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1 Introduction

The discovery of the Inverse Monodromy Transform [1]—[4] saw the inclusion
of the six Painlevé equations amongst the panoply of integrable equations, i.e.,
of equations solvable using underlying linear problems. Recently, the question of
obtaining linear problems for hierarchies of higher order analogues of the Painlevé
equations has absorbed the attention of many authors. In particular, in a series of
recent papers [5]–[8], non-isospectral scattering problems have been used as a means
of deriving new completely integrable hierarchies of partial differential equations
(PDEs) in 2+1 and 1+1 dimensions, and, by reduction, new hierarchies of ordinary
differential equations (ODEs), all together with corresponding underlying linear
problems.

In [8] we presented a generalized non-isospectral dispersive water wave hierarchy
in 2+1 dimensions; amongst the reductions to ODEs of this hierarchy we obtained
a generalized PIV −PII hierarchy which includes as special cases both a hierarchy of
ODEs having the fourth Painlevé equation (PIV ) as first member, and a hierarchy
having the second Painlevé equation (PII ) as first member. We note here that the
PII hierarchy of [8] is not equivalent to the standard PII hierarchy given in [9, 1];
thus both the PII and PIV hierarchies of [8] were previously unknown.

The aim of the present paper is to explore the relationship between the linear
problems for the PII and PIV hierarchies presented in [8], and other linear problems
for these hierarchies. We give the important result that there exist gauge transfor-
mations which map the linear problems for these PII and PIV hierarchies onto two
new sequences of linear problems, whose first members are the linear problems of
PII and PIV given by Jimbo and Miwa [3].

2 A second Painlevé hierarchy

One of the hierarchies of ODEs obtained in [8], as a reduction of a (2 + 1)-
dimensional non-isospectral hierarchy, can be expressed as

Rnux +

n−2∑

i=0

ciR
iux + gn+1

(
1
0

)
=

(
0
0

)
, n ≥ 1, (1)

where gn+1(6= 0) and each of the ci are constants. Here u = (u(x), v(x))T and R is
the recursion operator of the dispersive water wave hierarchy as given in [10],

R =
1

2

(
∂xu∂

−1
x − ∂x 2

2v + vx∂
−1
x u+ ∂x

)
. (2)

In [8], we also gave the following matrix linear problem for the hierarchy (1):

Ψx = FΨ, (3)
(

1

2
gn+1

)
Ψλ = HnΨ =

[(
λn +

n−2∑

i=0

ciλ
i

)
F +Gn +

n−2∑

i=1

ciGi

]
Ψ, (4)

where Ψ = (ψ1, ψ2)
T and the matrices F and Gi are given by

F =

(
− 1

2 (2λ− u) 1
−v 1

2 (2λ− u)

)
, (5)
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Gn =




− 1
4 ((2λ− u)Pn + Pn,x) 1

2Pn

1
2gn+1 + 1

2λ
nux − 1

2Mn
1
4 ((2λ− u)Pn + Pn,x)

− 1
4 ((2λ− u)Pn + Pn,x)

x
− 1

2vPn


 , (6)

and, for i < n,

Gi =




− 1
4 ((2λ− u)Pi + Pi,x) 1

2Pi

1
2λ

iux − 1
2Mi

1
4 ((2λ− u)Pi + Pi,x)

− 1
4 ((2λ− u)Pi + Pi,x)

x
− 1

2vPi


 . (7)

In the above, Mi and Pi are given respectively by
(
Mn

Nn

)
= Rnux + gn+1

(
1
0

)
, (8)

(
Mi

Ni

)
= Riux, for i < n, (9)

and

Pi = ∂−1
x

i−1∑

j=0

λi−1−jMj . (10)

The compatibility condition of the matrix linear problem (3), (4) is equation (1).
Since each member of the dispersive water wave hierarchy is in conservation

form, each component of our hierarchy (1) integrates immediately to give

(
M̃n

Ñn

)
≡

(
∂−1

x 0
0 ∂−1

x

)[
Rnux +

n−2∑

i=0

ciR
iux

]
+

(
gn+1x
−δn

)
=

(
0
0

)
, (11)

where δn is one of the constants of integration; our assumption that gn+1 6= 0 allows
us to set the second constant of integration to zero without loss of generality. It
is this hierarchy that is our PII hierarchy; as we shall see, in the case n = 1, this
system of equations yields PII itself. We note, however, that higher order members
of this hierarchy are different from those of the PII hierarchy presented in [9, 1].

