonicity properties for reaction–diffusion

systems, allowing us to relate real unstable eigenvalues to conjugate points. Specific examples will

be explored in the following section.

We consider a coupled system of eigenvalue equations on a bounded interval (0, L), with separated

boundary conditions given by subspaces P0, P1 ∈ Grn(R2n). That is, we seek solutions to the

first-order system

d

dx

(
v

w

)
=

(
0 D−1

λI −∇F (ū) 0

)(
v

w

)
(17)

satisfying the boundary conditions(
v(0)

w(0)

)
∈ P0,

(
v(L)

w(L)

)
∈ P1. (18)

For instance, Dirichlet and Neumann boundary conditions correspond to the subspaces PD =

{(0, p) : p ∈ Rn} and PN = {(q, 0) : q ∈ Rn}, respectively. The Robin boundary condition

Dux = Θu, where Θ is a real n× n matrix, corresponds to PR = {(q,Θq) : q ∈ Rn}. Note that PR

is Lagrangian if and only if Θ is symmetric, and Θ = 0 gives Neumann boundary conditions.

For each x ∈ [0, L] and λ ≥ 0 we define the subspace

W (x, λ) =

{(
v(x)

w(x)

)
:

(
v

w

)
satisfies (17) and

(
v(0)

w(0)

)
∈ P0

}
, (19)

so that λ is an eigenvalue of L if and only W (L, λ) ∩ P1 6= {0}.

Our goal is to obtain a generalized Morse index theorem, relating unstable eigenvalues of L to

conjugate points, where x∗ is said to be a conjugate point if W (x∗, 0) ∩ P1 6= {0}.
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Theorem 4.1. Assume that P1 = PD and P0 is either PD or PR for some Θ ∈ Mn(R). For

W (x, λ) defined by (19), there exists λ∞ > 0 such that W (x, λ) ∩ P1 = {0} for all 0 < x ≤ L and

λ ≥ λ∞. Let H1 denote the hyperplane corresponding to P1. If H2 6= H1 is a hyperplane such that

W (x, λ) ∈ G \ (H1 ∩H2) for all (x, λ) ∈ (0, L]× [0, λ∞], then the generalized Maslov index of W is

defined, and

#
{

nonnegative eigenvalues of L
}
≥ −Mas

(
W (L, λ)

∣∣
λ∈[0,λ∞]

;P1

)
= Mas

(
W (x, 0)

∣∣
x∈[δ,L]

;P1

) (20)

for 0 < δ � 1. Moreover, there is a particular hyperplane H2 with the property that if W (x, λ) ∈
G \ (H1 ∩H2) for all (x, λ) ∈ (0, L]× [0, λ∞], then

Mas
(
W (x, 0)

∣∣
x∈[δ,L]

;P1

)
= #

{
conjugate points in (0, L]

}
(21)

for 0 < δ � 1, and hence

#
{

nonnegative eigenvalues of L
}
≥ #

{
conjugate points in (0, L]

}
. (22)

Since λ = 0 is an eigenvalue of L if and only if x = L is a conjugate point (with the same

multiplicity), we immediately obtain the following.

Corollary 4.2. Assuming the hypotheses of Theorem 4.1, we have

#
{

positive eigenvalues of L
}
≥ #

{
conjugate points in (0, L)

}
.

The generalized Maslov index only detects real eigenvalues, whereas L can have complex eigenvalues,

since it is not assumed to be selfadjoint. However, it is immediate that

#
{

unstable eigenvalues of L
}
≥ #

{
positive eigenvalues of L

}
,

where an eigenvalue is said to be unstable its real part is positive, and so the existence of an interior

conjugate point is a sufficient condition for instability.

The main restriction in Theorem 4.1 is the condition that W (x, λ) ∈ G\(H1∩H2), which means that

the relevant curve of subspaces stays in the MA space. In the Hamiltonian case, this is guaranteed

by the invariance of the Lagrangian Grassmannian under the associated flow. The idea here is

that this can be applied on a case-by-case basis. It also allows us to discuss different mechanisms

of instability, namely those that can be “counted” by a Maslov index and those associated with a

breakdown of this Hamiltonian-like behavior due to a failure of the invariance condition on W (x, λ),

see the discussion below on the Turing problem in Section 5.3.

The rest of this section is devoted to the proof of Theorem 4.1. In Section 4.1 we give some

preliminary calculations that will be of use here, and also in the applications in Section 5. In

Section 4.2 we construct the promised MA space, and in Section 4.3 we complete the proof by

computing the relevant Maslov indices.
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4.1. Preliminary calculations. We start by considering the more general system

du

dx
= A(x)u, (23)

where u ∈ R2n and A(·) is a continuous family of real 2n× 2n matrices.

For an oriented n-plane W̃ ⊆ R2n we define

ψω(W̃ ) :=
ω(f1, . . . , fn)

|f1 ∧ · · · ∧ fn|
, (24)

where (f1, . . . , fn) is any positively oriented basis. The denominator can be computed as
√

detG,

where G denotes the Gram matrix, with entries Gij = 〈fi, fj〉. For a positive orthonormal basis we

have Gij = δij and hence ψω(W̃ ) = ω(f1, . . . , fn).

Since ω is skew symmetric, we have ψω(−W̃ ) = −ψω(W̃ ), where −W̃ is the negatively oriented

version of W̃ . For an unoriented subspace W , ψω(W ) is only defined up to a sign, but the product

and quotient ψi(W )ψj(W ) and ψi(W )/ψj(W ) are both well defined, where we have abbreviated

ψi = ψωi .

Lemma 4.3. Let W (x) be an integral curve of (23). If (f1, . . . , fn) is a positive orthonormal basis

for W (x0), then

dψω(W̃ )

dx

∣∣∣∣
x=x0

=

n∑
j=1

ω(f1, . . . , A(x0)fj , . . . , fn)− ψω(W̃ )

n∑
j=1

〈A(x0)fj , fj〉 . (25)

Proof. Write ψω(W̃ ) = n/d where n and d are the numerator and denominator of the expression

(24). Then

dψω(W̃ )

dx

∣∣∣∣
x=x0

=
dn′ − nd′

d2

∣∣∣∣
x=x0

= n′(x0)− ψω(W̃ )d′(x0),

where we have substituted d(x0) = 1 and n(x0) = ψω(W̃ ). Using the fact that W (x) is an integral

curve, one easily calculates

n′(x0) =

n∑
j=1

ω(f1, . . . , A(x0)fj , . . . , fn).

