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Abstract

Protein phosphorylation plays an essential role in modulating cell signalling and its

downstream transcriptional and translational regulations. Until recently, protein phos-

phorylation has been studied mostly using low-throughput biochemical assays. The

advancement of mass spectrometry (MS)-based phosphoproteomics transformed the

field by enabling measurement of proteome-wide phosphorylation events, where tens

of thousands of phosphosites are routinely identified and quantified in an experiment.

This has brought a significant challenge in analysing large-scale phosphoproteomic

data, making computational methods and systems approaches integral parts of phos-

phoproteomics. Previous works have primarily focused on reviewing the experimental

techniques in MS-based phosphoproteomics, yet a systematic survey of the computa-

tional landscape in this field is still missing. Here, we review computational methods

and tools, and systems approaches that have been developed for phosphoproteomics

data analysis. We categorise them into four aspects including data processing, func-

tional analysis, phosphoproteome annotation and their integration with other omics,

and in each aspect, we discuss the key methods and example studies. Lastly, we high-

light some of the potential research directions on which future work would make a

significant contribution to this fast-growing field. We hope this review provides a use-

ful snapshot of the field of computational systems phosphoproteomics and stimulates

new research that drives future development.
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1 INTRODUCTION

Protein phosphorylation is one of the most common post-translational

modifications (PTMs) that regulates almost every aspect of protein

function, ranging frommodulating their dynamics, stability, subcellular

localisation to protein- protein interactions [1] (Figure 1). Phosphory-

lation events act as reversible molecular switches and are controlled

by kinases and phosphatases [2]. Together, kinases, phosphatases, and

their substrate proteins [3] establish signalling networks thatmodulate

a myriad of biological processes, spanning from cell cycle progres-

sion, cell growth, differentiation, and apoptosis [1]. Thus, dysfunctions

in phosphorylation-based signalling (phospho-signalling) networks can

severely disrupt cellular homeostasis and are involved in many dis-

eases, includingmetabolic diseases [4] and cancers [5]. The reconstruc-

tion and characterisation of phospho-signalling networks therefore

have provided invalu able biological knowledge into various cellu-

lar processes and contributed promising insights towards therapeutic

drug development for the treatment of various diseases [6].

While phospho-signalling has been studied for decades using a vari-

ety of experimental approaches, the advances in mass spectrometry
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F IGURE 1 A schematic of some key functionalities of phosphorylation events in regulating cellular processes

(MS)-based technologies to measure global phosphorylation events

have revolutionised our abil ity to profile phosphorylation events at

a large-scale and enables systematic analyses of protein phosphory-

lation in a high-throughput manner [7]. To date, more than 377,000

non-redundant protein phosphorylation sites from 27 species were

collected in PhosphoSitePlus, a curated PTM database [8]. However,

phosphoproteomic data analysis is not a trivial matter, due to the

experimental complexity which can create various computational chal-

lenges when han dling issues such as missing values and batch effects

[9]. Furthermore, only a small fraction of phosphosites have been anno-

tated to kinases and phosphatases (amongst which about half to only a

handful of well-studied kinases), whereas themajority of phosphosites

remain unannotated [10]. These challenges significantly limit the inter-

pretability of phosphoproteomic data and their utility in the functional

characterisation of signalling networks.

To this end, a diverse array of computational methods, bioinfor-

matics tools, and databases and resources has been developed for

processing and functional analysis of phosphoproteomic data. In this

work, we first review the computational strategies and tools for pro-

cessing phosphoproteomic data, ranging from filtering and imputation

to normalisation methods (Figure 2A). Next, we summarise the state-

of-the-art computational approaches for the functional analysis of

phosphoproteome, including kinase-substrate prediction, kinase activ-

ity inference and signalling network reconstruction (Figure 2B). Then,

we review systems applications of phosphoproteomic data includ-

ing their characterisation through annotation and ontology databases
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F IGURE 2 A Schematic overview of phosphoproteome analysis pipelines. (A) Phosphoproteomic data processing. (B) Functional analysis of
phosphoproteomics data. (C) Characterising the phosphoproteome using databases and other rescources. (D) Integrating phosphoproteomics
with other omic datatypes for characterising trans-regulatory networks

(Figure 2C). This is followed by a summary of their integration with

other omics data types to understand phospho-signalling and their

downstream regulation on trans-regulatory net- works that cut across

cellular signalling, transcriptional, translational, and (epi)genetic pro-

grammes (Figure 2D). Finally, we discuss the challenges and future

directions in this field.

