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Abstract. Let Psϕ(x) = Eϕ(Xx(s)), be the transition semi-
group on the space Bb(E) of bounded measurable functions on
a Banach space E, of the Markov family defined by the linear
equation with additive noise

dX(s) = (AX(s) + a) ds+BdW (s), X(0) = x ∈ E.

We give a simple probabilistic proof of the fact that null-controlla-
bility of the corresponding deterministic system

dY (s) = (AY (s) +BU(t)x)(s)) ds, Y (0) = x,

implies that for any ϕ ∈ Bb(E), Ptϕ is infinitely many times Fréchet
differentiable and that

DnPtϕ(x)[y1, . . . , yn] = Eϕ(Xx(t))(−1)nInt (y1, . . . , yn),

where Int (y1, . . . , yn) is the symmetric n-fold Itô integral of the
controls U(t)y1, . . .U(t)yn.
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1. Introduction

We will consider the following linear stochastic differential equation

(1.1) dX(s) = (AX(s) + a) ds+BdW (s), X(0) = x ∈ E ,

where E is a Banach space and A generates a strongly continuous
semigroup on E (see Section 2 for precise formulation). Under condi-
tions specified in Section 2 this equation has, for every x ∈ E, a unique
mild solution Xx known as a (generalised) Ornstein-Uhlenbeck process.
Since the family {Xx; x ∈ E} is Markov in E, we can define the cor-
responding transition semigroup Ptϕ(x) = Eϕ(Xx(t)). Investigation
of differentiability of Ptϕ was initiated by Kolmogorov in [16], where a
simple version of equation (1.1) is considered in R2. If E = Rd and the
pair (A,B) satisifies the Hörmander hipoellipticity condition (see [15])
then the function Ptϕ is Fréchet differentiable for every bounded Borel
function ϕ and

(1.2) ∥DPtϕ∥∞ ≤ c

tk/2
∥ϕ∥∞, t ≤ 1 ,

where the value of k follows from the Hörmander condition as well.
It has been known for a long time that the Hörmander condition

holds if and only if the deterministic controlled system

dY

dt
(t) = AY (t) +Bu(t), Y (0) = x

is null-controllable for every x ∈ Rd and if and only if the transition
semigroup (Pt) is strongly Feller. It was proved in [7] that this formu-
lation can be carried to Hilbert spaces, where the estimate (1.2) takes
the form

(1.3) ∥|DPtϕ∥∞ ≤ ∥U(t)∥∥ϕ∥∞,
with ∥U(t)∥ being the norm of the controllability operator.

In many problems it is important to estimate the gradient of the
transition semigroup in function spaces such as weighted Lp spaces or
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weighted Sobolev and Besov spaces, in which case (1.3) is not satisfac-
tory. The aim of this paper is to derive a pointwise formula for DPtϕ
that may be used to derive norm estimates in various function norms.
Our main result, see Theorem 2.6, provides a probabilistic formula

(1.4) DnPtϕ(x)[y1, . . . yn] = Eϕ(Xx(t))(−1)nInt (y1, . . . , yn),

where Int (y1, . . . , yn) is the symmetric n-fold Itô integral of the controls
U(t)y1, . . .U(t)yn driving points y1, . . . , yn in E to zero. This result is
obtained under rather mild assumptions on (A,B). In particular, the
process BW (hence the null control Bu) can take values in a Banach
space bigger than E (see Section 2 for details) if the C0-semigroup
generated by A has appropriate smoothing properties. As a result, we
obtain smoothing properties of Pt and the estimate (1.3) as well as the
estimates for ∥DnPtϕ∥∞. One of the main results of the paper are the
formulae and estimates for DnPtϕ in the case of boundary noise studied
recently in [14]. Let us note that the case of boundary noise requires
use of weighted Lp-spaces, where the pointwise formula (1.4) for the
gradient of the transition semigroup has to be used.

We easily recover the known results (1.2), (1.3) in the hypoelliptic
case in Rd. Theorem 2.6 will also allow us to give rapid proofs of some
known facts such as the Liouville property and absolute continuity of
transition measures.

While some of our results are known, the method of proof based on
the Girsanov theorem seems to be new. Let us recall that a probabilistic
formula for the gradient of the transition semigroup is also provided by
the famous Bismut–Elworthy–Li formula [12] extended later to Hilbert
spaces in [19]. However, this formula requires the operator B in (1.1) to
be invertible for E = Rd or the process BW close to cylindrical Wiener
process if E is a Hilbert space. We do not require these assumptions.

Additionally, we will provide detailed arguments for the null control-
lability of equation (1.2) in the case of boundary control.

2. Formulation and main results

Let (Wk) be a finite or infinite sequence of independent standard
real-valued Wiener processes defined on a probability space (Ω,F,P).
Let (E, ∥ · ∥E) and (V, ∥ · ∥V ) be Banach spaces. We assume that
E is continuously and densely embedded into V . Let (H, ⟨·, ·⟩H), be a
Hilbert space endowed with an orthonormal basis (ek). We will consider
the following linear stochastic evolution equation with an additive noise

(2.1) dX(s) = (AX(s) + a) ds+BdW (s), X(0) = x .
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We assume that
W (s) =

∑
k

Wk(s)ek,

is a cylindrical Wiener process on H, B is a linear operator from H into
V , (A,Dom(A)) is the generator of a C0-semigroup S = (S(s); s ≥ 0)
on E, and a ∈ V .

Our first assumption ensures the existence of a solution to (2.1) in
E.

Hypothesis 2.1. For each s > 0, S(s) has an extension to a bounded
linear operator from V to E. Moreover, for each k and s > 0, the
mapping

[0, s) ∋ r 7→ S(s− r)Bek

is integrable in E with respect to Wk, and the series∑
k

∫ s

0

S(s− r)BekdWk(r)

converges in probability in E. We also assume that for any s > 0 the
integral

∫ s

0
S(r)adr converges in E.

Remark 2.2. If E is a Hilbert space then the first part of Hypothesis
2.1 can be formulated equivalently: for each r > 0, S(r)B is a Hilbert–
Schmidt operator from H into E and∫ s

0

∥S(r)B∥2L(HS)(H,E)dr < +∞, s > 0,

where ∥ · ∥2L(HS)(H,E) stands for the Hilbert–Schmidt operator norm.

Explicit conditions for stochastic integrability in Lp-spaces are also
known, see for example Proposition A.1 from [3].

Clearly, under Hypothesis 2.1, equation (2.1) has a unique mild so-
lution

Xx(s) = S(s)x+

∫ s

0

S(s− r)adr +
∑
k

∫ t

0

S(s− r)BekdWk(r).