Moreover, since d(x) =
√

detG(x) and G(x0) is the identity matrix, Jacobi’s formula for the

derivative of the determinant yields

d′(x0) =
1

2
tr

(
dG

dx

∣∣∣
x=x0

)
=

n∑
j=1

〈A(x0)fj , fj〉

which completes the proof. �

As defined above, the index of a curve W (t) in M is equal to the winding number, through the

point [0 : 1], of the curve φ ◦ γ in RP 1, where φ is defined in (11). Here we write W as a function

of t to emphasize that it can be any continuous curve in M, not necessarily an integral curve of

the system (23).

We thus need to understand the motion of the curve t 7→ [ω1(v1, . . . , vn) : ω2(v1, . . . , vn)] in RP 1,

where {v1, . . . , vn} is a basis for W (t).
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Suppose ω1(v1, . . . , vn) = 0 for some t0. This implies ω2(v1, . . . , vn) 6= 0 for |t− t0| � 1, hence

ω1(v1, . . . , vn)

ω2(v1, . . . , vn)
=
ψ1(t)

ψ2(t)
,

where we have abbreviated ψi(t) = ψi(W̃ (t)). Since ψ1(t0) = 0, we find that

d

dt

ω1(v1, . . . , vn)

ω2(v1, . . . , vn)

∣∣∣∣
t=t0

=
ψ′1(t0)ψ2(t0)− ψ1(t0)ψ′2(t0)

ψ2(t0)2
=
ψ′1(t0)

ψ2(t0)
. (26)

In the next section we will use this formula, in combination with (25), to obtain monotonicity

results for integral curves of (23).

4.2. Choosing hyperplanes for a reaction–diffusion system. We now return to the eigenvalue

problem (3), letting

A(x, λ) =

(
0 D−1

B(x, λ) 0

)
(27)

in (23), where D = diag(d1, . . . , dn).

For Dirichlet boundary conditions it is natural to let H1 ∩G be the train of the Dirichlet subspace.

We thus choose H1 to be the hyperplane corresponding to the degenerate n-form

ω1 = e∗1 ∧ · · · ∧ e∗n, (28)

where e1, . . . , e2n denotes the standard orthonormal basis for R2n. Since the resulting index equals

the geometric intersection number with H1 ∩ G, it will count solutions to the Dirichlet problem,

which are (by definition) conjugate points. When n = 2, the two-form ω1 corresponds to the matrix

Ω1 =


0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

 ,

in the sense that ω1(v, w) = vTΩ1w for any v, w ∈ R4.

The choice of H2 is less obvious. Motivated by the calculation to follow in Lemma 4.4, we let

ω2 =
n∑
j=1

1

dj
e∗1 ∧ · · · ∧ ê∗j ∧ e

∗
j+n ∧ · · · ∧ e∗n, (29)

i.e. the jth summand is proportional to ω1 with e∗j replaced by e∗j+n. When n = 2 this is

ω2 =
1

d1
e∗3 ∧ e∗2 +

1

d2
e∗1 ∧ e∗4,

corresponding to the matrix

Ω2 =


0 0 0 1/d2

0 0 −1/d1 0

0 1/d1 0 0

−1/d2 0 0 0

 . (30)
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This choice allows us to obtain a monotonicity result that is central to the proof of Theorem 4.1.

Moreover, it will play a prominent role in Section 5, where we prove a long-time invariance result

for reaction–diffusion systems with large diffusivities.

We now apply Lemma 4.3 to these symplectic forms. To state the result, we additionally define

ω3 =

n∑
j,k=1
j<k

2

djdk
e∗1 ∧ · · · ∧ e∗j+n ∧ · · · ∧ e∗k+n ∧ · · · ∧ e∗n. (31)

That is, the j-k summand is obtained from ω1 by replacing e∗j and e∗k by e∗j+n and e∗k+n, respectively.

For n = 2 we have

ω3 =
2

d1d2
e∗3 ∧ e∗4,

which is a degenerate two-form corresponding to the train of the Neumann subspace.

Lemma 4.4. Let W (x, λ) be an integral curve of du
dx = A(x, λ)u, with A(x, λ) given by (27), and

define ω1, ω2 and ω3 by (28), (29) and (31), respectively. Then

dψ1

dx
= ψ2 − γψ1 (32)

and
dψ2

dx
=

(
b11

d1
+ · · ·+ bnn

dn

)
ψ1 + ψ3 − γψ2 (33)

where γ =
∑n

j=1 〈Afj , fj〉 and bij is the i-j component of the matrix B. Moreover, if W (x0, λ) =

PD, then

ψ1(x0) = ψ′1(x0) = · · · = ψ
(n−1)
1 (x0) = 0 (34)

and

ψ
(n)
1 (x0) =

n!

d1 · · · dn
6= 0. (35)

Proof. From Lemma 4.3 we have

dψi
dx

=

n∑
j=1

ωi(f1, . . . , Afj , . . . , fn)− γψi

for i ∈ {1, 2}. For ω1 we observe that

ω1(f1, . . . , Afj , . . . , fn) =
(
e∗1 ∧ · · · ∧ e∗jA ∧ · · · ∧ e∗n

)
(f1, . . . , fn).

The composition e∗jA : V → R is given by e∗jA =
∑2n

k=1Ajke
∗
k, hence

e∗jA =
1

dj
e∗j+n, e∗j+nA =

n∑
k=1

bjke
∗
k,

for any 1 ≤ j ≤ n. It follows that

e∗1 ∧ · · · ∧ e∗jA ∧ · · · ∧ e∗n =
1

dj
e∗1 ∧ · · · ∧ e∗j+n ∧ · · · ∧ e∗n,

which is precisely the jth summand in the definition of ω2. This implies
n∑
j=1

ω1(f1, . . . , Afj , . . . , fn) = ω2(f1, . . . , fn), (36)
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and completes the proof of (32).

For (33) we need to compute

n∑
j=1

ω2(f1, . . . , Afj , . . . , fn) =
n∑

j,k=1

ωk2 (f1, . . . , Afj , . . . , fn),

where ωk2 := d−1
k e∗1 ∧ · · · ∧ e∗k+n ∧ · · · ∧ e∗n denotes the kth summand in the definition of ω2. For

summands with j = k we have

1

dj
e∗1 ∧ · · · ∧ e∗j+nA ∧ · · · ∧ e∗n =

1

dj
e∗1 ∧ · · · ∧

(
n∑
l=1

bjle
∗
l

)
∧ · · · ∧ e∗n

=
bjj
dj
ω1.