2 PHOSPHOPROTEOMIC DATA PROCESSING

Mass spectrometry (MS)-based phosphoproteomics has emerged

as the dominant tool for identifying and quantifying proteome-wide

phosphorylation sites on a global scale and it has become a standard

approach to investigate phospho- signalling networks in cellular and

biological systems [7]. Typically, in MS-based phosphoproteomics,

proteins are first digested into constituent peptide fragments. Then,

the phosphopeptides are enriched before measurement by liquid

chromatography and tandem mass spectrometry (LC-MS/MS) [61].

The innovations in MS technologies have led to the dramatic increase

in the coverage of the phosphoproteome. Such that, the number of

identified and quantified phosphorylation sites has increased from

a few thousand [62] to routinely over tens of thousands [61, 63]

in the last ten years. As increasingly large scale phosphoproteomic

datasets are being generated, computational method development

has become an essential task for phosphoproteomic data analysis

(Table 1). In this section, we will focus on reviewing key computational

aspects in phosphoproteomics data processing. This includes steps

such as filtering, imputation, normalisation and batch correction,

typically performed prior to functional analysis or data integration

(Figure 2A).

2.1 Data filtering

While various quantification strategies have been developed in phos-

phoproteomics, there remains a largeamountofmissingvalues inphos-

phoproteomic data, where many phosphorylation sites are identified

but without quantification. First, the techniques used for quantitative

phosphoproteomics (e.g., label-free quantification [LFQ] [64], stable

isotope labelling by amino acids in cell culture (SILAC) [65], isobaric

tandem mass tags [iTRAQ, TMT] [66, 67]) result in different amount

andvariability ofmissing values [68].Next, the types of data acquisition

methods (e.g., data-dependent acquisition [DDA], data independent

acquisition [DIA] [69]) also have substantial impact on the missing-

ness in phos phoprotemics data. Other factors contributing to missing

values include but are not limited to biological factors such as low

protein abundances of transcription factors (TFs), and analytical fac-

tors including themis-cleavageof peptides during digestion, inaccurate

peptide-spectrummatches against the protein database, and poor ion-

isation efficiency and sample loss during preparation [70]. Moreover,

the number of missing values present in the same phosphoproteomic

dataset varies across different data-processing platforms such as Pro-
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TABLE 1 Categorisation of representative tools for phosphoproteomics data analysis

Category Specific application Method/Study

Data processing Imputation DAPAR [11], DreamAI [12], NAguideR [13]

Normalisation Global-centeringmethods [14],

Phosphonormalizer [15],

Pairwise normalisation [16]

Functional analysis Kinase substrate prediction NetPhosK [17], NetPhorest [18], DeepPhos [19],

GPS [20], Musite [21], PrediKin [22],

KinomeXplorer [23], PhosphoPICK [24],

PhosphoPredict [25], KSP-PUEL [26],

CoPhosK [27], SnapKin [28]

Kinase activity inference KEA [29], KinasePA [30], IKAP [31], KSEA [32],

INKA [33], KARP [34], RoKAI [35]

Signalling network reconstruction PathFinder [36], PHOTON [37], CoPPNet [38],

PHONEMeS [39], RegPhos [40], INKA [33],

PTMsea [41]

Time-course kinase activity analysis CLUE [42]

Time-course phospho-event ordering Minardo [43]

Data processing & Funcational

analysis

Comprehensive suite PhosR [9], Perseus [44]

Utilisingmutation information HotPho [45], MIMP [46]

Characterisation Utilising evolutionary information Strumillo et al. [47]

Utilising structural information Betts et al. [48]

Integration of multiple features SAPH-ire [49], SAPH-ire TFx [50], Beltrao et al. [51],

Ochoa et al. [52], Xiao et al. [53]

Integration ESC differentiation Yang et al. [54], AdaEnsemble [55]

HRAS signaling MiNETi [56]

Yeast pheromone response;

Glioblastomamultiforme

PSC Forest algorithm [57]

Non-small cell lung cancer Balbin et al. [58]

Renal cell carcinoma drug targets COSMOS [59]

Prostate cancer drug targets TieDIE [60]

genesis, MaxQuant and Proteios [71]. The presence of missing values

significantly affects the completeness of the data and distorts the

biological signal. To remedy the missingness, filtering of the data is

often applied to reduce missing values (e.g., removing phosphosites

with low quantification rates) while minimising the loss of information.

For example, Faca et al. showed that data filtering can considerably

reduce the aberrant quantitation andunwantedvariationwhile balanc-

ing sensitivity and specificity [72]. Similarly, Kim et al. demonstrated

that filtering could significantly improve signal-to-noise ratio, leading

to better clustering of sample replicates [9].