In particular

X0(s) =

∫ t

0

S(s− r)adr +
∑
k

∫ t

0

S(s− r)BekdWk(r)

is a solution starting from x = 0 ∈ E.
Moreover, (2.1) defines on the space Bb(E) of bounded measurable

functions on E, the transition semigroup Psϕ(x) = Eϕ (Xx(s)), ϕ ∈
Bb(E), s ≥ 0, x ∈ E.
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2.1. Some definitions. Let L2(0, T ;H) denote the Hilbert space of
measurable square integrable mappings u : [0, T ] 7→ H.

Consider the following deterministic system

(2.2) dY (s) = (AY (s) +Bu(s)) ds, Y (0) = x.

Definition 2.3. The deterministic system (2.2) is said to be null-
controllable at time T if for any t ≥ T there exists a bounded linear
operator U(t) : E 7→ L2(0, t;H), such that:

S(t)x+
∑
k

∫ t

0

S(t− s)Bu(t, x; s)ds = 0,

where u(t, x; s) = (U(t)x) (s).

It is easy to see that the system (2.2) is null controllable if and only
if the system

dY (s) = (AY (s) + a+Bu(s)) ds, Y (0) = x

is null-controllable.
Connections between null-controllability and strong Feller property

of linear stochastic evolution equations on Hilbert spaces with addi-
tive noise were establish in the following series of papers and books:
Zabczyk [25], Da Prato and Zabczyk [10, 11], and Da Prato, Pritchard,
and Zabczyk [8].

Definition 2.4. System (2.2) is null-controllable with uniform vanish-
ing energy, if it is null controllable at some time T , and the control-
lability operator U(t) → 0 in the operator norm as t → +∞. It is
null-controllable with vanishing energy if U(t)x → 0 in the L2(0, t;H)
norm as t→ +∞ for any x ∈ E.

The connections between null controllability with vanishing energy
and the Liouville type property was established in [18], [21], and [22],
see also our Corollary 2.8.

Definition 2.5. Let (Ps) be a transition semigroup on Bb(E). A func-
tion ψ : E 7→ R is called (Ps)-harmonic if Psψ = ψ for any s ≥ 0.
We say that (Ps) has the Liouville type property if any bounded (Ps)-
harmonic function is constant.

2.2. n-fold symmetric Itô’s integral. Assume that the determinis-
tic system (2.2) is null-controllable at time T . Let us fix t ≥ T and a
control operator U(t). Given y and a sequence (yl) of elements of E,
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and s ∈ [0, t], write

(2.3)

Is(y) =

∫ s

0

⟨u(t, y; r), dW (r)⟩H ,

Js(yl, yj) =

∫ s

0

⟨u(t, yl; r), u(t, yj; r)⟩Hdr,

u(t, y; r) = (U(t)y) (r).

For n ≥ 1 we define n-folde symmetric integrals Ins (y1, . . . , yn) putting
I1s (y) = Is(y) and

Ins (y1, . . . , yn)

=
n∑

j=1

∫ s

0

In−1
r (y1, . . . , yj−1, yj+1, . . . yn)⟨u(t, yj; r), dW (r)⟩H .

2.3. General result. Given u ∈ L2(0, t;H) define

Mu(t) := exp

{∫ t

0

⟨u(s), dW (s)⟩H − 1

2

∫ t

0

∥u(s)∥2Hds
}
.

The following result is a generalization of Theorem 9.26 from [10].
We denote by D the operator of Fréchet derivative in space variable.

Theorem 2.6. Assume that the deterministic system (2.2) is null-
controllable at time T . Then for ϕ ∈ Bb(E), t ≥ T and x ∈ E we
have

(2.4) Ptϕ(x) = Eϕ(X0(t))M−u(t,x,·)(t).

Moreover, for any n and ϕ ∈ Bb(E), Ptϕ is n-times differentiable, and

(2.5) DnPtϕ(x)[y1, . . . , yn] = Eϕ(Xx(t))(−1)nInt (y1, . . . , yn).

Finally, we have

|DnPtϕ(x)[y1, . . . , yn]| ≤ ∥U(t)∥nL(E,L2(0,t;H)) ∥ϕ∥Bb(E)

n∏
l=1

∥yl∥E.

Proof. Let t ≥ T . By the Girsanov theorem

W ∗(s) = W (s)−
∫ s

0

u(t, x; r)dr, s ∈ [0, t],

is a Wiener process under the probability measure

dP∗ =Mu(t,x;·)(t)dP = eIt(x)−
1
2
Jt(x,x).

Then

Eϕ(Xx(t)) = E∗ϕ(Xx(t))
(
Mu(t,x;·))(t)

)−1
,
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Mu(t,x;·)(t)

)−1

= exp

{
−
∫ t

0

⟨u(t, x; s), dW (s)⟩H +
1

2

∫ t

0

∥u(t, x; s)∥2Hds
}

= exp

{
−
∫ t

0

⟨u(t, x; s), dW ∗(s)⟩H − 1

2

∫ t

0

∥u(t, x; s)∥2Hds
}
,

and from the null-controllability assumption

Xx(t) =

∫ t

0

S(t− s)ads+

∫ t

0

S(t− s)BdW ∗(s).

Hence we have (2.4), and moreover,

DnPtϕ(x)[y1, . . . , yn] = Eϕ(X0(t))DnM−u(t,x,·)(t)[y1, . . . , yn].

Under the measure dP∗ =M−u(t,x;·)(t)dP the process

W ∗(s) = W (s) +

∫ s

0

u(t, x; r)dr

is a Wiener process. Moreover,

X0(t) =

∫ t

0

S(t− s)ads+

∫ t

0

S(t− s)B (dW ∗(s)− u(t, x; s)ds)

= S(t)x+

∫ t

0

S(t− s)ads+

∫ t

0

S(t− s)BdW ∗(s).

Therefore

DnPtϕ(x)[y1, . . . , yn] = Eϕ(Xx(t))Y (t, y1, . . . , yn),

where Y (t, y1, . . . , yn) can be obtain from

DnM−u(t,x,·)(t)[y1, . . . , yn]

M−u(t,x,·)(t)

= eIt(x)+
1
2
Jt(x,x)Dne−It(x)− 1

2
Jt(x,x)[y1, . . . , yn]

by replacing above dW (s) by dW (s) − u(t, x; s)ds, that is each It(y)
by It(y)− Jt(y, x). In particular, we have

Y (t, y) = −
∫ t

0

⟨u(t, y; s), dW (s)− u(t, x; s)ds⟩H

−
∫ t

0

⟨u(t, x; s), u(t, y; s)⟩Hds

= −
∫ t

0

⟨u(t, y; s), dW (s)⟩H = −It(y),
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and

Y (t, y1, y2) = It(y1)It(y2)− Jt(y1, y2).