It is a simple matter to write down a linear problem whose compatibility condi-
tion gives the hierarchy (11) directly; this is given by the pair of equations

Ψx = FΨ, (12)

Ψλ = KnΨ, (13)

where

Kn =
1

gn+1

[
2Hn +

(
−M̃n 0

2Ñn M̃n

)]
=

(
(Kn)11 (Kn)12
(Kn)21 (Kn)22

)
. (14)

Note that the second matrix term in the square brackets of (14) is identically zero
when the equations of the hierarchy are satisfied. The addition of this matrix to
2Hn is equivalent to substituting higher order derivatives in Hn in order to obtain
as compatibility condition the integrated hierarchy (11) rather than the original
hierarchy (1).
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2.1 The relationship with the Jimbo-Miwa linear problem

for the second Painlevé equation

Let us consider the linear problem for the hierarchy (11) given by the system of
equations (12), (13), where F and Kn are as above. We now consider the gauge
transformation

Ψ = MΦ, (15)

where the matrix M is given by

M =

(
e

1

2
s(x) 0

0 e−
1

2
s(x)

)
, (16)

and where sx = u. This maps the linear system (12), (13) onto

Φx = AΦ, (17)

Φλ = BnΦ, (18)

where (noting that Mλ = 0)

A = M−1FM −M−1Mx =

(
−λ w

2
−2 v

w
λ

)
, (19)

Bn = M−1KnM =

(
(Kn)11

w
2 (Kn)12

2
w

(Kn)21 (Kn)22

)
, (20)

and where we have introduced the auxiliary function w = w(x) defined by w = 2e−s,
and which therefore satisfies the relation wx

w
= −u.

Thus we obtain a different sequence of linear problems (17), (18) for the PII

hierarchy (11): the first of these is, up to a trivial change of variables (see next
section), the linear problem for PII given by Jimbo and Miwa [3]. We thus obtain
the result that the PII hierarchy obtained in [8] could also have been obtained by
expanding in powers of λ (or µ = −2λ; again, see next section) in the Jimbo-Miwa
linear problem for PII , i.e., by using an Ablowitz-Kaup-Newell-Segur (AKNS) type
approach [11] therein. We now illustrate this remark with some examples.

2.2 Examples

2.2.1 Example n = 1

For the case n = 1 of the hierarchy (11) we have the system of equations

v +
1

2
(u2 − ux) + g2x = 0, (21)

uv +
1

2
vx − δ1 = 0. (22)

This system is equivalent to the second order ODE

uxx = 2u3 + 4g2xu+ 2(g2 + 2δ1), (23)
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which for g2 6= 0 is just the second Painlevé equation PII . We have the correspond-
ing linear problem given by equations (12), (13), where

F =

(
−λ+ 1

2u 1
−v λ− 1

2u

)
, (24)

K1 =
1

g2

2∑

j=0

K1,jλ
j , (25)

and where the matrices K1,j are given by

K1,2 = 2

(
−1 0
0 1

)
, K1,1 = 2

(
0 1
−v 0

)
, K1,0 =

(
−v − g2x u
uv − 2δ1 v + g2x

)
.

(26)
After the gauge transformation (15) we obtain the linear problem (17), (18) with

A =

(
−λ w

2
−2 v

w
λ

)
, (27)

B1 =
1

g2

2∑

j=0

B1,jλ
j , (28)

where each B1,j = M−1K1,jM , and where w satisfies wx

w
= −u. This transfor-

mation leads to the introduction of factors (w/2) and (2/w) in the off-diagonal
elements of the matrix B1, as in (20).