Given the differences in biological conditions, techniques used in

phosphoproteomic profiling, and the varying coverage and depth, the

filtering process needs to be optimised according to the experimental

design and quantification technique. For instance, as high multiplexing

capabilities reduce the abundance of missing values, a single multi-

plexed TMT batch often has fewer than 1% of missing values [73],

negating the need for complex data filtering procedures. However, the

abundance of missing values inflate as multiple TMT batches are inte-

grated [74]. To reducemissing values, a user-defined threshold is often

set to remove phosphosites that exceed certain percentage of missing

values across TMT runs (e.g., filtering out any phosphosites that were

not captured in at least 80% of TMT runs [75]). In comparison, LFQ

does not allow for sample multiplexing and SILAC only allows up to

three channels for simultaneous measurement [68]. For filtering data

quantified by LFQ, Yang et al. [54] retained phosphosites that pass

pre-defined percentages of quantification across conditions andwithin

each condition across biological replicates.When handling SILAC data,

Valdes et al. [76] first removes phosphosites with opposite directions

of regulation within a set of biological replicates, and then the phos-

phosites quantified in all replicates in at least one condition were kept.

For thedata acquisitionmethods,DDAonly collects precursors of high-

est abundance whereas DIA systematically collects MS/MS data from
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every mass and all detected precursors [77]. As a result of the semi-

stochastic nature of precursor selection procedure,DDAoften exhibits

inconsistent peptide identification in all samples, whereasDIA has high

coverage of identified peptides with less missing values. Regardless of

the acquisition method, the typical filtering strategy involves setting a

data-specific threshold to retain phosphosites that are quantified in a

given percentage across replicates and/or conditions [78, 79].

The ambiguity in localisation of the single phosphorylated amino

acid within the identified phosphopeptides [80] is another issue com-

monly addressed in phosphoproteomics data filtering. A localisation

score is often assigned to a given phosphosite by various algorithms

[81, 82], indicating the probability of the correct localisation of the

phosphosite. For example, using a PTM-score, the phosphosites are

normally grouped into four classes [83]. Phosphosites which have

high localisation confidence (class I: localisation probability > = 0.75)

are retained. This can be automated using various tools or software

(e.g., PhosR [9], Spectronaut [63], Perseus [44] and ProteoViz [84]).

Althoughvarious ad-hocdata filteringmethodsareused topre-process

phosphoproteomic data, the field will benefit from designing filtering

strategies tailored towards specific technologies and data acquisi-

tion methods, given its significant impact on further downstream

analyses.

2.2 Data imputation

Imputation is another key computational technique often performed

after data filtering to handle missing values. In essence, imputation

strategies replace the missing values with estimates by some compu-

tational procedures. The reduction of missing values by well-designed

imputation strategies can significantly improve the outcomes of subse-

quent analyses, such as identifying differentially phosphorylated sites,

kinase activity inference and kinase-substrate prediction. Although a

large number of imputation approaches have been developed for pro-

teomics data [70] and single-cell RNA-sequencing (scRNA-seq) data

[85], very few are specifically designed for phosphoproteomic data. In

many cases, imputation methods designed for proteomic datasets are

either tuned or directly applied to phosphoproteomic datasets (e.g.,

[13], DreamAI [12]). This may not be ideal given the experimental dif-

ferences in profiling proteome and phosphoproteome (e.g., phospho-

peptide enrichment). One of the most popular methods implemented

in Perseus software [44] for imputing phosphoproteomic data is

based on drawing random values from a heuristic distribution created

around the lower detection range of the quantified values in label-free

phosphoproteomic data. Another tool that enables phospho-specific

imputation is the PhosR package which implements a set of heuristic

imputation strategies by taking into account quantification rate of each

phosphosite and also experimental designs [9]. While a recent study

suggests that the best-performing imputation methods differ for pro-

teomic and phosphoproteomic datasets [13], to date, there is still a

lack of comprehensive evaluation on how different imputation meth-

ods perform across a broad range of phosphoproteomic datasets. A

systematic benchmark of existing imputation methods on their accu-

racy and reliability using an extensive collection of phosphoproteomic

datasets will be of great value to the field.

2.3 Data normalisation

As with any high-throughput biotechnology, systematic biases may be

introduced during phosphoproteomic profiling when the experiments

are carried out in batches and span across a long period of time. Nor-

malisation is an essential step to capture and correct for those biases.