In order to see that for any n, Y (t, y1, . . . yn) = (−1)nInt (y1, . . . , yn),
let us fix t, x, n, y1, . . . , yn, and let us write

Zn(s) := DnM−u(t,x,·)(t)[y1, . . . , yn],

Zj
n(s) := Dn−1M−u(t,x,·)(t)[y1, . . . , yj−1, yj+1, . . . , yn].

Then

dM−u(t,x,·)(s) = −M−u(t,x,·)(s) ⟨u(t, x; s), dW (s)⟩H ,
dZn(s) = −Zn(s) ⟨u(t, x; s), dW (s)⟩H

−
n∑

j=1

Zj
n(s) ⟨u(t, yj; s), dW (s)⟩H ,

d
1

M−u(t,x,·)(t)
=

1

M−u(t,x,·)(t)

[
⟨u(t, x; s), dW (s)⟩H + ∥u(t, x; s)∥2H

]
ds,

and consequently, for

Vn(s) :=
Zn(s)

M−u(t,x,·)(t)
and V j

n (s) :=
Zj

n(s)

M−u(t,x,·)(t)

we have

dVn(s) =
dZn(s)

M−u(t,x,·)(t)
+ Zn(s)d

1

M−u(t,x,·)(t)

− Vn(s)∥u(t, x; s)∥2Hds−
n∑

j=1

V j
n (s)⟨u(t, x; s), u(t, yj; s)⟩Hds

= −Vn(s) ⟨u(t, x; s), dW (s)⟩H −
n∑

j=1

V j
n (s) ⟨u(t, yj; s), dW (s)⟩H

+ Vn(s) ⟨u(t, x; s), dW (s)⟩H + Vn(s)∥u(t, x; s)∥2Hds

− Vn(s)∥u(t, x; s)∥2Hds−
n∑

j=1

V j
n (s)⟨u(t, x; s), u(t, yj; s)⟩Hds

= −
n∑

j=1

V j
n (s)

[
⟨u(t, yj; s), dW (s)⟩H + ⟨u(t, x; s), u(t, yj; s)⟩Hds

]
.
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Now, let Yn(s) and Y
j
n (s) be obtained from Vn(s) and V

j
n (s) by replacing

dW (s) by dW (s)− u(t, x; s)ds. We have

dYn(s) = −
n∑

j=1

Y j
n (s) ⟨u(t, yj; s), dW (s)⟩H ,

as required. □

Corollary 2.7. If the deterministic system is null-controllable with
vanishing energy then for any ϕ ∈ Bb(E), n, and y1, . . . , yn ∈ E,

sup
x∈E

|DnPtϕ(x)[y1, . . . , yn]| → 0 as t→ +∞.

Corollary 2.8. If the deterministic system is null-controllable with
vanishing energy then (Pt) has the Liouville property.

Proof. Let ψ be a bounded harmonic function. Then Ptψ = ψ for any
t ≥ T . If the system is null-controllable with vanishing energy, then
by Corollary 2.7, for all x, y ∈ E we have DPtψ(x)[y] → 0 as t→ +∞.
Since Ptψ = ψ, we have Dψ(x)[y] = 0 for x, y ∈ E, and therefore ψ is
constant. □

Corollary 2.9. Under assumptions of Theorem 2.6, for any t ≥ T ,
the laws L(Xx(t)), x ∈ E, are equivalent.

Proof. Taking in (2.4), as ϕ the characteristic function of a Borel subset
Γ of E, we obtain

P {Xx(t) ∈ Γ} =

∫
{X0(t)∈Γ}

M−u(t,x;·)(t)dP.

Therefore L(Xx(t)) is absolutely continuous with respect to L(X0(t))
for any x. We can now repeat the arguments leading to (2.4). Namely,

Xx(t) =

∫ t

0

S(t− s)ads+
∑
k

∫ t

0

S(t− s)Bek [dWk(s)− uk(t, x; s)ds]

=

∫ t

0

S(t− s)ads+
∑
k

∫ t

0

S(t− s)BekdW
∗
k (s),

where

W ∗
k (s) = W (s)−

∫ s

0

uk(t,−x; r)dr

is a Wiener process with respect to dP∗ =Mu(t,x;·)(t)dP. Therefore∫
{Xx(t)∈Γ}

Mu(t,x;·)(t)dP = P∗ {Xx(t) ∈ Γ} = P
{
X0(t) ∈ Γ

}
,

hence L(X0(t)) is absolutely continuous with respect to L(Xx(t)). □
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Corollary 2.10. Hypothesis 2.1 and null-controllability at T of (2.2)
imply that the operators S(t), t ≥ T , on E are radonifying, and in
particular compact.

Proof. By Corollary 2.9, the gaussian laws L(Xx(t)), x ∈ E, are equiv-
alent. Let H(t) be the Reproducing Kernel Hilbert Space of L(X0(t)).
By, the Feldman–Hajek theorem, S(t)x ∈ H(t). Since the embedding
H(t) ↪→ E is radonifying, see e.g. [17], the result follows. □

Example 2.11. In the case of the classical Liouville theorem for the
Laplace operator ∆ on Rd, A ≡ 0, B ≡ 1

2
I ∈ M(d × d), and W is

a standard Wiener process on Rd. The corresponding deterministic
system is of the form

dY (s) =
1

2
u(s)ds, Y (0) = x.

Clearly, it is null-controllable with vanishing energy at any time T and
U(t)x ≡ −2x

t
. Consequently, the classical Liouville theorem saying that

any bounded harmonic function on Rd is constant follows.

Remark 2.12. A natural question is if in Corollary 2.8 one can replace
the assumption of the boundedness of a harmonic function by its ap-
propriate integrability. Clearly, under hypothesis of Theorem 2.6, for
any p, q > 1 such that 1/p + 1/q = 1, there exists a constant c(q)
depending only on q such that

|∇Ptψ(x)[y]| = |Eψ(Xx(t))It(y)| ≤ (E |ψ(Xx(t))|p)1/p (E |It(y)|q)1/q

≤ c(q) (E |ψ(Xx(t))|p)1/p ∥U(t)y∥L2(0,t;E) .

If ψ is harmonic, than in order to show that ψ is constant, or equiva-
lently, that ∇ψ(x) ≡ 0, we need to show that

(2.6) lim
t→+∞

E |ψ(Xx(t))|p ∥U(t)y∥L2(0,t;E) = 0.