If in the linear system (17), (18), with A and B1 given as above, we set λ =
−(µ/2), v = z/2, g2 = 1/4, u = y and 4δ1 = α− 1

2 , then we obtain the linear system
for PII as given by Jimbo and Miwa [3], i.e.

Φx = ÃΦ (29)

Φµ = B̃1Φ (30)

with

Ã =
1

2

(
µ w

−2 z
w

−µ

)
, (31)

B̃1 =




1 0

0 −1


µ2 +




0 w

−2 z
w

0


µ+




z + 1
2x −wy

2α−1−2zy
w

−z − 1
2x


 .(32)

The compatibility condition of this last gives wx = −yw and, after elimination of
w, the system of equations

zx = −2yz + α−
1

2
, (33)

yx = y2 + z +
x

2
. (34)

These two equations imply that y satisfies PII :

yxx = 2y3 + xy + α. (35)

5



2.2.2 Example n = 2

In the case n = 2 of the hierarchy (11) we have the system of equations

1

4

(
uxx − 3uux + u3 + 6uv

)
+ c0u+ g3x = 0, (36)

1

4

(
vxx + 3v2 + 3uvx + 3u2v

)
+ c0v − δ2 = 0. (37)

This system arises as the compatibility condition of the linear problem (12), (13)
where F is given by (24) and K2 by

K2 =
1

g3

3∑

j=0

K2,jλ
j , (38)

where the matrices K2,j are as follow:

K2,3 = 2

(
−1 0
0 1

)
, (39)

K2,2 = 2

(
0 1
−v 0

)
, (40)

K2,1 =

(
−v − 2c0 u
−vx − uv v + 2c0

)
, (41)

K2,0 =

(
− 1

2vx − uv − g3x
1
2

(
u2 − ux

)
+ v + 2c0

1
2

(
v2 + uvx − uxv

)
+ u2v − 2δ2

1
2vx + uv + g3x

)
. (42)

After the gauge transformation (15) we obtain the linear problem (17), (18) with

A =

(
−λ w

2
−2 v

w
λ

)
, (43)

B2 =
1

g3

3∑

j=0

B2,jλ
j , (44)

where as before each B2,j = M−1K2,jM . We note that this particular member of
our PII hierarchy was also obtained by Kitaev [12] (see Appendix).

2.2.3 Example n = 3

In the case n = 3 the system of equations (11) is:

1

8

(
−uxxx + 6v2 + 2vxx + 4uuxx − 6vux − 6u2ux + 3u2

x + 12u2v + u4
)

+c1

(
v +

1

2
u2 −

1

2
ux

)
+ c0u+ g4x = 0, (45)

1

8

(
vxxx + 6vvx + 2vuxx + 2uxvx + 12v2u+ 4u3v + 6u2vx + 4uvxx

)

+c1

(
uv +

1

2
vx

)
+ c0v − δ3 = 0. (46)

6



This system arises as the compatibility condition of the linear problem (12), (13),
where F is given by (24) and K3 by

K3 =
1

g4

4∑

j=0

K3,jλ
j , (47)

and where the matrices K3,j are:

K3,4 = 2

(
−1 0
0 1

)
, (48)

K3,3 = 2

(
0 1
−v 0

)
, (49)

K3,2 =

(
−v − 2c1 u
−vx − uv v + 2c1

)
, (50)

K3,1 =




− 1
2vx − uv − 2c0

1
2

(
u2 − ux

)
+ v + 2c1

− 1
2

(
vxx + 2v2 + u2v + 2uvx + uxv

)
1
2vx + uv + 2c0

−2c1v


 ,

(51)

K3,0 =




− 1
4

(
vxx + 3v2 + 3u2v + 3uvx

)
1
4

(
uxx − 3uux + 6uv + u3

)

−c1v − g4x +c1u+ 2c0

1
4

(
vuxx + uvxx + 3u2vx − 3uvux

1
4

(
vxx + 3v2 + 3u2v + 3uvx

)

−uxvx + 3u3v + 6uv2
)

+c1v + g4x
+c1uv − 2δ3



.