A flexible yet robust normalisation method would enable greater pre-

cision in quantitative comparison at phosphorylation levels. Some

commonly used normalisation strategies include global centring which

centres the peptide abundances to have the same median intensities

[14]. Such global centring- based normalisation methods are based

on the assumption that the median abundances across all phospho-

peptides remain unchanged across different samples and experiments.

However, this assumption may not hold in experimental designs that

result in a global shift of phosphorylation profiles. Therefore, the appli-

cation of such a normalisation method needs to be well considered

and justified. Various advanced methods have been designed specif-

ically for phosphoproteomic data normalisation. For example, Kauko

et al. [16] proposed to normalise label-free quantitative phosphopro-

teomics based on adjusting phosphopeptide abundances measured

before and after the enrichment, as the perturbations in their study

introduce unusual unidirectional changes in the phosphopeptide abun-

dance. They demonstrated that the selection of normalisationmethods

has significant impact on subsequent analyses such as the infer-

ence of pathway activities. Similarly, Phosphonormalizer implements

a pairwise normalisation procedure incorporating non-enriched phos-

phopeptide data as a reference, leading to better normalisation results

compared to several other global centringmethods [15]. Finally, PhosR

utilises a removing unwanted variant (RUV) framework [86] along

with a set of stably phosphorylated sites (SPSs) [9] as negative con-

trols,whichgreatly improves the reproducibility of biological replicates

amongst samples. Given the need for phosphoproteomic data-specific

processing methods for optimal downstream analysis, we anticipate

growingmethodological innovation on this aspect.

After data normalisation, differential analysis methods such as

simple t-test and ANOVA test or those developed for gene expression

analysis (e.g., Limma [87]) are frequently adapted for quantify-

ing changes in phosphorylation levels in different treatments and

conditions or through a time course such as from profiling a dif-

ferentiation process. The outcomes from these analyses will then

feed into functional analysis which we will summarise in the next

section.

3 FUNCTIONAL ANALYSIS OF
PHOSPHOPROTEOMICS DATA

Phosphoproteomes are governed by the coordinated regulation of

kinases, phosphatases, and their substrates. Functional analysis of
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phosphoproteomic data for characterising underlying signalling net-

works is essential to understand their dynamics in health and dysfunc-

tion in disease. In this section, we highlight the existing bioinformatics

tools for functional phosphoproteomic analysis, including kinase-

specific substrate prediction, kinase activity inference and signalling

network reconstruction (Figure 2B).

3.1 Kinase-substrate prediction

Kinase-specific substrate identification is a key step towards recon-

structing signalling networks. However, only a small percentage of

identified phosphosites have been annotated with the kinase(s) it

is phosphorylated by, and this continues to be the case due to the

increasing number of new phosphosites identified in successive large-

scale phos phoproteomic studies. Moreover, most kinase-substrate

(K-S) relationships are annotated to well-studied kinases, accounting

for a very small fraction of all kinases [88]. These challenges have

motivated the development of cost- and time-effective bioinformatics

tools to systematically predict K-S relationships prior to experimental

verification.

Most of the existing computational approaches rely on the evalua-

tionof the flanking sequences of the phosphory lated residues, inwhich

the majority use mainly the primary amino acid sequences, whereas

others use various levels of structural information [89]. Specifically,

NetPhosK [90], NetPhorest [18], DeepPhos [19] and GPS [20] identify

kinase-specific substrates based on amino acid sequences. Neverthe-

less, kinases recognise the tthree-dimensional structures, instead of

the primary sequences, of the peptides surround the phosphosites. To

enhance the prediction accuracy, structure information of the phos-

phopeptide has been incorporated into kinase-substrate prediction

[17, 22, 91]. For example, Musite [21] integrates sequence similarity

to known phosphosites with protein disorder scores for prediction.

Similarly, PrediKin [92] uses the available crystal structures, molecu-

larmodelling, and sequence analyses of kinases and substrates. Several

tools were developed to predict K-S relationship by jointly analysing

protein-protein interactions (PPIs) with kinase recognition motifs.

Examples include KinomeXplorer [23], Phospho- PICK [24] and Phos-

phoPredict [25]. Nevertheless, the coverage of the computationally

predictedK-S relationships is far from saturation andmost approaches

are biased towards well-studied kinases owing to the availability of

their annotations.