For summands with j 6= k we have

1

dk
e∗1 ∧ · · · ∧ e∗jA ∧ · · · ∧ e∗k+n ∧ · · · ∧ e∗n =

1

dk
e∗1 ∧ · · · ∧

(
1

dj
e∗j+n

)
∧ · · · ∧ e∗k+n ∧ · · · ∧ e∗n,

which is precisely the j,k term in the definition of ω3, so the proof of (33) is complete.

To prove the final statement, we recall that PD = span{en+1, . . . , e2n}, so an n-form ω = e∗j1∧· · ·∧e
∗
jn

will vanish on PD unless {j1, . . . , jn} = {n + 1, . . . , 2n}. In general, suppose m of the indices

j1, . . . , jn are contained in {n + 1, . . . , 2n}, with the remaining n −m in {1, . . . , n}. Then, as in

the calculations above, the derivative of ψω will have terms with m − 1, m and m + 1 indices in

{n + 1, . . . , 2n}. To find the first nonvanishing derivative of ψω on PD, we therefore only need to

keep track of the m+ 1 term. We thus compute

dψ1

dx
= ψ2 + · · · ,

dψ2

dx
= ψ3 + · · · ,

dψ3

dx
= ψ4 + · · · , ω4 :=

n∑
j,k,l=1
j<k<l

3!

djdk
e∗1 ∧ · · · ∧ e∗j+n ∧ · · · ∧ e∗k+n ∧ · · · ∧ e∗l+n ∧ · · · ∧ e∗n

...

dψn
dx

= ψn+1 + · · · , ωn+1 :=
n!

d1 · · · dn
e∗n+1 ∧ · · · ∧ e∗2n,

and the result follows. �

Remark 4.5. The form ω2 was chosen to make the equality (36) hold. The fact that we can do

this, and end up with a form that does not depend on x or λ (even though A does) is a consequence

of the block structure of A and the fact that ω1 only depends on the first n coordinates.

4.3. Positive eigenvalues and conjugate points. We are now ready to begin the proof of

Theorem 4.1. We start with the existence of λ∞.

Lemma 4.6. Assuming the hypotheses of Theorem 4.1, there exists λ∞ > 0 such that W (x, λ)∩P1 =

{0} for all 0 < x ≤ L and λ ≥ λ∞. Moreover, every eigenvalue λ ∈ σ(L) has Reλ ≤ λ∞.
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Note that the property W (x, λ) ∩ P1 = {0} is only guaranteed for 0 < x ≤ L. It is possible for

W (0, λ) to intersect P1 nontrivially, for instance if P0 = P1.

Proof. Suppose there is a (possibly complex-valued) solution v to

Dvxx +∇F (ū)v = λv

on [0, x∗], satisfying the boundary conditions(
v

Dvx

)∣∣∣∣∣
x=0

∈ P0,

(
v

Dvx

)∣∣∣∣∣
x=x∗

∈ P1.

Since P1 = PD, this means v(x∗) = 0. Similarly, at x = 0 we have either v(0) = 0 or Dvx(0) =

Θv(0), depending on the choice of P0.

Multiplying the eigenvalue equation by the conjugate of v and integrating by parts, using v(x∗) = 0,

we find that

λ

∫ x∗

0
|v|2 dx = −〈Dvx(0), v(0)〉+

∫ x∗

0

(
〈∇F (ū)v, v〉 − 〈Dvx, vx〉

)
dx, (37)

where 〈·, ·〉 denotes the Cn inner product. Defining constants

d = min{d1, . . . , dn}, K = sup
x∈[0,L]

∥∥∇F (ū(x))
∥∥,

we obtain

Re

∫ x∗

0

(
〈∇F (ū)v, v〉 − 〈Dvx, vx〉

)
dx ≤ K

∫ x∗

0
|v|2 dx− d

∫ x∗

0
|vx|2 dx. (38)

To deal with the boundary term in (37), we treat the Dirichlet and Robin cases separately. If

P0 = PD, then the boundary term vanishes, so we find that

Reλ ≤ K

and hence it suffices to choose any λ∞ > K. On the other hand, if P0 = PR, the boundary term

satisfies |〈Dvx(0), v(0)〉| = |〈Θv(0), v(0)〉| ≤ C|v(0)|2 for some positive constant C. Moreover, since

v(x∗) = 0, we have

|v(0)|2 =

∣∣∣∣∫ x∗

0

d

dx
|v(x)|2dx

∣∣∣∣
≤ 2

∫ x∗

0
|v||vx| dx

≤ ε−1

∫ x∗

0
|v|2 dx+ ε

∫ x∗

0
|vx|2 dx

for any ε > 0. Choosing ε = d/C, and combining the above inequality with (37) and (38), we

obtain

Reλ ≤ K +
C2

d
,

which completes the proof. �
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λ

x

W (x, 0) W (x, λ∞)

W (L, λ)

W (δ, λ)

Figure 2. The homotopy argument in (39)

Now define the Maslov–Arnold space M = G \ (H1 ∩ H2), with H1 as in Section 4.2 and any

H2 6= H1, and consider the path W (x, λ) in Grn(R2n) defined by (19).

By assumption, W (x, λ) ∈M for all (x, λ) ∈ [δ, L]× [0, λ∞]. Therefore, the image under W of the

boundary of [δ, L]× [0, λ∞] is null-homotopic, and hence has zero index. Adding the four sides with

appropriate orientation (see Figure 2), we obtain

Mas
(
W (x, 0)

∣∣
x∈[δ,L]

;P1

)
+ Mas

(
W (L, λ)

∣∣
λ∈[0,λ∞]

;P1

)
= Mas

(
W (δ, λ)

∣∣
λ∈[0,λ∞]

;P1

)
+ Mas

(
W (x, λ∞)

∣∣
x∈[δ,L]

;P1

)
.

(39)

We will prove the theorem by evaluating each of these terms. We start by showing that

Mas
(
W (x, λ∞)

∣∣
x∈[δ,L]

;P1

)
= 0, (40)∣∣∣Mas

(
W (L, λ)

∣∣
λ∈[0,λ∞]

;P1

)∣∣∣ ≤ #
{

nonnegative eigenvalues of L
}
, (41)

Mas
(
W (δ, λ)

∣∣
λ∈[0,λ∞]

;P1

)
= 0, (42)

These inequalities, combined with (39), immediately yield (20).

