Skip to main content Contents Index
Prev Up Next \(\newcommand{\vect}[1]{\boldsymbol{#1}}
\newcommand{\closure}[1]{\overline{#1}}
\DeclareMathOperator{\graph}{graph}
\DeclareMathOperator{\Int}{int}
\DeclareMathOperator{\grad}{grad}
\DeclareMathOperator{\area}{area}
\DeclareMathOperator{\volume}{vol}
\DeclareMathOperator{\curl}{curl}
\DeclareMathOperator{\divergence}{div}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 2.1 Graphs
Given a function from a set
\(D\subset\mathbb R^2\) with values in
\(\mathbb R\) we can plot its value on the
\(x_3\) -axis as shown in
Figure 2.1 . The resulting object is a surface, called the graph of
\(f\text{.}\) Formally, it is the set
\begin{equation*}
\graph(f):=\bigl\{\bigl(x_1,x_2,f(x_1,x_2)\bigr)
\mid (x_1,x_2)\in D\bigr\}
\end{equation*}
in \(\mathbb R^3\text{.}\)
Figure 2.1. To obtain the graph of \(f\) plot \(f(\vect x)\) above \(\vect x\in D\text{.}\) As an example consider the graph of
\(f(x,y):=5y(1-y^2)(1/2-x^2)-x\) in
Figure 2.2 .
Figure 2.2. Graph of \(f(x,y):=5y(1-y^2)(1/2-x^2)-x\text{.}\)
If \(D\subset\mathbb R^N\) we still call the set
\begin{equation*}
\graph(f)
:=\bigl\{\bigl(\vect x,f(\vect x)\bigr)\mid\vect x\in D\bigr\}
\subset\mathbb R^{N+1}
\end{equation*}
the graph of \(f\) over \(D\) , even if we cannot visualise it!