(52)

Again, after the gauge transformation (15) we obtain the linear problem (17), (18)
with

A =

(
−λ w

2
−2 v

w
λ

)
, (53)

B3 =
1

g4

4∑

j=0

B2,jλ
j , (54)

and where as before B3,j = M−1K3,jM .

3 A fourth Painlevé hierarchy

We now consider the PIV hierarchy which, together with its linear problem, we
introduced in [8]. Without any loss of generality we assume that our PIV hierarchy
is of the form

Rnux +

n−1∑

i=1

ciR
iux + gnR

(
1
0

)
=

(
0
0

)
, n ≥ 1, (55)

where again gn(6= 0) and ci are constants, and where R is the recursion operator of
the dispersive water wave hierarchy (2). Bäcklund transformations for this hierarchy
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have been given in [13]. We also note that a detailed singularity analysis of the
case n = 2, which presented certain difficulties, was undertaken in [14]. Here we
concentrate on the linear problem for (55), whose matrix form is [8]

Ψx = FΨ, (56)
(

1

2
λgn

)
Ψλ = HnΨ =

[(
λn +

n−1∑

i=1

ciλ
i

)
F +Gn +

n−1∑

i=1

ciGi

]
Ψ, (57)

where Ψ = (ψ1, ψ2)
T and the matrices F , Gn, and Gi for i < n, are given by:

F =

(
− 1

2 (2λ− u) 1
−v 1

2 (2λ− u)

)
, (58)

Gn =




− 1
4 ((2λ− u)Pn + Pn,x) 1

2Pn

1
2λgn + 1

2λ
nux − 1

2Mn
1
4 ((2λ− u)Pn + Pn,x)

− 1
4 ((2λ− u)Pn + Pn,x)

x
− 1

2vPn


 ,(59)

where
(
Mn

Nn

)
= Rnux + gnR

(
1
0

)
, (60)

(
Mn−1

Nn−1

)
= Rn−1ux + gn

(
1
0

)
, (61)

(
Mj

Nj

)
= Rjux, for j < n− 1, (62)

and

Pn = ∂−1
x

n−1∑

j=0

λn−1−jMj ; (63)

and (for i < n)

Gi =




− 1
4 ((2λ− u)Pi + Pi,x) 1

2Pi

1
2λ

iux − 1
2M̂i

1
4 ((2λ− u)Pi + Pi,x)

− 1
4 ((2λ− u)Pi + Pi,x)

x
− 1

2vPi


 , (64)

where (
M̂i

N̂i

)
= Riux (65)

and now

Pi = ∂−1
x

i−1∑

j=0

λi−1−jM̂j . (66)

The compatibility condition of the matrix linear problem (56), (57) is equation (55).
Again, as in the case of the PII hierarchy discussed in Section 2, this hierarchy

(55) can be integrated. The integrated version of this hierarchy was presented in [8]
and its derivation was given in [15]. A general statement of this integration process
can be found in [16]. We briefly sumarize the results here.
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The hierarchy (55) can be a written in the alternative form

B2Kn[u] = 0, (67)

where

Kn[u] = Ln[u] +
n−1∑

i=1

ciLi[u] + gn

(
0
x

)
, (68)

B2 is one of the three Hamiltonian operators of the dispersive water wave hierarchy,

B2 =
1

2

(
2∂x ∂xu− ∂2

x

u∂x + ∂2
x v∂x + ∂xv

)
, (69)

and each Li[u] is the variational derivative of the Hamiltonian density corresponding
to the operator B2 for the ti-flow of the dispersive water wave hierarchy, uti

=
Riux = B2Li[u] (for further details, see [10]).