The advances in MS-based technologies offer excellent opportuni-

ties to map the dynamics of each phosphorylation event, which could

serve as a rich resource for kinase-specific substrates prediction in a

given context. To this end, methods that utilise dynamic phosphopro-

teomics profiling data together with static information (e.g., sequence

motifs) demonstrate the benefit of such complementary strategy

in kinase-specific substrates prediction. These including KSP-PUEL

[26], a positive-unlabelled ensemble machine learning approach that

incorporates dynamic phosphoproteomics data with static sequence

information in its prediction, and CoPhosK [27], which utilises cor-

relation analysis to capture collective dynamic signatures of kinase

substrates. To overcome the limited number of known substrates for

given kinases, Snapkin, an ensemble deep learning model [28], boosts

small training datasets by introducing various learning techniques in an

ensemble deep learning neural network. While these kinase-substrate

prediction methods are useful for identifying K-S relationships, addi-

tional efforts are required to improve the accuracy and robustness

of such methods given the high noise to signal ratio in large scale

phosphoproteomic data.

3.2 Kinase activity inference

Besides kinase-substrate prediction, large-scale MS-based phospho-

proteomic data also provide opportunities to per- form biological

system-specific inferences of kinase activities, a vital step to advance

our understanding of the functional roles of kinases in biological

processes and diseases.

A common approach for kinase activity inference is to assess the

activity of a given kinase based on the phosphorylation dynamics of its

known and predicted substrates. Although many bioinformatics tools

can serve this purpose (e.g., KEA [29, 93], KinasePA [30], IKAP [31],

KSEA App [32], KARP [34], INKA [33]), there has been limited effort to

compare these tools or determine the optimal set of parameters to use

in different scenarios partly due to the difficulty of establishing ground

truth for benchmarking. Furthermore, although most kinase activity

inference algorithms rely on some type of kinase-substrate enrichment

analysis, which estimates the changes of kinase activities based on the

coordinated changes of known substrates [94], the applicability of each

method may vary depending on their design. For example, while other

methods require comparison across groups of samples from different

conditions, INKA can be applied to a single sample.

Another key issue of kinase activity inference methods is their

reliance on known kinase-substrate relationships. Although compre-

hensive resources such as PhosphoSitePlus, Signor [95], Phospho.ELM

[96], dbPTM 3.0 [97] have collected and curated known relationships

between kinases and phosphosites, KSEA-based approaches are

limited by the availability of annotated kinases (Figure 3A) and the

known K-S relationships (Figure 3B). The incompleteness of substrate

discovery of a given kinase potentially affects the kinase activity esti-

mation and biases discoveries towards kinases that are well-studied

(Figure 3B). Computational predictions of K-S relationships have been

demonstrated to be valuable to enhance the reliability of kinase activ-

ity inference by increasing the converge of K-S pairs [98, 93]. How-

ever, the quality and scope of computational prediction are still insuffi-

cient [27], and again, most methods can only make reliable predictions

for well-studied kinases [99]. In addition to computationally increase

the number of K-S associates, Yılmaz et al. [35] developed a framework

RoKAI, which incorporates functional information of kinases and their

corresponding phosphosites. They hypothesised that the biologically

significant changes most likely occur on the functionally related

phosphosites; wherein the functional environment of a phosphosite

can provide further in- formation of the dynamics of the phospho-

rylation event. To capture the functional networks of phosphosites,
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F IGURE 3 The coverage of different phosphosite curation data. (A) The number of annotated kinases in each database. (B) Histograms
showing the distribution of the number of annotated phosphosites to kinases in each database. Top three kinases with themost number of
annotated substrates are highlighted

RoKAI integrates K-S relationships from PhosphositePlus, coevolution

and structural information of phosphosites from PTM- code [100],

and PPI from STRING [101]. Comparisons with alternative methods

shown that RoKAI outperformed a variety of kinase activity inference

approaches. Temporal information of time-course phosphoproteome

has also been utilised to infer kinase activity. For example, CLUE

[42] firstly partitions phosphosites into optimal clusters according

to their temporal profiles and then identifies kinases associated with

each cluster. Build on the temporal clusters, Minardo [43] performs

further statistical tests on the phospho-signalling events and infers the

temporal ordering of these events.