If the deterministic system is null-controllable with vanishing energy,
then ∥U(t)y∥L2(0,t;E) → 0 as t→ +∞. Therefore (2.6) holds if

(2.7) sup
t>0

E |ψ(Xx(t))|p < +∞.

In the Wiener case, Lebesgue measure is invariant, but there are no
finite invariant measures. Therefore

E |ψ(Xx(t))|p →
∫
Rd

|ψ(z)|p dz.

Consequently, any harmonic integrable function is constant. However,
since integrable continuous functions are bounded this is not an ex-
tension of the classical property. On the other hand, if there exists a
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unique finite invariant measure, say µ, that is if∫ t

0

S(t− s)BdW (s)

converges weakly to µ as t → +∞, then the Liouville property can be
stated as follows: if the deterministic system is null-controllable with
vanishing energy than any harmonic function ψ such that ψ ∈ Lp(E, µ)
for a certain p > 1 is constant.

Remark 2.13. If E is a Hilbert space, then, see e.g. [10, 11], there exists
a finite invariant measure µ (say) for (2.1) if and only if∫ +∞

0

∥S(t)B∥2L(HS)(H,E)dt < +∞.

If there exists the spectral gap for the generator L of the transition
semigroup (Ps) in L

2(E, µ) then the Liouville property holds for func-
tions in Lp(E, µ) for every p ∈ (1,+∞), see [4, 5] for more explict
conditions.

3. Gradient estimate implies null-controllability

Assume that for all t ≥ T and x ∈ E there is a integrable Y (t, x) : Ω 7→
E∗ such that for any ϕ ∈ Bb(E) and any z ∈ E,

DPtϕ(x)[z] = Eϕ(Xx(t))Y (t, x)[z].

Taking non-zero but constant ϕ we see that EY (t, x)[z] = 0.

Proposition 3.1. Assume that Y (t, x)[z] are square integrable. Then
the deterministic system is null–controllable at time T . Moreover, for
any x ∈ E, U(t)z = −EV (t, x; ·)[z], z ∈ E, where V is such that

E (Y (t, x)[z]|σ(W (s) : s ≤ t)) =

∫ t

0

⟨V (t, x; s)[z], dW (s)⟩H .

Proof. In the first step note that the gradient formula holds for ϕ(x) =
e[x] where e is an arbitrary element of E∗, that is

DPt e[X
x(t)][z] = E e[Xx(t)]Y (t, x)[z].
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Let (ek) be an orthonormal basis of H. Given e ∈ E∗ let ϕ(x) = e[x].
We have

DPtϕ(x)[z] = De [S(t)x] [z] = e [S(t)z]

= E e
[
S(t)x+

∫ t

0

S(t− s)BdW (s)

] ∫ t

0

⟨V (t, x; s)[z], dW (s)⟩H

= E
∑
k

∫ t

0

e [S(t− s)Bek] dWk(s)

∫ t

0

⟨V (t, x; s)[z], ek⟩HdWk(s)

=
∑
k

∫ t

0

e [S(t− s)Bek] ⟨EV (t, x; s)[z], ek⟩Hds.

Set v(t, x; s)[z] = EV (t, x; s)[z]. Then

e [S(t)z] =
∑
k

∫ t

0

e [S(t− s)Bek] ⟨v(t, x; s)[z], ek⟩Hds.

Since the above identity holds for any e ∈ E∗, and

v(t, x; s)[z] =
∑
k

⟨v(t, x; s)[z], ek⟩Hek,

we have

S(t)z =
∑
k

∫ t

0

S(t− s)Bek⟨v(t, x; s)[z], ek⟩Hds

=

∫ t

0

S(t− s)Bv(t, x; s)[z]ds.

□

4. Conditions for null-controllability

Assume that E is reflexive, which is true in the case of Lp spaces.
Let

Q(t) : L2(0, t;H) ∋ u 7→
∑
k

∫ t

0

S(t− s)Bek⟨u(s), ek⟩Hds ∈ E.

Then the deterministic system (2.2) is null-controllable at time T if
and only if rangeS(t) ⊂ rangeQ(t) for t ≥ T .

A simple proof of the following useful observation is left to the reader.

Lemma 4.1. For any 0 ≤ t ≤ t′, rangeQ(t) ⊂ rangeQ(t′). Conse-
quently, if for given T0 ≥ 0,

(4.1) rangeS(t+ T0) ⊂ rangeQ(t) for t > 0,
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then for any T > T0, the deterministic system (2.2) is null-controllable
at time T .

The following lemma follows directly from more general result from
[10, 11],

Lemma 4.2. The following conditions are equivalent:

∃C : {S(t)x : ∥x∥E ≤ 1} ⊂ {Q(t)u : ∥u∥L2(0,t;H) ≤ C},
and

(4.2) ∃C : ∥S∗(t)z∥E∗ ≤ C∥Q(t)∗z∥L2(0,t;H) for z ∈ E∗.

Corollary 4.3. System (2.2) is null-controllable at time T if and only
if (4.2) holds true for t ≥ T . Moreover, ∥U(t)∥L(E,L2(0,t;H)) ≤ C, where
C is a constant in (4.2). If for t > 0,

(4.3) ∃C : ∥S∗(t+ T0)z∥E∗ ≤ C∥Q(t)∗z∥L2(0,t;H) for z ∈ E∗,

then (2.2) is null-controllable at any time T > T0.

Note that

[Q(t)∗z] (s) =
∑
k

⟨[S(t− s)B]∗ z, ek⟩H ek.

Therefore (4.2) and (4.3) have the forms

(4.4) ∥S∗(t)z∥2E∗ ≤ C2
∑
k

∫ t

0

⟨[S(s)B]∗ z, ek⟩2H ds, z ∈ E∗,

and

(4.5) ∥S∗(t+ T0)z∥2E∗ ≤ C2
∑
k

∫ t

0

⟨[S(s)B]∗ z, ek⟩2H ds, z ∈ E∗,

5. The case of invertible B

In this section we apply our results to a well understood case, when
when E = V = H is a Hilbert space and B is a bounded invertible
linear operator on E, see [7], [10] and references therein. In this case
Hypothesis 2.1 and the null-controllability of (2.2) can be easily veri-
fied. Then, see Remark 2.2, Hypothesis 2.1 holds if and only if

(5.1)

∫ t

0

∥S(s)∥2(HS)ds < +∞, ∀ t > 0.

Clearly the system (2.2) is null-controllable at any time T > 0, as one
can takie

(U(t)x) (s) = u(t, x; s) = −1

t
B−1S(s)x.