Lemma 4.6 implies that

Mas
(
W (x, λ∞)

∣∣
x∈[δ,L]

;P1

)
= 0,

for any δ ∈ (0, 1), so (40) is verified. Moreover, since the index counts signed intersections between

W (x, λ) and P1, we have∣∣∣Mas
(
W (L, λ)

∣∣
λ∈[0,λ∞]

;P1

)∣∣∣ ≤ #
{
λ ∈ [0, λ∞] : W (1, λ) ∩ P1 6= {0}

}
= #

{
eigenvalues of L in [0, λ∞]

}
= #

{
nonnegative eigenvalues of L

}
,

where the last equality follows from Lemma 4.6. This confirms (41).

We next deal with (42).

Lemma 4.7. There exists δ > 0 such that W (x, λ) ∩ P1 = {0} for all λ ∈ [0, λ∞] and x ∈ (0, δ).
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Proof. There are two cases to consider. If P0 = PR, then P0 ∩P1 = {0}, and so W (0, λ)∩P1 = {0}
for all λ, because W (0, λ) = P0. Since W (x, λ) in continuous in x and λ, and [0, λ∞] is compact,

there exists δ > 0 such that W (x, λ)∩ P0 = {0} for all λ ∈ [0, λ∞] and x ∈ [0, δ). (Note that x = 0

is allowed in this case.)

The other case is when P0 = PD, so W (0, λ) ∩ P1 6= {0}. Defining η(x, λ) = ψ1(x, λ)2, we have

η(0, λ) = · · · = η(2n−1)(0, λ) = 0 and η(2n)(0, λ) > 0

from Lemma 4.4. Therefore, for fixed λ we have η(x, λ) > 0 for sufficiently small x > 0, and so

by compactness there exists δ > 0 such that η(x, λ) > 0 for all λ ∈ [0, λ∞] and x ∈ (0, δ). This

completes the proof, since η(x, λ) > 0 implies ψ1(x, λ) 6= 0 and hence W (x, λ) ∩ P1 = {0}. �

This completes the proof of (20). The following lemma verifies (22), and hence completes the proof

of Theorem 4.1. Note that up to this point H2 has been an arbitrary hyperplane different from H1,

and did not appear explicitly in any of the preceeding calculations.

Lemma 4.8. For H2 as defined in Section 4.2 we have

Mas
(
W (x, 0)

∣∣
x∈[δ,L]

;P1

)
= #

{
conjugate points in (0, L]

}
for 0 < δ � 1.

The Maslov index on the left-hand side is a signed count of the x∗ ∈ [δ, L] for which W (x∗, 0)∩P1 6=
{0}. These are conjugate points (by definition) so to prove the lemma we just need to show that

they all contribute to the Maslov index with the same sign. This is where the choice of H2 becomes

crucial.

Proof. Suppose x∗ ∈ [δ, L] is a conjugate point, so ψ1(x∗) = ψ1(W (x∗, 0)) = 0. Then (32) implies

ψ′1(x0) = ψ2(x0). Substituting this in (26), we obtain

d

dx

ω1(v1, . . . , vn)

ω2(v1, . . . , vn)

∣∣∣∣
x=x∗

= 1 > 0.

Recalling Definition 3.10, and in particular (14), this says that the Maslov index equals the number

of conjugate points in (δ, L], and hence the number of conjugate points in (0, L] if δ is sufficiently

small. �

5. Applications

5.1. Systems with large diffusion. Here we give an example where the curve W (x, λ) is guar-

anteed to remain in the Arnold–Maslov space M constructed above, hence Theorem 4.1 can be

applied.

Specifically, we consider the eigenvalue problem with mixed boundary conditions

D
d2u

dx2
+ V u = λu, u′(0) = u(L) = 0, (43)

recalling that D = diag(d1, . . . , dn). The corresponding boundary subspaces are

P0 = {(q, 0) : q ∈ Rn}, P1 = {(0, p) : p ∈ Rn},
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and so x∗ is a conjugate point if there exists a nontrivial solution to the boundary value problem

D
d2u

dx2
+ V u = 0, u′(0) = u(x∗) = 0.

Our main result is that Theorem 4.1 applies to the above system as long as none of the dj are too

small, and all of the products djdk with j 6= k are sufficiently large.

Theorem 5.1. Fix L and d∗ > 0, and suppose V ∈ C[0, L]. There exists a constant ∆ > 0 such

that if dj ≥ d∗ for all j and djdk ≥ ∆ for j 6= k, then the hypotheses of Theorem 4.1 are satisfied,

and hence

#
{

positive real eigenvalues of (43)
}
≥ #

{
conjugate points in (0, L)

}
. (44)

The constant ∆ appearing in the theorem depends on L, d∗ and V , and can be estimated from the

proof if desired.

Proof. From Lemma 4.6 we see that λ∞ can be any number satisfying

λ∞ > sup
x∈[0,L]

∥∥V (x)
∥∥.

In particular, it can be chosen independent of D.

We now use Lemma 4.4, with B(x, λ) = λI − V (x). Define

ρ =
1

2

(
ψ2

1 + ψ2
2), (45)

so that ρ(0, λ) = 1/2. It follows that

dρ

dx
= −2γρ+

(
1 +

b11

d1
+ · · ·+ bnn

dn

)
ψ1ψ2 + ψ2ψ3.

From the definition of γ (in Lemma 4.4) we obtain

|γ(x, λ)| ≤ n‖A(x, λ)‖ ≤ n
(
‖B(x, λ)‖+ ‖D−1‖

)
≤ n

(
max ‖B(x, λ)‖+

1

d∗

)
=: C1

where the maximum is taken over (x, λ) ∈ [0, L]× [0, λ∞]. We similarly have∣∣∣∣(1 +
b11

d1
+ · · ·+ bnn

dn

)
ψ1ψ2

∣∣∣∣ ≤ (1 +
max |b11(x, λ)|

d∗
+ · · ·+ max |bnn(x, λ)|

d∗

)
︸ ︷︷ ︸

C2

ρ.

Moreover, using

|ψ3| ≤
n∑

j,k=1
j<k

2

djdk
≤ n(n− 1)

∆
,

we obtain

|ψ2ψ3| ≤ |ψ2|
n(n− 1)

∆
≤ 1

2

(
n(n− 1)

d∗

)2

︸ ︷︷ ︸
C3

ρ+
1

∆
,
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and hence dρ
dx ≥ −Cρ−∆−1, where C = 2C1 +C2 +C3 depends only on d∗ and V . This is equivalent

to
d

dx

(
eCxρ(x)

)
≥ −e

Cx

∆
so we have

eCxρ(x)− 1

2
≥ − 1

∆

∫ x

0
eCtdt =

1− eCx

C∆
.