Here we have used the fact that R = B2B
−1
1 , where

B1 =

(
0 ∂x

∂x 0

)
(70)

is another of the Hamiltonian operators of the dispersive water wave hierarchy.
We note also that we have the recursion relation B1Li+1[u] = B2Li[u], and that
L1[u] = (v, u)T .

The integrated form of (55) is

M̃n ≡ Ln,x − 2Kn − uLn − (gn − 2αn) = 0, (71)

Ñn ≡ Kn,x −
(Kn + 1

2gn − αn)2 − 1
4β

2
n

Ln

+ vLn = 0, (72)

where Kn = (Kn, Ln)T , and where αn and β2
n are the two arbitrary constants of

integration.
A matrix linear problem whose compatibility condition is precisely the inte-

grated hierarchy (71), (72) can easily be given. This can be done, in the same
way as for the PII hierarchy, by adding to Hn in the linear equation (57) a matrix
whose entries (being the integrated equations themselves) are identically zero. This
matrix is obtained by taking into account the dependence of Hn on the higher or-
der derivatives un,x and vn,x, as well as that of M̃n and Ñn on these derivatives:

M̃n ∼
(
− 1

2

)n−1
un,x, Ñn ∼

(
1
2

)n−1
vn,x. We thus obtain the linear problem

Ψx = FΨ, (73)

Ψλ = KnΨ, (74)

where the matrix Kn is given by

Kn =
1

λgn

[
2Hn +

(
1
2M̃n 0

Ñn − 1
2M̃n

)]
=

(
(Kn)11 (Kn)12
(Kn)21 (Kn)22

)
. (75)

The compatibility condition of the linear problem (73), (74) is the integrated hier-
archy (71), (72).

9



3.1 The relationship with the Jimbo-Miwa linear problem

for the fourth Painlevé equation

As for the PII hierarchy discussed in Section 2, we now consider a gauge transfor-
mation of the linear problem (73), (74): we set

Ψ = MΦ, (76)

where as before

M =

(
e

1

2
s(x) 0

0 e−
1

2
s(x)

)
(77)

and sx = u. The linear system (73), (74) is then mapped to

Φx = AΦ, (78)

Φλ = BnΦ, (79)

where A and Bn are now

A = M−1FM −M−1Mx =

(
−λ w
− v

w
λ

)
, (80)

Bn = M−1KnM =

(
(Kn)11 w(Kn)12
1
w

(Kn)21 (Kn)22

)
, (81)

and where we have introduced the auxiliary function w = w(x) defined — differently
from in Section 2 — by w = e−s, and which therefore satisfies the relation wx

w
= −u.

We now consider some examples. In particular we will see how, using the above
gauge transformation, the linear problem for the first nontrivial flow of our hierarchy
is mapped onto the linear problem for PIV given by Jimbo and Miwa [3]. This then
means that our PIV hierarchy (71), (72) could alternatively have been obtained
using an AKNS type approach in the Jimbo-Miwa linear problem for PIV .

3.2 Examples

3.2.1 Example n = 1

The first non-trivial flow of the hierarchy (71), (72) consists of the pair of equations

ux = 2v + u2 + g1xu− 2α1, (82)

vx =

[
v − α1 + 1

2g1
]2

− 1
4β

2
1

(u+ g1x)
− v(u+ g1x), (83)

where α1 and β1 are two independent constants of integration. Eliminating v be-
tween these equations and performing the change of variables

u = y − g1x, (84)

we obtain

yxx =
1

2

y2
x

y
+

3

2
y3 − 2g1xy

2 + 2[(g2
1x

2/4)− α1]y −
1

2

β2
1

y
. (85)
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Setting g1 = −2, which can be done without loss of generality for g1 6= 0, gives

yxx =
1

2

y2
x

y
+

3

2
y3 + 4xy2 + 2(x2 − α1)y −

1

2

β2
1

y
, (86)

i.e., PIV . Corresponding to the system (82), (83) we have the linear problem given
by equations (73), (74) where