3.3 Signalling network reconstruction and
characterisation

A typical step following kinase-specific substrate identification and

kinase activity inference is to reconstruct signalling networks for the

systematic characterisationof the interplay amongst activatedkinases,

their substrates and signalling proteins. Numerous high-throughput

studies have revealed the dynamic global architectures of cellular sig-

nalling net- works in awide range of biological contexts (e.g., [102, 103,

88, 104, 54]). These studies characterise phosphorylation- modulated

interaction networks based on, not only motif-based predictions but

also the dynamics of phosphorylation events, PPIs, genetic interac-

tions, gene expression profiling, andmetabolic pathways. Furthermore,

many methods have been developed to infer phosphorylation-based

networks, including PhosR, RegPhos [40], PathFinder [36], PHO- TON

[37], CoPPNet [38], and PHONEMeS [39], INKA [33], and PTMsea

[41]. For example, PhosR enables the reconstruction of the signalomes

by integrating motif recognition and dynamic profiles of phosphosites

across the profiled kinome in the phosphoproteomic data; RegPhos

facilitates the reconstruction of intracellular signalling networks by

combining the information form experimentally validated K-S associ-

ations, PPIs and metabolic pathways; INKA enables reconstruction of

signalling network by combining substrate-centric and kinase-centric

information and can be applied to a single biological sample rather than

comparison across multiple groups; and PTMsea allows the enrich-

ment of signalling pathways in a site-centric manner by taking into

account the direction of regulation of phosphosites. It is worth noting

that different methods designed for signalling network reconstruction

and characterisation as well as those for kinase activity inference

may require different input data to perform appropriate analysis. For

example, while most methods require only phosphoproteomics data as

user input with other resources provided as part of the package (e.g.,

kinase recognitionmotifs in PhosR and BioGRID data [105] derived for

PHOTON), INKA requires both phosphopeptide and phosphosite to

be provided for data analysis. Therefore, users may need to determine

the availability of required input when applying eachmethod.

Notably, the constructed networks serve as powerful resources for

further biochemical studies. For instance, Saez–Rodriguez and col-

leagues [106] experimentally validated unexpected signalling events,

governing the activation of T cells, identified in the reconstructing net-

works by their computational models. As another example, INKA was

used for identifying targetable kinases as candidates for inhibition in

acute myeloid leukaemia cell lines [107] and T cell acute lymphoblas-

tic leukaemia cell lines [6]. The application of kinase activity inference

and signalling network reconstruction and characterisation in disease

cell lines and clinical settings has revealed that the dysregulation of

phospho-signalling plays an important role in disease aetiology.

4 CHARACTERISING THE PHOSPHOPROTEOME
USING DATABASES AND OTHER RESOURCES

Given the increasing availability and improving quality of molecu-

lar biological databases, including those dedicated to phosphopro-

teomics (e.g., PhosphoSitePlus [108] and PHOSIDA [109]), an emerg-

ing research direction has been to systematically analyse across

large collections of phosphoproteomic datasets and characterise their

shared and distinctive features using various databases and resources

(Figure 2C). Typically, these studies are not aimed at characteris-

ing dataset-specific features, but create general phosphoproteomic

knowledge base and resources that can be used in the annotation

of individual datasets. This section reviews representative examples

within this field of research.
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First, genome-wide mutational information has frequently been

incorporated to interpret the functional roles of phosphorylation in

various contexts, such as cancer. ActiveDriverDB [110] is a database

that systematically maps genetic variations and disease mutations

to multiple PTMs, and it can be used to characterise phosphosites

through the lens of variants and mutations. Similarly, HotPho [45] can

systematically identify three-dimensional co-clustering of phospho-

sites and cancer mutations on known protein structures, revealing

potential causal implications of phospho- sites in cancer. MIMP [46]

utilises the flanking sequence information around a phosphosite to

estimate the disruption of mutations on its phosphorylation. Those

tools facilitate the understanding of disease biology by linking kinase

networks to diseasemutations.

While early studies focused largely on analysing the primary

sequence of the phosphosites from a single source/species (e.g., [18,

111]), recent research has extended upon these approaches to char-

acterise the role of the phosphorylation events by comparing the

phosphoproteomes within and amongst species, considering the evo-

lutionary and structural features, and interaction with other PTMs.

For example, Beltrao et al. [112] showed that functional phospho-

sites were significantly more constrained across species compared

to non-functional ones, highlighting the importance of incorporating

evolutionary information when estimating the functional impact of

phosphorylation on a given site. Strumillo et al. [47] identified highly

conserved regions of phosphorylation by integrating over half a mil-

lion phospho- sites from 40 eukaryotic species. The identified hotspots

were largely mapped to the protein interfaces, suggesting their func-

tional significance, and the regulatory functionsof twophosphosites on

oneof thehotspotswere subsequently verified in their experiments. As

the phosphorylation events on the protein interfaces often modulate

the stability of their interactions [113, 114], the structural informa-

tionhas also beenutilised to functionally prioritise phospho-regulatory

events. Betts et al. [48] systematically mapped 223,971 phosphosites

from five species to PPIs and prioritised about a thousand sites that are

potentially involved in enabling or disabling PPIs. A selection of these

prioritised sites was subsequently experimentally validated for their

impact on protein interactions. Furthermore, the difference in thermal

stability between phosphorylated and dephosphorylated proteins can

also be predictive of the functional potential of phosphosites and such

information could be integrated with other features to characterise

phosphorylation events [115, 116].