Therefore, we will have ρ(x, λ) > 0 for λ ∈ [0, λ∞] provided

eCx < 1 +
C∆

2
.

This equality will hold for all (x, λ) ∈ [0, L] × [0, λ∞] if it holds when x = L. Therefore, we need

eCL < 1 + C∆
2 . This is satisfied for a sufficiently large choice of ∆, depending only on L and C (i.e.

on L, d∗ and V ). �

5.2. Stability of homogeneous equilibria. If the steady state ū is homogeneous (constant in

x), then the linearized operator (2) has the form

L =
d2

dx2
+ V

where V = ∇F (ū) ∈M2(R) is a constant real matrix. Consider the Dirichlet problem on (0, L),

Lv = λv, v(0) = v(1) = 0 ∈ R2. (46)

Assume for simplicity that V is diagonalizable, with eigenvalues ν1 and ν2. Then L is similar to

the decoupled operator

L̃ =

(
d2

dx2
+ ν1 0

0 d2

dx2
+ ν2

)
and hence has spectrum

σ(L) =
{
ν1 − (nπ/L)2 : n ∈ N

}
∪
{
ν2 − (nπ/L)2 : n ∈ N

}
. (47)

It follows that L has a positive eigenvalue if and only if both ν1 and ν2 are real and at least one of

them is greater than (π/L)2. More generally, when both eigenvalues are real we obtain

#
{

positive eigenvalues of L
}

= #
{

conjugate points in (0, L)
}
, (48)

since the eigenvalue equation L̃v = λv consists of two decoupled Sturm–Liouville problems. This

equality also holds when V is not diagonalizable, provided the eigenvalues of L are counted with

geometric multiplicity.

On the other hand, if ν1 and ν2 have nonzero imaginary part, then L has no real eigenvalues, and

hence no positive eigenvalues (though it will have eigenvalues with positive real part if Re ν1 =

Re ν2 > (π/L)2). Moreover, it is easy to see that when ν is complex, the equation

v′′(x) + νv(x) = 0, v(0) = v(x∗) = 0

does not admit nontrivial solutions for any x∗ > 0, and so there are no conjugate points. Therefore,

the equality (48) holds trivially in this case.
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We have thus verified (48) for any constant potential V ∈M2(R). We now reconsider this problem

using the machinery developed in the previous section, to see whether or not the same conclusion

can be obtained from our generalized Maslov index. Our result is the following.

Theorem 5.2. If the eigenvalues of V satisfy one of the following conditions

(i) ν1 and ν2 are not real

(ii) ν1 and ν2 are real and min{ν1, ν2} < (π/L)2

then W (x, λ) ∈ M for all 0 < x ≤ L and λ ≥ 0, so the generalized Maslov index of W is defined,

and for 0 < δ � 1 we have

#
{

nonnegative eigenvalues of L
}

= −Mas
(
W (L, ·)

∣∣
λ∈[0,λ∞]

;P1

)
= −Mas

(
W (·, 0)

∣∣
x∈[δ,L]

;P1

)
= #

{
conjugate points in (0, L]

}
and hence

#
{

positive eigenvalues of L
}

= #
{

conjugate points in (0, L)
}
.

The hypothesis on the eigenvalues only fails when both ν1 and ν2 are real and greater than or

equal to (π/L)2. As seen above, L has no positive eigenvalues if ν1 and ν2 are complex, or if

ν1, ν2 ≤ (π/L)2. Therefore, the result is most interesting, in the sense that the Maslov index is

nonzero, when V has precisely one eigenvalue in the interval
(
(π/L)2,∞

)
.

We start by writing the eigenvalue problem in the general form

d

dx

(
v

w

)
=

(
0 I

B(λ) 0

)(
v

w

)
, (49)

where B(λ) ∈M2(R) does not depend on x. Later we will set B(λ) = λI − V .

This is of the form considered in Section 4, with d1 = d2 = 1, so we choose ω1 and ω2 corresponding

to the matrices

Ω1 =


0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

 , Ω2 =


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 . (50)

Let H1 and H2 denote the corresponding hyperplanes, and M = G \ (H1 ∩ H2) the resulting

Maslov–Arnold space.

As above, we define a family of two-dimensional subspaces

W (x, λ) =

{(
v(x)

w(x)

)
:

(
v

w

)
satisfies (49) and v(0) = 0

}
⊆ R4 (51)

for x ≥ 0. The proof of Theorem 5.2 consists of two steps. First, we show that W (x, λ) is contained

in M for all (x, λ) ∈ (0, L]× [0, λ∞], and hence Theorem 4.1 applies. Then, we show that W (x, λ)

is monotone in λ, which implies

#
{

nonnegative eigenvalues of L
}

= Mas
(
W (L, λ)

∣∣
λ∈[0,λ∞]

;P1

)



28 T. BAIRD, P. CORNWELL, G. COX, C. JONES, AND R. MARANGELL

and thus completes the proof.

We start with the invariance result that guarantees the index of W (x, λ) is defined.

Proposition 5.3. Let W (x, λ) be defined by (51). Then W (x∗, λ) ∈ H1 ∩H2 for some x∗ > 0 if

and only if the eigenvalues β1, β2 of B(λ) are real and negative and satisfy

sin
√
−β1x∗ = sin

√
−β2x∗ = 0.

Proof. We first compute a frame for W (x, λ). A frame for a two-dimensional subspace W is (by

definition) a 4× 2 matrix whose columns span W . Writing this as

(
X

Y

)
=


x11 x12

x21 x22

y11 y12

y21 y22

 ,

and denoting the columns by u1 and u2, we compute

ω1(u1, u2) = x11x22 − x12x21

= detX

and

ω2(u1, u2) = x11y22 − x21y12 + y11x22 − y21x12

= det(X + Y )− detX − detY.

It follows that

W ∈ H1 ⇐⇒ detX = 0

and

W ∈ H2 ⇐⇒ det(X + Y ) = detX + detY.

Note that W (x, λ) is spanned by the last two columns of the fundamental solution matrix eAx,

where A =
(

0 I
B 0

)
. We thus compute

eAx =

∞∑
m=0

1

(2m)!

(
Bmx2m 0

0 Bmx2m

)
+

∞∑
m=0

1

(2m+ 1)!

(
0 Bmx2m+1

Bm+1x2m+1 0

)
to conclude that a frame for W (x, λ) is given by(

X

Y

)
=
∞∑
m=0

(
Bmx2m+1

(2m+1)!
Bmx2m

(2m)!