F =

(
−λ+ 1

2u 1
−v λ− 1

2u

)
, (87)

K1 =
1

g1

1∑

j=−1

K1,jλ
j , (88)

with K1,j given by

K1,1 = 2

(
−1 0
0 1

)
, (89)

K1,0 =

(
−g1x 2
−2v g1x

)
, (90)

K1,−1 =




−v − 1
2g1 + α1 u+ g1x

−
[v−α1+

1

2
g1]

2
−

1

4
β2

1

(u+g1x) v + 1
2g1 − α1


 . (91)

Our gauge transformation then yields the alternative linear problem (78), (79) with

A =

(
−λ w
− v

w
λ

)
, (92)

B1 =
1

g1

1∑

j=−1

B1,jλ
j , (93)

where w satisfies wx

w
= −u and each B1,j = M−1K1,jM . This transformation leads

to the introduction of factors w and (1/w) in the off-diagonal elements of the matrix
B1, as in (81).

If in the linear system (78), (79), with A and B1 given as above, we set λ = −µ
and choose g1 = −2, make the transformation

u = y + 2x, (94)

v = −2z + 2 (θ0 + θ∞) , (95)

and redefine the parameters α1 and β1 as

α1 = 2θ∞ − 1, (96)

β2
1 = 16θ20, (97)

we obtain the linear problem

Φx = ÃΦ, (98)

Φµ = B̃1Φ, (99)

11



where

Ã =




µ w

2(z−θ0−θ∞)
w

−µ


 , (100)

B̃1 =

(
1 0
0 −1

)
µ+

(
x w

2(z−θ0−θ∞)
w

−x

)
+

(
−z + θ0 − 1

2wy
2z(z−2θ0)

wy
z − θ0

)
1

µ
,

(101)

and where we now have the relation wx

w
= −y− 2x. The compatibility condition of

this linear problem gives this last relation and, after elimination of w, the system
of equations

zx = −
2

y
z2 − yz +

4θ0
y
z + (θ0 + θ∞) y, (102)

yx = −4z + y2 + 2xy + 4θ0, (103)

which is of course equivalent to PIV . The above linear problem is the linear problem
for PIV given by Jimbo and Miwa in [3].

3.2.2 Example n = 2

As a further example we give here the results for the second member of our PIV

hierarchy (71), (72),

uxx = 3uux − u3 − 6uv − 2g2xu+ 2c1
(
ux − 2v − u2

)
+ 4α2,

(104)

vxx = 2

([
uv + 1

2vx + c1v − α2 + 1
2g2
]2

− 1
4β

2
2

v + 1
2u

2 − 1
2ux + g2x+ c1u

)
− 2(uv)x

−2v

(
v +

1

2
u2 −

1

2
ux + g2x

)
− 2c1 (vx + uv) , (105)

where α2 and β2 are two independent constants of integration.
Corresponding to the system (104), (105) we have the linear problem given by

equations (73), (74) where

F =

(
−λ+ 1

2u 1
−v λ− 1

2u

)
, (106)

K2 =
1

g2

2∑

j=−1

K2,jλ
j , (107)

with K2,j given by

K2,2 = 2

(
−1 0
0 1

)
, (108)

K2,1 =

(
−2c1 2
−2v 2c1

)
, (109)

12



K2,0 =




−v − g2x u+ 2c1

−vx − uv − 2c1v v + g2x


 , (110)

K2,−1 =




− 1
2 (2uv + vx) 1

2 (2v + u2 − ux)
−c1v −

1
2g2 + α2 +c1u+ g2x

−
[uv+ 1

2
vx+c1v−α2+ 1

2
g2]

2
−

1

4
β2

2

v+ 1

2
u2

−
1

2
ux+g2x+c1u

1
2 (2uv + vx)

+c1v + 1
2g2 − α2



. (111)

Our gauge transformation then yields the alternative linear problem (78), (79), with

A =

(
−λ w
− v

w
λ

)
, (112)

B2 =
1

g2

2∑

j=−1

B2,jλ
j , (113)

where w satisfies wx

w
= −u and where each B2,j = M−1K2,jM .