The integration of multiple features has also been explored to com-

prehensively characterise phosphoproteome. For example, Dewhurst

et al. [49] created a computational framework called SAPH-ire to

systematically rank PTMs by integrating phosphorylation dynamics,

sequence conservation, structural features and interaction informa-

tion. The upgraded version, SAPH-ire TFx [50], uses a multi-feature

neural network model to prioritise protein PTMs that have highly

predicted biological significance. Their methods have demonstrated

that incorporating structural and sequence properties to characterise

PTMs can improve the confidence in predicting the functional impact

of phosphorylation. The functional landscape of the phosphoproteome

has also been explored by analysing functionally relevant phospho-

sites on a genomic scale in diverse biological systems. For example,

Beltrao et al. [51] developed a framework to systematically identify

functionally significant PTMs (inclusive of phosphorylation), by esti-

mating whether they have other sites altered by PTMs nearby, or

whether they are evolutionarily conserved, regulate protein activity,

or modulate PPIs. They demonstrated that the protein domain families

which harbour conserved PTMs are likely to be regulatory hotspots.

Ochoa et al. [52] applied a machine learning approach and identi-

fied 59 functionally relevant properties of phosphosites that can be

grouped broadly into four categories includingMS evidence, phospho-

site reg ulation, structural environment and evolutionary conservation.

A single functional score was assigned to each of the 119,809 human

phosphosites they identified, and the score indicates how likely the

phosphosite is functional across different molecular mechanisms, pro-

cesses and diseases. They further demonstrated that this score was

capable of accurately identifying regulatory phosphosites for a wide

array of processes and predicting the effect of deleterious mutations.

Finally, while most studies focus on the dynamics of phosphorylation,

the phosphoproteome that is stable and common across cell tissue

types was found to be also functional and its disruptions were linked

to cancer development [53]. These works together demonstrate the

complexity of the phosphoproteome and the power of integrative anal-

yses in their characterisation. Furthermore, the knowledge generated

from these studies across databases and datasets can serve as new

resources for future phosphoproteomics data analysis.

5 INTEGRATING PHOSPHOPROTEOMICS WITH
OTHER OMIC DATA TYPES FOR CHARACTERISING
TRANS-REGULATORY NETWORKS

Finally, various studies have attempted to link phospho-signalling

with downstream transcriptional and translational regulations. These

involve using various systematic approaches and integrative methods

to reconstruct and characterise ’trans-regulatory networks’ that cut

across multiple regulatory programmes such as cell signalling, gene

transcription, and protein translation (Figure 2D). Here we summarise

a few studies towards this direction.

Signalling networks are an integral layer of the trans-regulatory

network underlying almost all cellular processes. To comprehensively

characterise the roles of various cellular processes in both health and

diseases, attempts have been made to integrate phosphoproteomics

with other data modalities such as (epi)genomics, transcriptomics,

pro teomics, and metabolomics amongst others. One of the com-

monly used strategies for integrating phosphoproteome is to jointly

interpret phosphoproteome with other omics data to link biological

processes from signalling to down- stream transcriptional and transla-

tional regulations. For example, Yang et al. [54] studied the dynamics

of pluripotency in ESCs transitioning from naïve to formative states by

integratively analysing phosphoproteome, proteome, transcriptome,

and epigenome at matched time points. The K-S networks constructed

from this study revealed the key signalling events culminate in the

regulation of chromatin landscapes and activation of master TFs. In
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their sub- sequent study, the transcriptional and epigenomic regu-

lations underlying cellular signalling were further analysed to unveil

the dynamic rewiring of the transcriptional network during pluripo-

tency progression [55]. The publicly avail- able interactome databases,

such as PPI database (STRING), protein-small-molecule interaction

database (Drugbank), provide a rich resource to reconstruct signalling,

transcriptional and translational networks. For example, MiNETi, pro-

posed by Santra et al [56] is an integrative network method that

first reconstructs separate protein-protein, K-S, and TF-DNA inter-

action networks using the protein interactome, phosphoproteomics,

and transcriptomics data. Then, these networks are connected using

PPI databases, representing the signal transduction from protein com-

plexes to the cell nucleus. MiNETi has been applied to investigate

HRAS signalling in the various subcellular compartments of HeLa cells,

revealing that variations in HRAS protein interactions led to distinct

kinase activation patterns that control gene transcription. This study

also demonstrated that HRAS regulates cell migration from the endo-

plasmic reticulum, and cell survival from the Golgi apparatus. Another

method introduced by Tuncbag et al. [57] involves using a Prize–

Collecting Steiner (PCS) Forest algorithm to construct functionally

meaningful subtrees by integrating phophosproteomic and transcrip-

tomic data. From this, they revealed a novel pathway linking SLT2 to

several TFs that maintain cell-wall integrity and controls biosynthesis.

