Skip to main content ☰ Contents Index You! < Prev ^ Up Next > \(\newcommand{\vect}[1]{\boldsymbol{#1}}
\newcommand{\closure}[1]{\overline{#1}}
\DeclareMathOperator{\graph}{graph}
\DeclareMathOperator{\Int}{int}
\DeclareMathOperator{\grad}{grad}
\DeclareMathOperator{\area}{area}
\DeclareMathOperator{\volume}{vol}
\DeclareMathOperator{\curl}{curl}
\DeclareMathOperator{\divergence}{div}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Chapter 8 Conservative Vector Fields
The aim of this chapter is to study a class of vector fields over which line integrals are independent of the particular path. Such vector fields are important features of many field theories such as electrostatic or gravitational fields in physics.