14 BEN GOLDYS AND SZYMON PESZAT

For, we have∫ t

0

S(t− s)B
1

t
B−1S(s)xds =

1

t

∫ t

0

S(t)xds = S(t)x.

Note that (2.2) is null-controllable with uniform vanishing energy if

(5.2) sup
t≥0

∥S(t)∥L(E,E) < +∞.

Finally, note that there is a finite invariant measure for (2.1) if S is
exponentially stable (and in order to have a solution in E, (5.1) holds
true).

Consequently, by Theorem 2.6 we have the following result. The
theorem provides a formula for the gradient of the transition semigroup
corresponding to linear equation. It is a special case of the Bismut–
Elworthy–Li formula valid for non-linear diffusions, see e.g. [19].

Theorem 5.1. Let ϕ ∈ Bb(E), t > 0 and x ∈ E. Then Ptϕ has
derivatives of all orders and for any y, z ∈ E,

DPtϕ(x)[y] = E [ϕ(Xx(t)) (It(u))] ,

D2Ptϕ(x)[y1, y2] = E [ϕ(Xx(t)) (It(y1)It(y2)− Jt(y1, y2))] ,

where

It(y) = −1

t

∑
k

∫ t

0

⟨B−1S(s)y, ek⟩EdWk(s),

Jt(y1, y2) =
1

t2

∑
k

∫ t

0

⟨B−1S(s)y1, B
−1S(s)y2⟩Eds.

Finally we have

sup
ϕ∈Bb(E) : ∥ϕ∥Bb(E)≤1

sup
x∈E

∥DnPtϕ(x)∥L(E×E...×E) = O
(
t−

n
2

)
as t ↓ 0.

Example 5.2. Consider the one-dimensional Ornstein–Uhlenbeck equa-
tion

dX = (−γX + a) dt+ bdW,

where γ > 0, a ∈ R, and b ̸= 0. Then there is a unique invariant
measure µ = N (a/γ, b2/(2γ)). Moreover, the corresponding determin-
istic system is null-controllable with vanishing energy. Therefore, see
Remark 2.12, the following Liouville property holds true: if ψ ∈ C2 is
such that

b2

2
ψ′′(x) + (−γx+ a)ψ′(x) = 0, x ∈ R,
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and for a certain p > 1,∫
R
|ψ(x)|pe−γ(x− a

γ
)2/b2dx < +∞,

then ψ is constant.

5.1. Analytic semigroup on a Hilbert space and degenerate
noise. Assume that E is a Hilbert space, the semigroup S is analytic,
and λ is in the resolvent set of its generator (A,DomA). Then, the
fractional powers (λ−A)r, r ∈ R, are well defined. Given r > 0, let us
equip

Hr := (λ− A)−
r
2E = Dom

(
(λ− A)

r
2

)
,

with the scalar product and norm inherited form E by the mapping
(λ− A)−

r
2 .

Let r > 0 and let W be a cylindrical Wiener process in H = Hr, and
let B : Hr → Hr be invertible. Consider the following linear equation

(5.3) dX = (AX + a) dt+ dW = (AX + a) dt+
∑
k

BekdWk

Given t > 0 and x ∈ E write

(5.4) u(t, x; s) =

{
0 for s < t

2
,

−2
t
B−1S(s)x for s ≥ t

2
.

Theorem 5.3. Assume that a ∈ E, and that for some or equivalently
for any t > 0,

(5.5)

∫ t

0

∥∥S(s)(λ− A)−
r
2

∥∥2
L(HS)(E,E)

ds < +∞.

Then (5.3) defines Markov family (Xx : x ∈ E) on E. Moreover, for
the corresponding semigroup (Pt);

DPtϕ(x)[y] =
2

t
E

{
ϕ(Xx(t))

∫ t

t
2

⟨B−1S(s)y, dW (s)⟩Hr

}
and there is a constant C such that for all y ∈ E and t ≤ 1,

(5.6)
E

∣∣∣∣∣
∫ t

t
2

⟨S(s)y, dW (s)⟩Hr

∣∣∣∣∣ = E

∣∣∣∣∣∑
k

∫ t

t
2

⟨B−1S(s)y, ek⟩HrdWk(s)

∣∣∣∣∣
≤ C∥y∥Et

1−r
2 .

Eventually,

|DPtϕ(x)[y]| ≤ C ′t−
1+r
2 ∥y∥E∥ϕ∥Bb(E).

Finally, (5.2) guarantees that the corresponding deterministic problem
is null-controllable with uniform vanishing energy.
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Proof. (5.5) is an if and only if condition for the existence of a solution
Xx to (5.3) for some or equivalently any initial value x ∈ E. Therefore
Hypothesis 2.1 is fulfilled.

We will show that the deterministic system (2.2) is null-controllable
at any time. To do this, t > 0, and x ∈ E. Then

S(t)x = −
∫ t

0

S(t− s)Bu(t, x; s)ds,

where u(t, x; ·) is given by(5.4). We need to show that u(t, x; ·) ∈
L2(0, t;Hr). Since S is analytic S(s)x = S(s − t/2)S(t/2)x ∈ Hr for
s ≥ t

2
, and there is a constant C such that

∥S(s)x∥Hr ≤ Ct−
r
2∥x∥E,

t

2
≤ s ≤ t ≤ 1.

In the same way we show (5.6). □

6. Examples

Example 6.1. Consider the following stochastic heat equation on R,

dX = ∆Xdt+ dW,

driven by space-time white noise W . Thus H = L2(R). Since∫ t

0

S(t− s)dW (s)

is stationary in space, it cannot live in L2(R). It is well-defined, however
in weighted space L2(R, ρ(x)dx), where ρ(x) = (1 + x2)

−1
. Therefore in

our case V = E = L2(R, ρ(x)dx), H = L2(R), and B is the embedding
operator. It is known, see eg. [20], that ∆ generates C0-semigroup on
L2(R, ρ(x)dx), and Hypothesis 2.1 holds true. Unfortunately, the null-
controllability hypothesis is not satisfied. For, assume that the initial
condition x is the constant 1 function. Then S(t)x = x ̸∈ L2(R). On
the other hand, for any u ∈ L2(0, t;L2(R)),∫ t

0

S(t− s)u(s)ds ∈ L2(R).

Example 6.2. Consider the infinite system of independent scalar lin-
ear equations

dXj = −αjXjdt+ σjdWj,

where (αj) and (σj) are sequences of strictly positive numbers. Assume
that supj σj < +∞. Then B : l2 → l2, B(xj) = (σjxj) is a bounded
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linear operator. Moreover, the diagonal operator A(xj) = (−αjxj)
generates C0-semigroup S on l2, and S(s)(xj) = (e−αjsxj). Note that∑

j

E
[∫ t

0

e−αj(t−s)σjdWj(s)

]2
=
∑
j

∫ t

0

e−2αjsσ2
jds.