)
=

(
B−1/2 sinh(

√
Bx)

cosh(
√
Bx)

)
. (52)

The functions on the right-hand side are defined by their power series, which converge for all

numbers x and matrices B.

Letting β1 and β2 denote the eigenvalues of B(λ), it follows that W (x, λ) ∈ H1 ∩H2 if and only if

detX =
sinh(

√
β1x)√
β1

sinh(
√
β2x)√
β2

= 0 (53)
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and

det(X + Y )− detX − detY =
sinh(

√
β1x)√
β1

cosh(
√
β2x) +

sinh(
√
β2x)√
β2

cosh(
√
β1x) = 0. (54)

As in (52), the functions β−1/2 sinh(
√
βx) and cosh(

√
βx) are defined by power series which converge

for all values of x and β. In particular, when β = 0 we obtain β−1/2 sinh(
√
βx) = x, and when

x = 0 we obtain β−1/2 sinh(
√
βx) = 0 for any value of β.

Now suppose that W (x∗, λ) ∈ H1 ∩ H2 for some x∗ > 0, so both (53) and (54) are satisfied. If

β
−1/2
1 sinh(

√
β1x∗) = 0, then β1 6= 0, hence sinh(

√
β1x∗) = 0 and so cosh(

√
β1x∗) 6= 0. Then (54)

implies β
−1/2
2 sinh(

√
β2x∗) = 0, hence β2 6= 0 and sinh(

√
β2x∗) = 0. Therefore, W (x∗, λ) ∈ H1∩H2

if and only if sinh(
√
β1x∗) = sinh(

√
β2x∗) = 0, which is possible if and only if β1 and β2 are both

real and negative and satisfy sin(
√
−β1x∗) = sin(

√
−β2x∗) = 0. �

Remark 5.4. In terms of the frame computed above, x∗ ∈ (0, L] is a conjugate point if and only if

at least one of the eigenvalues of X is zero. On the other hand, W (x∗, λ) ∈ H1 ∩H2 if and only if

both eigenvalues of X are zero, so there are three possibilities:

(i) For some x∗ ∈ (0, L] both eigenvalues of X vanish, so the index is not defined.

(ii) For some x∗ ∈ (0, L] exactly one eigenvalue of X vanishes, so the index is nonzero.

(iii) The eigenvalues of X do not vanish for any x∗ ∈ (0, L], so the index is zero.

Therefore, the most interesting case is when there are points where one, but not both, eigenvalues

of X vanish.

Remark 5.5. The curve W (x, λ) in Proposition 5.3 satisfies Dirichlet boundary conditions at

x = 0, i.e. W (0, λ) = PD. For the path starting at the Neumann subspace,

W (x, λ) =

{(
v(x)

w(x)

)
:

(
v

w

)
satisfies (49) and w(0) = 0

}
⊆ R4,

a similar computation shows that W (x∗, λ) ∈ H1∩H2 if and only if β1 and β2 are real and negative

and satisfy

cos
√
−β1x∗ = cos

√
−β2x∗ = 0.

Proposition 5.3 immediately implies the following.

Corollary 5.6. There exists x∗ ∈ (0, L] such that W (x∗, λ) ∈ H1 ∩ H2 if and only if β1, β2 < 0,

and
β1

β2
=
(m
n

)2
(55)

for integers m and n satisfying

1 ≤ m ≤
√
−β1L

π
, 1 ≤ n ≤

√
−β2L

π
. (56)

This result can be visualized as in Figure 3. The condition (55) is satisfied if and only if the line

through (0, 0) and (
√
−β1,

√
−β2) intersects one of the indicated lattice points. If min{−β1,−β2} <

(π/L)2, then no such lattice points exist, and so W (x, λ) ∈ M = G \ (H1 ∩H2) for all x ∈ (0, L].

It is easy to see that the set of β1 and β2 for which (55) is not satisfied is open and dense.
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m

b
√
−β1L
π c

n

b
√
−β2L
π c

Figure 3. Illustrating the result of Corollary 5.6: (55) is satisfied if and only if the

line through (0, 0) and (
√
−β1,

√
−β2) intersects a lattice point (m,n) with m and

n as in (56).

We now let B(λ) = λI − V , with eigenvalues βj(λ) = λ − νj . If β1(0) = −ν1 and β2(0) = −ν2 do

not satisfy (55), then β1(λ) and β2(λ) will not satisfy (55) for λ close to zero. In particular, if λ∞ is

sufficiently small, we can conclude that W (x, λ) ∈ M for all (x, λ) ∈ (0, L]× [0, λ∞]. Rather than

precisely quantify the notion of smallness in order to obtain the most general result, we will make

the simple observation that under the hypotheses of Theorem 5.2 we have min{−β1(λ),−β2(λ)} =

min{ν1, ν2} − λ < (π/L)2 for all λ ≥ 0 (or else β1 and β2 are complex).

It follows that W (x, λ) ∈M for all (x, λ) ∈ (0, L]× [0,∞). We now apply Theorem 4.1 to obtain

#
{

nonnegative eigenvalues of L
}
≥ −Mas

(
W (L, ·)

∣∣
λ∈[0,λ∞]

;P1

)
= #

{
conjugate points in (0, L]

}
.

The proof of Theorem 5.2 is completed by the following lemma, which shows that the inequality

above is in fact an equality.

Lemma 5.7. Assuming the hypotheses of Theorem 5.2, we have

#
{

nonnegative eigenvalues of L
}

= −Mas
(
W (L, ·)

∣∣
λ∈[0,λ∞]

;P1

)
for sufficiently large λ∞.

Proof. It is enough to show that the curve λ 7→W (L, λ) is negative, i.e. its image in RP 1 under the

map φ defined in (11) always passes though the point [0 : 1] in the negative (clockwise) direction).

Using (15), this will imply

Mas
(
W (L, λ)

∣∣
λ∈[0,λ∞]

;P1

)
= −#

{
λ ∈ [0, λ∞) : W (L, λ) ∩ P1 6= {0}

}
= −#

{
eigenvalues of L in [0, λ∞)

}
= −#

{
nonnegative eigenvalues of L

}
and hence complete the proof.
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We prove monotonicity using (26). For convenience we abbreviate ψi(W (L, λ)) = ψi(λ). From the

computations in Proposition 5.3 we have

ψ1(λ)

ψ2(λ)
=

detX

det(X + Y )− detX − detY

and so
ψ′1(λ∗)

ψ2(λ∗)
=

d
dλ detX

det(X + Y )− detY

at any point λ∗ where detX = 0.

