Title: | Integral zeta values and the number of automorphic representations |
Speaker: | Benedict Gross (Harvard) |
Abstract: | Let \zeta^*(s):= (1-2^(1-s))\zeta(s). Euler proved that the values of \zeta^*(s) at negative integers are elements of the ring Z[1/2]. Cassou-Nogues and Deligne/Ribet generalized this to an integrality result for the values of arbitrary partial zeta functions at negative integers. I will review their results, and show how these special values can be used to compute the number of irreducible automorphic representations of G with prescribed local behavior, where G is a simple group over a global field k. Via the global Langlands correspondence for k = F(t), I will compare this result with work of Katz and Deligne on Kloosterman sheaves. This is joint work with Mark Reeder. |