Therefore Hypothesis 2.1 holds true in the case of V = E = H = l2,
provided that ∑

j

σ2
j

αj

< +∞.

Let us check the null-controllability hypothesis. Given x = (xj) ∈ l2

and t > 0 we are looking for u = (uj) ∈ L2(0, t; l2) such that

e−αjtxj = −σj
∫ t

0

e−αj(t−s)uj(s)ds.

Clearly,

uj(s) = e−αjs
−xj
tσj

solves the equation. We need to verify whether u = (uj) ∈ L2(0, t; l2).
We have ∑

j

∫ t

0

u2j(s)ds =
∑
j

x2j
2t2σ2

jαj

[
1− e−2αjt

]
.

Therefore the null–controllability hypothesis holds true if infj σ
2
jαj > 0.

Moreover, in this case the system is null-controllable with vanishing
energy. For more information on such systems we refer the reader to
[10, 11].

7. Finite dimensional degenerate linear system

Consider now a finite dimensional case E = V = Rd and H = Rm.
Then (2.1) has the form

dX = (AX + a) dt+BdW, X(0) = x ∈ Rd,

where A and B are d× d and d×m matrices, W is a standard Wiener
process in Rm, and a ∈ Rd. Obviously, Hypothesis 2.1 is satisfied.
Moreover, the corresponding deterministic system is null-controllable
if and only if

(7.1) rank
[
B,AB, . . . , Ad−1B

]
= d.

For the proof of the following result we refer the reader to the work of
Seidman [24].
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Theorem 7.1. Assume (7.1). Let K be the minimal exponent such
that

rank
[
B,AB, . . . , AKB

]
= d.

Then the deterministic system is null-controllable at any time T > 0,
and

∥U(t)∥L(Rd,L2(0,t;Rm)) = O
(
t−(K+1/2)

)
as t→ 0.

As a direct consequence of Theorems 2.6 and 7.1 we have the follow-
ing result.

Theorem 7.2. Assume (5.1) and let K be as in Theorem 5.1. Then
for any t > 0 and ϕ ∈ Bb(Rn), Ptϕ has derivatives of all orders and

sup
x∈Rd

∥DnPtϕ(x)∥Rnd ≤ ∥ϕ∥Bb(Rd)O
(
t−n(K+ 1

2
)
)

as t→ 0.

7.1. Kolmogorov’s diffusion. Consider the so-called Kolmogorov dif-
fusion introduced in [16]

dX1 = X2dt, dX2 = dW.

We have

dX = AXdt+BdW,

where

A =

[
0 1
0 0

]
, B =

[
0
1

]
.

Thus

rank [B,AB] = rank

[
0 1
1 0

]
= 2.

Therefore the rank condition holds with K = 1, and by Theorem 7.1,
the deterministic system is null-controllable and the linear mapping
U(t) : R2 7→ L2(0, t;R) is such that

∥U(t)∥L(R2;L2(0,t;R)) = O(t−3/2) as t ↓ 0.

By direct calculation on can show that

u(t, x; s) = a(t, x)s+ b(t, x), s ∈ [0, t],

a(t, x) =
x1
12t3

− 35x2
18t2

,

b(t, x) = − 1

12

( x1
2t2

+
x2
3t

)
.

has the desired properties. Moreover, the system is null-controllable
with vanishing energy as for the above controls

∥U(t)∥L(R2,L2(0,t;R2)) = O(t−3/2) as t→ +∞.
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Remark 7.3. It is easy to check that in the case of Kolmogorov diffu-
sion there are no finite invariant measures. Note that in the case of
Kolmogorov diffusion, ψ ∈ C2(R2) is harmonic if

1

2

∂2ψ

∂x22
(x1, x2) + x2

∂ψ

∂x1
(x1, x2) = 0, (x1, x2) ∈ R2.

8. The case of boundary noise

8.1. Well posedness. Let O be a bounded region in Rd. We assume
that O satisfies the conditions from [14]. In particular it is enough
to assume that d = 1 and O is an interval, or d > 1 and O is a
bounded region with boundary of class C1+α. Given p ∈ (1,+∞) and

θ ∈ [0, 2p− 1) set Lp
θ := Lp(O, dist (ξ, ∂O)θ dξ).

Let us denote by S the semigroup on E = Lp
θ generated by the

Laplace operator ∆ on O with homogeneous Dirichlet boundary con-
ditions, see [14]. The semigroup is given by the Geeen kernel G;

S(t)x(ξ) =

∫
O
G(t, ξ, η)x(η)dη.

Given λ > 0 let Dλ be the Dirichlet map. Let us recall that given
λ ≥ 0 and a function γ on ∂O, u = Dλγ is, the possibly weak, unique
solution to the Poisson equation

∆u(ξ) = λu(ξ), ξ ∈ O, u(ξ) = γ(ξ), ξ ∈ ∂O.

Let H ↪→ L2(∂O) be a Hilbert space, and let (ek) be an orthonormal
basis of H. Finally let (Wk) be a sequence of independent real valued
standard Wiener processes defined on a probability space (Ω,F,P).
Let us recall, see [14], that the boundary problem

(8.1)

∂X

∂s
(s, ξ) = ∆X(s, ξ), s > 0, ξ ∈ O,

X(0, ξ) = x(ξ), ξ ∈ O,

X(s, ξ) =
∑
k

ek(ξ)
dWk

ds
(s), s > 0, ξ ∈ ∂O,

can be written in form (2.1). Moreover, it is well posed on the state
space Lp

θ if and only if, for a certain or equivalently for every T > 0,

(8.2)

JT ({ek}, p, θ)

=

∫
O

[∑
k

∫ T

0

((λ− A)S(s)Dλek)
2 (ξ)ds

]p/2
dist (ξ, ∂O)θ dξ
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is finite. Here A is the Laplace operator with homogeneous Dirichlet
boundary conditions. Moreover, it solution Xx is given by the formula

Xx(s, ·) = S(s)x(·) +
∑
k

∫ s

0

(λ− A)S(s− r)Dλek(·)dWk(r)

=

∫
O
G(s, ·, η)x(η)dη

−
∑
k

∫ s

0

∫
∂O

∂

∂na(η)
G(s− r, ·, η)ek(η)ds(η)dWk(r),

where n =
(
n1, . . . ,nd

)
is the outward pointing unit normal vector to

the boundary ∂O, and s is the surface measure.
For more information on the deterministic and stochastic boundary

problems see e.g. [2, 9, 13, 14].
Hypothesis 2.1 can be written now in the following form:

Hypothesis 8.1. For any T > 0, JT ({ek}, p, θ) given by (8.2) is finite.