4 Conclusions

We have studied in detail the PII and PIV hierarchies derived in [8]. We have
shown that the corresponding linear problems can be mapped on to alternative
linear problems such that those for the first members of our hierarchies (i.e. for PII

and PIV themselves) are precisely the linear problems given by Jimbo and Miwa
[3]. This then means that our hierarchies could alternatively have been obtained by
using an AKNS type approach, i.e. expanding in powers of λ, in the Jimbo-Miwa
linear problems for PII and PIV . Our work here then raises the interesting problem
of whether other Jimbo-Miwa linear problems can be used to obtain hierarchies
based on Painlevé equations. This is a topic that we will pursue in subsequent
studies.
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Appendix

In this Appendix we briefly consider the linear problems for PII given in [1] and [3],

Φt = UΦ, Φξ = VΦ, (114)

13



which we take here in the forms presented in [17], i.e. respectively in the form of
[1] with

U =

(
−iξ ip
−ip iξ

)
, (115)

V =

(
−i(4ξ2 + t+ 2p2) i(4pξ − β/ξ) − 2pt

−i(4pξ − β/ξ) − 2pt i(4ξ2 + t+ 2p2)

)
, (116)

or, corresponding to [3], with

U =

(
−iξ iq
−ir iξ

)
, (117)

V =

(
−i(4ξ2 + t+ 2qr) 4iqξ − 2qt

−4irξ − 2rt i(4ξ2 + t+ 2qr)

)
. (118)

The compatibility condition of each of these linear problems yields PII (in the case
of (117), (118) after integrating twice). The linear problem (114) with (117), (118)
is put into standard Jimbo-Miwa form (29)—(32) by making the change of variables

q = −
1

2
iγw, r = −iγ

z

w
, t =

x

γ
, ξ =

1

2
iγµ, (119)

and using the relations

qt =
1

2
iγ2wy, rt = −iγ2

(
α− (1/2) − zy

w

)
, (120)

where γ3 = −2. This identification means that our PII hierarchy decribed in Section
2 could also have been derived beginning with an AKNS type linear problem, which
then explains why Kitaev obtained the second member of our hierarchy when seeking
to isolate examples of higher order ODEs related to such a linear problem [12].

It is argued in [17] that there is no elementary relation between the linear prob-
lems given by (114) with (115), (116), and (114) with (117), (118); for example,
there is no gauge transformation mapping one into the other. However, whilst
there is no known gauge transformation, we give a general linear problem which
encapsulates both Lax pairs. Consider the linear problem (114) with

U =

(
−iξ iq
−ir iξ

)
, (121)

V =

(
−i(4ξ2 + t+ 2qr) i(4qξ − β/ξ) − 2qt

−i(4rξ − β/ξ) − 2rt i(4ξ2 + t+ 2qr)

)
. (122)

The compatibility condition of this linear problem yields the three equations

qtt = 2q2r + tq + β, (123)

rtt = 2qr2 + tr + β, (124)

β(q − r) = 0, (125)

the third of which tells us that we must either have q = r or β = 0, corresponding to
the choices (115), (116) and (117), (118) respectively. That is, the linear problems
with (115), (116) and (117), (118) are in fact both special cases of (121), (122).
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31-53 (1979).

[10] B. A. Kupershmidt, Mathematics of dispersive water waves, Commun. Math.
Phys. 99 51-73 (1985).

[11] M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur, The inverse scattering
transform-Fourier analysis for nonlinear problems, Stud. Appl. Math. 53 249-
315 (1974).

[12] A. V. Kitaev, Caustics in 1+1 integrable systems, J. Math. Phys. 35 2934-2954
(1994).

[13] P. R. Gordoa, N. Joshi and A. Pickering, Bäcklund transformations for fourth
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