To differentiate detX, as given by (53), we first observe that

d

dλ

sinh(
√
λ− νx)√
λ− ν

=
1

2(λ− ν)

(
x cosh(

√
λ− νx)− sinh(

√
λ− νx)

)
.

If sinh(
√
λ∗ − ν1L) = 0, then

d

dλ
detX

∣∣∣
λ=λ∗

=
L

2(λ∗ − ν1)
cosh(

√
λ∗ − ν1L)

sinh(
√
λ∗ − ν2L)√
λ∗ − ν2

.

Similarly, using (54) we obtain(
det(X + Y )− detY

)∣∣∣
λ=λ∗

=
sinh(

√
λ∗ − ν2L)√
λ∗ − ν2

cosh(
√
λ∗ − ν1L)

and hence
ψ′1(λ∗)

ψ2(λ∗)
=

L

2(λ∗ − ν1)
< 0

where λ∗ − ν1 < 0 because sinh(
√
λ− ν1L) = 0. The case sinh(

√
λ∗ − ν2L) = 0 is identical. �

5.3. The Turing instability. In this section, we seek insight into what it means when the con-

ditions of Theorem 4.1 do not hold, so that the generalized Maslov index cannot be used directly

to prove (in)stability of a steady state. The setting is a two-component reaction-diffusion sys-

tem (1) with a so-called Turing instability. This phenomenon — first discovered by A.M. Turing

[22] — refers to a stable, homogeneous equilibrium of a chemical reaction that is counter-intuitively

destabilized in the presence of diffusion.

Explicitly, assume that there exists ū ∈ R2 such that F (ū) = 0, and the eigenvalues ν1, ν2 of ∇F (ū)

have negative real part. In other words, ū is a stable equilibrium of the dynamical system

ut = F (u). (57)

Setting

∇F (ū) := A =

(
a11 a12

a21 a22

)
, (58)

we thus have

detA > 0, trA < 0. (59)

We further assume that ū undergoes a Turing bifurcation, which is to say that D = diag(d1, d2) is

chosen so that (2) has a positive eigenvalue (and hence ū is unstable). It is well known (see, for

instance, [20, §2.3]) that a Turing instability exists in this setting if and only if

d1a22 + d2a11 > 2
√
d1d2 detA. (60)
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It is worth noting that a necessary condition for a Turing instability is that a12a21 < 0, so in

particular F (u) cannot be a gradient. Moreover, (59) and (60) together imply that d1 6= d2, so

Theorem 5.2 does not apply.

As mentioned earlier, the critical ingredient needed to apply the machinery of this paper is that W

maps the rectangle [0, L]× [0, λ∞] into the MA space G \ (H1 ∩H2), with λ∞ chosen to bound the

spectrum of L from above. The Turing instability condition (60) is actually derived for bounded

perturbations on all of R, so ideally this inclusion would hold for any L > 0. Indeed, it is clear from

Theorem 5.2 that L can be taken as large as desired in the case where D = I and the equilibrium

of the reaction term is stable.

The following result shows that not only does the required inclusion fail for λ ∈ [0, λ∞], but it

actually fails for λ in any interval [0, ε] with ε > 0. Moreover, when one views the diffusion

coefficients di as parameters, this rather spectacular violation of the conditions of Theorem 4.1

occurs exactly at the onset of the Turing instability. In other words, for a fixed F (u) and equilibrium

ū satisfying the conditions of this section, the generalized Maslov index can be used to study the

stability of ū as a solution of (1) if and only if D is such that there is no Turing instability.

Proposition 5.8. Suppose A and D satisfy (59) and (60). Then for any ε > 0, there exists a

point (x∗, λ∗) ∈ (0,∞)× [0, ε] for which W (x∗, λ∗) ∈ H1 ∩H2.

In other words, the image under W of the rectangle [δ,∞)× [0, ε] is not contained in the Maslov–

Arnold space M for any ε, δ > 0.

Proof. To apply the results of Section 5.2, we write the eigenvalue equation in the form (49), i.e.

d

dx

(
v

w

)
=

(
0 I

D−1(λI −A) 0

)(
v

w

)
, (61)

and set B(λ) = D−1(λI − A). According to Proposition 5.3 (cf. Corollary 5.6), it suffices to find

λ∗ such that the eigenvalues βi(λ) of B(λ) satisfy β1(λ∗)/β2(λ∗) = (m/n)2 for some m,n ∈ N. We

thus define

ρ(λ) =
β1(λ)

β2(λ)
. (62)

We claim that for any ε > 0 the set {ρ(λ) : 0 ≤ λ ≤ ε} has nonempty interior. The immediately

gives the result, since every non-degenerate interval contains a number of the form (m/n)2.

Suppose the claim is false. Since ρ is continuous, this is only possible if ρ is constant on [0, ε]. We

will show that this is not consistent with the hypotheses on A and D, making use of the fact that

β1 and β2 depend continuously on λ, and are analytic whenever they are distinct.

We first compute

detB(λ) =
1

d1d2

(
λ2 − λ trA+ detA

)
(63)

trB(λ) =
1

d1d2

(
λ(d1 + d2)− (d1a22 + d2a11)

)
. (64)
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λ = 0 λ = λc λ = λ0 λ� 1

Figure 4. The eigenvalues of B(λ) are negative and distinct when λ = 0. At

λ = λc they collide and leave the real axis as a complex conjugate pair, crossing the

imaginary axis into the right-half plane at λ = λ0.

It follows from (59) that detB(λ) > 0 for all λ ≥ 0. Therefore, the eigenvalues of B(λ) are either

complex conjugates or real numbers of the same sign. In particular, they are never zero.

From (60) and (64) we see that trB(0) < 0. Moreover, using (60), we find that the discriminant

∆B(0) =
(

trB(0)
)2 − 4 detB(0)

=
1

(d1d2)2

(
(d1a22 + d2a11)2 − 4d1d2(a11a22 − a12a21)

)
(65)

is negative, so the eigenvalues of B(0) are negative, real, and distinct. In particular, ρ(0) 6= 1. On

the other hand, (64) implies trB(λ) > 0 for λ sufficiently large, in which case β1(λ) and β2(λ) both

have positive real part. Therefore, as λ increases, both eigenvalues cross the imaginary axis. Since

detB(λ) 6= 0, they must cross through iR \ {0} as a conjugate pair at some λ = λ0, which means

there exists λc ∈ (0, λ0) at which β1(λc) = β2(λc) < 0, hence ρ(λc) = 1; see Figure 4. This implies

ρ(λ) is not constant on [0, λc].