We define the transition semigroup on Bb(E) = Bb(L
p
θ); Psϕ(x) =

Eϕ (Xx(s)). In the case of the boundary noise problem the null-
controllability criterion of the corresponding deterministic problem can
be formulated as follows.

Hypothesis 8.2. Assume that for each t > 0 there is a bounded linear
operator U(t) : Lp

θ 7→ L2(0, t;H), (U(t)x)(s) = u(t, x; s) such that for
any x ∈ Lp

θ,∫
O
G(t, ·, η)x(η)dη

=
∑
k

∫ t

0

∫
∂O

∂

∂na(η)
G(t− s, ·, η)ek(η)ds(η)⟨u(t, x; s), ek⟩Hds.

Remark 8.3. Let us note that if O is unbounded then it is not possible
that Hypotheses 8.1 and 8.2 hold simultaneously. For, by Corollary
2.10 the semigroup S need to be compact.

Remark 8.4. Note that

G(t, ξ, η) =
∑
l

e−λltfl(ξ)fl(η),

where (fl) is the orthonormal basis of L2(O) of eigenvectors of the
Laplace operator and (−λl) are the corresponding eigenvalues. There-
fore the null-controllability condition has the form

⟨x, fl⟩L2(O) =
∑
k

∫ t

0

eλls⟨u(t, x; s), ek⟩Hds
∫
∂O

∂fl
∂na(η)

(η)ek(η)ds(η).
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and it is enough to verify this identity for any x ∈ L2(O) and of course
any l, see Lemmas 8.6 and 8.7 below.

8.2. The case of white noise. The following result is proved in [23].
Its formulation is adapted to notations of this paper.

Theorem 8.5. Then there is a bounded linear control operator U(t)
acting from L2(O) into L2(0, t;L2(∂O)), and

(8.3) log ∥U(t)∥L(L2(O),L2(0,t;L2(∂O))) = O(1/t) as t ↓ 0.

The following result was established in [14][Lemma 5.1].

Lemma 8.6. Let p > 1, θ ∈ [0, 2p − 1). For any t > 0, S(t) is
a bounded linear operator from Lp

θ into Lp
0 = Lp(O). Moreover, the

operator norm is of order t−
θ
2p , that is there exists a C > 0 such that

∥S(t)∥L(Lp
θ ,L

p
0)
≤ Ct−

θ
2p for t ≤ 1.

Since O is bounded we have also the following result.

Lemma 8.7. Let p > 1. Then for any t > 0, S(t) is a bounded linear
operator from Lp

0 = Lp(O) into L2
0 = L2(O). Moreover, there exists a

C > 0 and α(p) ∈ [0,+∞) such that ∥S(t)∥L(Lp
0,L

2
0)
≤ Ct−α(p) for t ≤ 1.

The main result of this section is the following theorem

Theorem 8.8. (i) Assume that O = (a, b) is a bounded open interval
in R, and that W1,W2 are independent Wiener processes. Let p > 1
and θ ∈ (p−1, 2p−1). Then the problem (8.1) with boundary conditions
X(t, a) = Ẇ1(t) and X(t, b) = Ẇ2(t) defines a Markov family on E =
Lp
θ.

(ii) Assume that O is a bounded region in R2 with boundary C1,α for
some α > 0. Let (ek) be an orhonormal basis of L2(∂O) and let (Wk)
be a sequence of independent Wiener processes. Let p > 1 and θ ∈(
3p
2
− 1, 2p− 1

)
. Then the problem (8.1) defines a Markov family on

E = Lp
θ.

Moreover, in both cases for any ϕ ∈ Bb(E) = Bb(L
p
θ) and t > 0, Ptϕ

has derivatives of all orders and

sup
x∈E

∥DnPtϕ(x)∥L(E×E×...×E) ≤ Ce
Cn
t sup

x∈E
∥ϕ∥Bb(E), ϕ ∈ Bb(E),

with C > 0 independent of ϕ, t ≤ 1, and n.

Proof. Parts (i) and (ii) are related to Hypothesis 2.1, or Hypothesis
8.1, and are know, see [14][Propositions 8.1, 8.7, 8.10], and they are
recall here only for the sake of completeness. To show the last claim,
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we need to verify the null-controllability Hypothesis 8.2. Let x ∈ Lp
θ

and t > 0, By Lemmas 8.6 and 8.7, S(t/2)x ∈ L2(O) and

∥S(t/2)x∥L2 ≤ C1t
− d+θ

2p ∥x∥Lp
θ
.

By Theorem 8.5 there is a

U(t/2) : L2(O) 7→ L2(0, t/2, L2(∂O)

such that for the control u(s) = U(t)[S(t/2)x](s), s ∈ [0, t/2], u ∈
L2(0, t/2;L2(∂O)), we have

0 = S(t)x+

∫ t
2

0

(λ− A)S(t/2− s)Dλu(s)ds

= S(t)x+

∫ t

0

(λ− A)S(t− s)DλTtu(s)ds,

where Tt : L
2(0, t/2;L2(∂O)) 7→ L2(0, t;L2(∂O)) is bounded linear op-

erator defined as follows

Ttu(s) =

{
0 for s ≤ t/2,

u(s− t/2) for s ∈ [t/2, t].

□

8.3. The case of coloured noise. White noise case is restricted to
subdomains of Rd, d = 1, 2. In this section we consider the case of the
so-called coloured noise, that is the case where (ek) is not an orthonor-
mal basis of L2(∂O). Assume that O is a bounded domain in Rd with
C1,α, α > 0, boundary ∂O. By Proposition 8.10 from [14], we have the
following result dealing with the verification of Hypothesis 8.1.

Proposition 8.9. Assume that

(8.4)
∑
k

sup
η∈∂O

e2k(η) < +∞

and 1 < p < +∞ and θ ∈ (p− 1, 2p− 1). Then the boundary problem
(8.1) defines a Markov family with continuous trajectories in E = Lp

θ :=
Lp
θ,0.
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What is left is to find conditions on (ek) which guarantee for a given
t > 0, the null-controllability of the corresponding deterministic bound-
ary problem

(8.5)

∂Y

∂s
(s, ξ) = ∆Y (s, ξ), s ∈ (0, t), ξ ∈ O,

Y (0, ξ) = x(ξ), ξ ∈ O,

Y (s, ξ) =
∑
k

ek(ξ)uk(t, x; s), s ∈ (0, t), ξ ∈ ∂O.

