Skip to main content

Section 6.4 Application: Spherical and Cylindrical Coordinates

Sometimes it is useful to work with other `coordinates’ than Cartesian coordinates. The most commonly used such coordinates are spherical and cylindrical coordinates. We want to see how to integrate functions given in these coordinates. As for the polar coordinates in Section 5.4 we need to compute the corresponding Jacobian determinant.

Subsection 6.4.1 Spherical Coordinates

A point in space can be determined by giving the distance, r, from the origin and two angles, θ and φ, as shown in Figure 6.7. For every point off the z-axis the triple (r,θ,φ) is uniquely determined if we choose r>0, θ[0,π] and φ[0,2π). We call r,θ,φ the spherical coordinates of the given point. Our notation follows the naming convention used in applied mathematics and mathematical physics.
Figure 6.7. Spherical coordinates of a point
Looking at Figure 6.7 we can express x,y,z by
x=rcosφsinθy=rsinφsinθz=rcosθ.
Hence the transformation
(6.4)g(r,θ,φ):=(rcosφsinθ,rsinφsinθ,rcosθ)
maps [0,)×[0,π]×[0,2π) onto R3. We now compute the Jacobian matrix of that transformation:
Jg(r,θ,φ)=[rrcosφsinθθrcosφsinθφrcosφsinθrrsinφsinθθrsinφsinθφrsinφsinθrrcosθθrcosθφrcosθ]=[cosφsinθrcosφcosθrsinφsinθsinφsinθrsinφcosθrcosφsinθcosθrsinθ0].
Expanding along the last row we get
detJg(r,θ,φ)=r2det[cosφsinθcosφcosθsinφsinθsinφsinθsinφcosθcosφsinθcosθsinθ0]=r2(cosθ(cos2φ+sin2φ)sinθcosθ==sinθ(cos2φsin2θ+sin2φsin2θ)=r2sinθ(cos2θ+sin2θ)=r2sinθ.
The fact that Jg(r,θ,φ) is positive for all θ(0,π) tells us that the change of variables preserves the orientation of the coordinate systems, and that is why we take the variables in the order (r,θ,φ). Hence we have the following lemma, providing the Jacobian determinant for spherical coordinates.
Applying the transformation formula from Theorem 6.5 we see that
(6.5)Df(x,y,z)dxdydz=g(D)f(rcosφsinθ,rsinφsinθ,rcosθ)r2sinθdrdφdθ..

Remark 6.9.

Sometimes, spherical coordinates are defined measuring the angle θ not from the z-axis but from the xy-plane. If done so then θ[π/2,π/2], and
x=rcosφcosθy=rsinφcosθz=rsinθ.
Moreover, the corresponding Jacobian determinant is Jg(r,φ,θ)=r2cosθ.

Example 6.10.

Compute the volume of a ball of radius R in R3.
Solution.
In polar coordinates we can describe the ball, B, of radius R as the set of all (r,θ,φ) for which r[0,R], φ[0,2π] and θ[0,π]. Hence, applying Fubini’s theorem and the formula for spherical coordinates, the volume of the ball is
B1dx=02π(0π(0Rr2sinθdr)dθ)dφ=02π(0πR33sinθdθ)dφ=R3302π(cosθ|0π)dφ=R3302π2dφ=4π3R3.

Subsection 6.4.2 Cylindrical Coordinates

Given a point in space we can express the first two coordinates in polar coordinates, (r,φ), and leave the third one, z, as shown in Figure 6.11.
Figure 6.11. Cylindrical coordinates of a point
Choosing r>0 and φ[0,2π) the triple (r,φ,z) is uniquely determined for every point not on the z-axis. We call r,φ,z the cylindrical coordinates of a point. Looking at Figure 6.11 we can express x,y,z by
x=rcosφy=rsinφz=z
Hence the transformation
(6.6)g(r,φ,z):=(rcosφ,rsinφ,z)
maps [0,)×[0,2π)×R onto R3. We now compute the Jacobian matrix of that transformation:
Jg(r,φ,z)=[rrcosφφrcosφzrcosφrrsinφφrsinφzrsinφrzφzzz]=[cosφrsinφ0sinφrcosφ0001].
Expanding along the last row we get
detJg(r,φ,z)=det[cosφrsinφ0sinφrcosφ0001]=r(cos2φ+sin2φ)=r.
Hence we have the following lemma, providing the Jacobian determinant for cylindrical coordinates.
Applying the transformation formula from Theorem 6.5 to cylindrical coordinates we see that
(6.7)Df(x,y,z)dxdydz=g(D)f(rcosφ,rsinφ,z)rdrdφdz.