However, the eigenvalues of B(λ) are distinct for λ < λc, and hence depend analytically on λ, so

ρ(λ) is analytic on [0, λc). Therefore, if it is constant on [0, ε], it will be constant on [0, λc]. This

contradiction finishes the proof. �

5.4. Comparing (non)invariance results. We now compare the results given in Sections 5.1

and 5.3, namely Theorem 5.1 and Proposition 5.8. To compare these directly, there are two issues

that must be addressed.

The first is that the two sections assume different boundary conditions. The large diffusion result

in Theorem 5.1 requires Neumann boundary conditions at x = 0, whereas the analysis of the

Turing problem in the previous section relies on Proposition 5.3, which assumes Dirichlet boundary

conditions at x = 0. This does not pose a serious difficulty — if we impose Neumann boundary

conditions at x = 0 in the Turing problem, the same conclusion is easily seen to hold, i.e. there

exists x∗ > 0 and λ∗ arbitrarily close to zero for which W (x∗, λ∗) ∈ H1 ∩H2; cf. Remark 5.5.

The second issue is that the two results in question involve writing the eigenvalue problem as a

first-order system in two different ways, see (17) vs (49). As a result, the solution spaces W (x, λ)

are different, as are the resulting Maslov–Arnold spaces (see (30) and (50)), so they cannot be
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compared directly. To clarify this, we define

W (x, λ) =

{(
v(x)

w(x)

)
:
d

dx

(
v

w

)
=

(
0 D−1

λI −A 0

)(
v

w

)
and w(0) = 0

}
and

Ŵ (x, λ) =

{(
v(x)

w(x)

)
:
d

dx

(
v

w

)
=

(
0 I

D−1(λI −A) 0

)(
v

w

)
and w(0) = 0

}
.

We also define two-forms ω1 and ω2 corresponding to the matrices

Ω1 =


0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

 , Ω2 =


0 0 0 1/d2

0 0 −1/d1 0

0 1/d1 0 0

−1/d2 0 0 0

 ,

and ω̂2 corresponding to

Ω̂2 =


0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

 .

Finally, we define hyperplanes H1, H2 and Ĥ2, and the corresponding Maslov–Arnold spacesM =

G \ (H1 ∩H2) and M̂ = G \ (H1 ∩ Ĥ2). In terms of the functions ψ1, ψ2 and ψ̂2 (defined in Section

4.1) we have

W ∈M ⇐⇒ ψ1(W ) = 0 and ψ2(W ) = 0

and

Ŵ ∈ M̂ ⇐⇒ ψ1(Ŵ ) = 0 and ψ̂2(Ŵ ) = 0.

To calculate the ψj (up to a nonzero factor) it suffices to compute frames for W and Ŵ . Let

(
X

Y

)
=


x11 x12

x21 x22

y11 y12

y21 y22


be a frame for W (x, λ), with columns denoted u1 and u2. Computing as in the proof of Proposi-

tion 5.3, we find

ω1(u1, u2) = detX

and

ω2(u1, u2) =
x11y22

d2
− x21y12

d1
+
y11x22

d1
− y21x12

d2

= det(X +D−1Y )− detX − det(D−1Y ).

On the other hand, it is easy to see that (
DX

Y

)
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is a frame for Ŵ (x, λ). Denoting the columns of by û1 and û2, we find

ω1(û1, û2) = det(DX) = (detD)ω1(u1, u2)

and

ω̂2(û1, û2) = det(DX + Y )− det(DX)− det(Y ) = (detD)ω2(u1, u2),

and hence conclude that

W (x, λ) ∈M ⇐⇒ Ŵ (x, λ) ∈ M̂. (66)

Proposition 5.8 guarantees that there exists λ∗ arbitrarily close to 0 such that Ŵ (x, λ∗) leaves the

Maslov–Arnold space M̂ for some x∗ > 0, while Theorem 5.1 guarantees W (x, λ) remains in M
for all (x, λ) ∈ [0, L]× [0, λ∞], provided d1d2 is large. Comparing these results, and making use of

(66), we conclude that for any λ∗ ∈ [0, λ∞], the point x∗ in Proposition 5.8 must be greater than

L. In other words, while the path W (x, λ) must leaveM for some x∗ > 0 and λ∗ ∈ [0, λ∞], we can

ensure x∗ > L if d1d2 is sufficiently large.

5.5. Numerical prospects. The classical Maslov index has seen many successful numerical treat-

ments; see for instance [4, 6, 7]. In closing, we mention that the theory developed in this paper is

also expected to be very amenable to numerical applications.

To explain this, we go back to Theorem 4.1, where it was shown that

#
{

nonnegative eigenvalues of L
}
≥ Mas

(
W (x, 0)

∣∣
x∈[δ,L]

;P1

)
(67)

as long as W (x, λ) ∈M = G\ (H1∩H2) for all (x, λ) ∈ (0, L]× [0, λ∞], where H1 is the hyperplane

corresponding to the train of the Dirichlet subspace and H2 is arbitrary.

The particular choice of H2 in the second half of Theorem 4.1 guaranteed monotonicity in x, but

this is not important if the index is to be computed numerically — for any choice of H2 the Maslov

index computation simply becomes a winding number calculation in RP 1. This is numerically

robust, due to the homotopy invariance of the index. For instance, the curves

η(t) =

eit, −π/2 ≤ t ≤ 0

e−it, 0 ≤ t ≤ π/2
, η+(t) = eiεη(t), η−(t) = e−iεη(t)

are ε-close, pass through the point 1 ∈ S1 one, two and zero times, respectively, and all have zero

winding number. That is, the signed count of conjugate points (i.e. the generalized Maslov index)

is stable under small perturbations, while the unsigned count is not.

Therefore, a small approximation error in the calculation of the path W (x, λ) (i.e. in the numerical

solution of an initial-value problem) will not change the numerically computed winding number.

The only possible complication is the presence of a conjugate point near the endpoint x = L. If

there is a conjugate point near (but not exactly at) the endpoint, it will be possible to determine

so with sufficiently accurate numerics. Indeed, this can be established rigorously using validated

numerics; see [23] for an overview of rigorous numerical methods applied to dynamical systems.

The case of a conjugate point at x = L is more subtle, since it cannot be distinguished from a

conjugate point that is very close (within some numerical tolerance) to x = L. Generically the
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endpoint is not a conjugate point, and when it is, this is usually a consequence of an underlying

symmetry of the system. If we know a priori that x = L is a conjugate point, then we can

(rigorously) find a neighbourhood around it containing no other conjugate points, and hence the

discussion in the previous paragraph applies.
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