The phosphoproteomics analysis in the multiomic context has also

been increasingly applied in cancer studies [117]. In a study by Balbin

et al. [58], the authors integrated phosphoproteomics data with tran-

scriptomics and proteomics data to reconstruct signalling networks

associated with Ras oncogenes in non-small cell lung cancer (NSCLC).

Their integrationapproachovercame the low-overlap limitationofdata

integration by defining differently abundant proteins and using the

PCS Tree algorithm to construct functional sub-networks. Through the

sub-network reconstruc tion, they identified and validated a drug tar-

get, LCK, in KRAS-Dep lung cancers. COSMOS, presented by Dugourd

et al. [59], is a network contextualisation tool, enabling connection of

TF, kinase activity, and metabolite abundance based on causal net-

works for identifying renal cell carcinoma drug targets. TieDIE, an

algorithm designed for linking genomics data with pathway events

[118], was used for detecting druggable kinase pathways in prostate

cancer pa tients [60]. Taken together, these studies demonstrated

that the integration of phosphoproteome with other omic data types

enables the reconstruction of trans-regulatory networks that cutting

across multiple regulatory programmes (e.g., gene transcription) and

broadens our understanding of cross-talk amongst different cell types

and across different omic layers in diverse cellular processes and

diseases.

6 CONCLUSION AND FUTURE OUTLOOK

Over the past decade, significant advancement has been made in

phosphoproteomics in terms of scale and precision, which greatly

facilitated the studies of phosphorylation events, leading to numer-

ous discoveries in cell signalling dynamics and their regulation on

downstream biological processes. Given the significant amount of data

generated from increasingly large-scale phosphoproteomics experi-

ments, computational systems methods have become the key drivers

in translating high-throughput data into biological knowledge. How-

ever,many challenges remain in computational analysis and annotation

of phosphoproteomics data and integrating them with other data

types and resources in a systematic way. In this work, we reviewed

some of the most representative methods and studies across diverse

applications ranging from data processing, functional analysis, phos-

phoproteome annotation, to integration of phosphoproteomics data

with other omics data types. Here, we summarise a fewpotential direc-

tions that futureworkwouldmake a significant contribution to this fast

growing field.

The advances of next-generation sequencing and mass spec-

trometry technologies have made the simultaneous collection of

information from multiple molecular layers increasingly more appli-

cable in various biological systems. As we have reviewed in this

work, many studies have been carried out to investigate the interac-

tions between different molecular levels by integrating multi-omic

data that profile multiple molecular programmes (e.g., signalling,

transcription, and translation). However, the development of com-

putational methods that are capable of jointly analysing multi-omic

data is still at its infancy. We anticipate the future development

of advanced tools given the importance of characterising trans-

regulatory networks for comprehensive understanding of cellular

processes.

Owing to its dynamic and cell type-specific nature, a phospho-

rylation event cannot be precisely traced in a heterogeneous cell

population, highlighting the importance of analysing phosphorylation

events at the single-cell level for complex samples such as tissues and

organs. Single-cell proteomics has now entered the centre stage [119]

and adaptation of phosphoproteomics profiling to single-cell seems to

beon thehorizon [120]. Thematurationof these technologieswill revo-

lutionise the field, uncovering the heterogeneity in signalling networks,

complementing single- cell genomics and transcriptomics. Computa-

tional methods designed for single-cell genomics/transcriptomics data

and those developed for integrating multi-omics will form the basis

for future development of methods that can re- construct trans-

regulatory networks for heterogeneous cells in single-cell multi-omics

data.

Finally, the growing bioinformatics toolbox and databases for phos-

phoproteomics data processing, downstream analysis and integration

with other omics data types has made it critical to benchmark these

tools and resources for their utility, accuracy, flexibility, robustness, and

reproducibility. Very few benchmark studies have been performed so

far [121, 13], and the systematic comparison of computational meth-

ods using large collections of datasets and evaluation measurements

is required. We anticipate the number of such benchmark studies

to grow given the increasing reliance on computational methods for

data interpretation, drawing conclusions, and guiding further biological

analysis.
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