Example 5.23. Are of a disc.
Compute the area of a disc of radius \(R\text{.}\)
Solution.
A disc, \(D\text{,}\) with radius \(R\) is given in polar coordinates by
\begin{equation*}
\{(r,\varphi)\colon 0\leq r\leq R, 0\leq\varphi\lt 2\pi\}\text{.}
\end{equation*}
\begin{align*}
\area(D)
\amp = \iint_D1\,dx\,dy
= \int_0^R\int_0^{2\pi} r\,dr\,d\varphi\\
\amp = \left.\int_0^{2\pi}\frac{r^2}{2}\right|_0^R\,d\varphi\\
\amp = \int_0^{2\pi}\frac{R^2}{2}\,d\varphi
=\pi R^2\text{.}
\end{align*}