We next consider the Jacobian for a surface given by a graph of a function. Suppose that \(S\) is the graph of a smooth function \(h\colon D\to\mathbb R\text{.}\) We want to compute Jacobian of the corresponding parametrisation
\begin{equation*}
\vect g(x_1,x_2):=(x_1,x_2,h(x_1,x_2)),\qquad x\in D
\end{equation*}
of \(S\text{.}\) We first compute the Jacobian matrix of \(\vect g\text{:}\)
\begin{equation*}
J_{\vect g}(\vect x)=
\begin{bmatrix}
1 & 0 \\ 0&1\\
\dfrac{\partial h}{\partial x_1}(\vect x)
& \dfrac{\partial h}{\partial x_2}(\vect x)
\end{bmatrix}\text{.}
\end{equation*}
Then
\begin{align*}
\bigl(J_{\vect g}(\vect x)\bigr)^TJ_{\vect g}(\vect x)
&=
\begin{bmatrix}
1 & 0 & \dfrac{\partial h}{\partial x_1}(\vect x) \\
0 & 1 & \dfrac{\partial h}{\partial x_2}(\vect x)
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\ 0&1\\
\dfrac{\partial h}{\partial x_1}(\vect x)
& \dfrac{\partial h}{\partial x_2}(\vect x)
\end{bmatrix}\\
&=
\begin{bmatrix}
1+\Bigl(\dfrac{\partial h}{\partial x_1}(\vect x)\Bigr)^2
& \Bigl(\dfrac{\partial h}{\partial x_1}(\vect x)\Bigr)
\Bigl(\dfrac{\partial h}{\partial x_2}(\vect x)\Bigr) \\
\Bigl(\dfrac{\partial h}{\partial x_1}(\vect x)\Bigr)
\Bigl(\dfrac{\partial h}{\partial x_2}(\vect x)\Bigr)
& 1+\Bigl(\dfrac{\partial h}{\partial x_2}(\vect x)\Bigr)^2
\end{bmatrix}
\end{align*}
Now we compute the determinant of the above matrix:
\begin{align*}
\det&
\begin{bmatrix}
1+\Bigl(\dfrac{\partial h}{\partial x_1}(\vect x)\Bigr)^2
& \Bigl(\dfrac{\partial h}{\partial x_1}(\vect x)\Bigr)
\Bigl(\dfrac{\partial h}{\partial x_2}(\vect x)\Bigr) \\
\Bigl(\dfrac{\partial h}{\partial x_1}(\vect x)\Bigr)
\Bigl(\dfrac{\partial h}{\partial x_2}(\vect x)\Bigr)
& 1+\Bigl(\dfrac{\partial h}{\partial x_2}(\vect x)\Bigr)^2
\end{bmatrix}\\
&=\Bigl(1+\Bigl(\dfrac{\partial h}{\partial x_1}(\vect
x)\Bigr)^2\Bigr)
\Bigl(1+\Bigl(\dfrac{\partial h}{\partial x_2}(\vect
x)\Bigr)^2\Bigr)
-\Bigl(\dfrac{\partial h}{\partial x_1}(\vect x)\Bigr)^2
\Bigl(\dfrac{\partial h}{\partial x_2}(\vect x)\Bigr)^2\\
&=1+\Bigl(\dfrac{\partial h}{\partial x_1}(\vect x)\Bigr)^2
+\Bigl(\dfrac{\partial h}{\partial x_2}(\vect x)\Bigr)^2\\
&=1+\|\grad h(\vect x)\|^2
\end{align*}
Hence we have the following proposition.
Let us make use of the formula in an example.