PreprintOn minimal ideal triangulations of cusped hyperbolic 3-manifoldsWilliam Jaco, Hyam Rubinstein, Jonathan Spreer and Stephan TillmannAbstractPrevious work of the authors studies minimal triangulations of closed 3-manifolds using a characterisation of low degree edges, embedded layered solid torus subcomplexes and 1-dimensional \(\mathbb{Z}_2\)-cohomology. The underlying blueprint is now used in the study of minimal ideal triangulations. As an application, it is shown that the monodromy ideal triangulations of the hyperbolic once-punctured torus bundles are minimal. AMS Subject Classification: Primary 57Q15; secondary 57N10, 57M50, 57M27.
This paper is available as a pdf (1168kB) file. It is also on the arXiv: arxiv.org/abs/1808.02836.
|