Taking into account Lemmas 8.6 and 8.7, it is enough to establish
null-controllability in unweighted space L2(O).

8.3.1. The case of a unit ball in Rd. Here we give an example of an
equation with colored noise satisfying (8.4) and such that the corre-
sponding boundary problem (8.5) is null-controllable in L2(O). Namely,
let O = Bd(0, 1) be the unit ball in Rd. Then ∂O = Sd−1. In polar
coordinates the eigenvectors of the Laplace operator have the form

Hn,k(r, θ) = hn(r)fk(θ), r ∈ [0, 1], θ ∈ Sd−1,

n ∈ N and k ∈ Nd−1
∗ \ {0} := (N ∪ {0})d−1 \ {(0, . . . , 0}.

Above (hn) are Bessel functions and (fk) is an orthonormal basis of
Sd−1; the-so called harmonics. For our purposes it is important that

(8.6) sup
k

sup
θ∈Sd−1

|fk(θ)| < +∞.

In the theorem |k|2 =
∑d−1

i=1 k
2
i .

Theorem 8.10. Assume that ek = akfk, k ∈ Nd−1
∗ \ {0}, where (ak)

is a sequence of real numbers such that

(8.7)
∑
k

a2k < +∞,

and

(8.8) ∀ t > 0 ∃ β(t) > 0: ∀k a−2
k e−t|k|2 ≤ β(t).

Let p > 1 and θ ∈ (p− 1, 2p− 1). Then the problem (8.1) defines a
Markov family on E = Lp

θ. The corresponding deterministic system is
null-controllable at any time T > 0, and for any ϕ ∈ Bb(E) = Bb(L

p
θ)

and t > 0, Ptϕ has derivatives of all orders. Finally

(8.9) sup
x∈E

∥DnPtϕ(x)∥L(E×...×E) ≤ C(t)n sup
x∈E

∥ϕ∥Bb(E), ϕ ∈ Bb(E),

with a constant C(t) > 0 independent of ϕ and n. Moreover, there are
a function C1 and a constant c > 0 such that C(t) = C1(t/2)β(ct/2)
and logC1(t) = O(1/t) as t ↓ 0.
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Proof. Assume that p > 1 and θ ∈ (p − 1, 2p − 1). Then (8.6), (8.7),
and Proposition 8.9 guarantee that (8.1) defines Markov family in Lp

θ.
By Lemmas 8.6 and 8.7 null-controllability in L2

0 = L2(B(0, 1)) ensures
null-controllability in E = Lp

θ. Therefore, we only need to verify null-
controllability in L2(B(0, 1)) and the desired estimates for the control
operator.

We have

G(t, r, θ, r′, θ′) =
∑
n,k

e−λn,kthn(r)fk(θ)hn(r
′)fk(θ

′),

where (−λn,k) is the corresponding sequence of eigenvalues. Then

S(t)x =
∑
n,k

e−λn,kt⟨x,Hn,k⟩L2(B(0,1))Hn,k.

Note that
u =

∑
k

⟨u, ek⟩Hek =
∑
k

⟨u, ek⟩Hakfk.

Thus ⟨u, fk⟩L2(Sd−1) = ⟨u, ek⟩Hak, and ⟨u, ek⟩H = a−1
k ⟨u, fk⟩L2(Sd−1).

Our aim is to verify condition (4.5). We have

⟨(S(s)B)∗x, ek⟩H = ⟨x, S(s)Bek⟩L2(O) = ak⟨x, S(s)Bfk⟩L2(O)

= −ak⟨S(s)x,AD0fk⟩L2(O)

= −ak
∫
Sd−1

∂

∂na(η)
S(s)x(η)fk(η)ds(η).

Since
∂

∂na(η)
S(s)x =

∑
n,j

e−λn,js⟨x,Hn,j⟩L2(O)fj
dhn
dx

(1),

we have∑
k

⟨(S(s)B)∗x, ek⟩2H =
∑
k

a2k

(∑
n

e−λn,ks⟨x,Hn,k⟩L2(O)

dhn
dx

(1)

)2

.

We need to show that for ant T0 > 0 there is a function C̃ = C̃(t) such
that for x ∈ L2(B(0, 1)),∑

n,k

e−2λn,k(t+T0)⟨x,Hn,k⟩2L2(O)

≤ C̃(t)

∫ t

0

∑
k

a2k

(∑
n

e−λn,ks⟨x,Hn,k⟩L2(O)

dhn
dx

(1)

)2

ds

= C̃(t)
∑
n,m,k

Rk(ak, n,m, t)e
−λn,kte−λm,kt⟨x,Hn,k⟩L2(O)⟨x,Hm,k⟩L2(O),
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where

Rk(ak, n,m, t) := a2k
1

λn,k + λm,k

(
e(λn,k+λm,k)t − 1

) dhn
dx

(1)
dhm
dx

(1).

Since Hn,k and Hm,j are orthogonal for k ̸= j we have to show that for
any k,

(8.10)
∑
n

e−λn,kT0b2n,k ≤ C̃(t)
∑
n,m

Rk(ak, n,m, t)bn,kbm,k,

where bn,k := e−λn,kt⟨x,Hn,k⟩L2(O). By Theorem 8.5 there is a function
C1 of order logC1(t) = O(1/t) such that for any x ∈ L2(B(0, 1)),∑

n

b2n,k ≤ C1(t)
∑
n,m

Rk(1, n,m, t)bn,kbm,k for any k.

Hence (8.10) holds true with

C̃(t) = C1(t) sup
n,k

e−λn,kT0a−2
k .

Since λn,l ≍ c1(n
2 + |k|2), we have

sup
n,k

e−λn,kT0a−2
k ≤ β(cT0),

and consequently we have the desired estimate with C̃(t) = C1(t)β(cT0).
What is left is to evaluate C(t) appearing in (8.9). We are looking for
C such that

|S(t)x|2L2(B(0,1)) ≤ C(t)|Q∗(t)x|2L2(0,t;H).

We have

|S(t+ T0)x|2L2(B(0,1)) ≤ C1(t)β(cT0)|Q∗(t)x|2L2(0,t;H).

Since

|Q∗(t)x|2L2(0,t;H) =

∫ t

0

|S(t− s)Bx|H ds ≤
∫ t+T0

0

|S(t+ T0 − s)Bx|H ds

= |Q∗(t+ T0)x|2L2(0,t+T0;H),

we have C(t+T0) = C1(t)β(cT0). In particular C(t) = C1(t/2)β(ct/2).
□
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